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COMMUTATORS AND NUMERICAL RANGES OF
POWERS OF OPERATORS

ELIAS S. W. SHIU

If 0 does not lie in the closure of the numerical range
of any positive integral power of a Hubert space operator
T, then an odd power of T is normal. If, in addition, T
is convexoid, then T itself is normal; in fact, T is the direct
sum of at most three rotated positive operators. A version
of these results is given in terms of commutators.

1* Introduction* In [8] C. R. Johnson proved: For an m x m
complex matrix A, if An is not normal for any positive integer n,
then there exist a positive integer nQ and a nonzero vector xeCm

such that (An°x, x) = 0. Later he and M. Neuman [9] obtained a
number theoretic result which strengthens the above theorem. We
generalize these theorems to the Hubert space operator case in this
paper.

Let 3¥{£έf) denote the set of bounded operators on a Hubert
space 3(f. For Γ e ^ ( J f ) , W{T) denotes the closure of the
numerical range of T. Our main results are: If 0 $ W(Tn), n — 1,
2, 3, , then an odd power of T is normal; in fact, T is similiar
to the direct sum of at most three rotated positive operators.
Moreover, under the above hypothesis, T is normal if and only if
T is convexoid.

These results can be applied to the theory of commutators: Let
ξ> denote a separable infinite dimensional Hubert space. For
Te &*(§), if Tn£{SX-XS: S,Xe<^($), S positive}, n - 1,2,
3, , then there are an odd integer k and a compact operator K
such that Tk + K is normal; furthermore, T is a compact perturba-
tion of a normal operator if and only if the essential numerical
range of T is a polygon (possibly degenerate).

2* Preliminaries* Let C denote the set of complex numbers
and R+ the set of strictly positive numbers. For Ω c C, Co(42)
denotes its convex hull; Ωn = {zn: zeΩ}, n a positive integer. We
write Ω > r, r a real number, if Ω is a real subset and each number
in Ω is greater than r. Let a, βeC and ε6(0, 1], Θ(a, β; ε) denotes
the closed elliptical disc with eccentricity ε and foci at a and β,

θ(a,β;e) = {z eC: \z - a\ + \z - β\ ^ \a - β\/ε] .
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Note that Θ{a, β; 1) is the line segment joining a and β.

LEMMA 1. Let a, β be two distinct nonzero complex numbers.
For ε e (0,1], if\ Arg (a/β)\ ^ arccos (-ε2), then 0 e θ(a, β; ε).

For Γ G ^ ( ^ ) , σ(T) denotes the spectrum and W{T) the
numerical range of Γ, W{T) = {(Tx, x): \\x\\ = 1}. We say T is
positive and_ write T > 0 if W(T) > 0. Γ is called convexoid if
Co(σ(T)) = W(T) [6, p. 114].

The following result describes the numerical range of a 2 x 2
matrix with distinct eigenvalues ([12], [10]).

LEMMA 2. If aΦβ, then w(jβ ^)) =β (α, S;

Let ^ ^ 0 J ^ denote the direct sum of two Hubert spaces
and 3ίΓ\ an operator on ί%f φ JίΓ may be expressed as a 2 x 2
matrix whose entries are operators. See [6, Chapter 7].

LEMMA 3. Let T e ^{Sίf 0 JiT), Γ =

- u

Let Γ e ^{Sif) with CJ(Γ) = σx U σ2, where (7X and σ2 are disjoint,
nonempty and closed. Let E be the spectral projection associ-
ated with σ, [18, §5.7]; then E2 = E, ET = ΓJK, α(ΓU^) = σ, and
^(Γ|(i-ί?)^) = *̂2 We note that E may not be Hermitian.

LEMMA 4 (cf. [13, §0.4]). Let T and E be as above and let P
be the orthogonal projection on Eέ%?\ Then, with respect to the
decomposition ESίf 0 (E§if)L, the operator matrix corresponding

to T has the form ( J 1 TγArf AT^, where (^ ή^ = E - P and

σ{T%) = σi9 i = 1, 2 .

Furthermore, TXA — AT2 = 0 if and only of A = 0.

The following result is proved in ([14], [15]).

LEMMA 5. For T e ^ ( ^ ) and σ(T)>Ύ>0, if{zeC:\z\ £yn}ςt
W(Tn) for infinitely many positive integers n, then T > 0.

3. Main results* The following generalizes [8, Theorem 1].

THEOREM 1. Let Γ e . ^ ( j r ) with σ(T) f] R+ φ 0. Suppose
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0 £ W(Tn), n — 1, 2, 3, , then either (i) there is a positive odd
integer m such that Tm > 0 or (ii) there exist a proper closed
subspace §^fx of 3ί? and positive operators Tx and T2 on <%t and

respectively such that T=T1@eiθT2, θ being irrational modulo 2π.

Proof. Since 0 g W(Tn) ZD Co(σ(Tn)) = Co(σ(T)n), n = 1, 2, 3, ,
either (i) there is an odd integer m such that σ(T)m c R+ or (ii)
σ(T)dR+ \jeiθ-R+, θ being irrational modulo 2ττ.

In case (i), σ{Tm) > 0. Thus we have Tm > 0 by Lemma 5.
In case (ii) we apply Lemma 4 with σx = o(T) Π -R+. Then

τ=(TιTιA- ei

\ 0 e«Tt

(
rpn rpn Λ oinθ ATn

TΓ(Γm)=3 TfίΓί1) and W(Tn)z> W(eιnβT?), we have T, > 0 and Γ2 > 0 by

Lemma 5.

To show t h a t T = 2\ 0 e ί f fΓ2, we have to show A = 0. Assume

A ^ O . For a positive integer n and y eί.E'Jg*')1, wi th \\y\\ = 1 and

.Ay Φ 0, let θ[%, y] denote the numerical range of the 2 x 2 m a t r i x

(TΐAy, Ay)/\\Ay\\> ((TtAy, Ay) - e™\AT\y, Ay))/\\Ay\\\

0 eM{Tΐy, y) j '

By Lemma 3, θ[n, y] c W(Tn). By Lemma 2, θ[n, y] = θ(a, β; ε[n, y]),
where aeR+, βeeinθR+ and

ty, Ay))/\\Ay\
?2/, y)

Let ym, m = 1, 2, 3, be a sequence in {E£ίfY such that \\ym\\ = 1
and limOT_̂ , ||Ai/m|| = ||A||. For each w,

1 + l a S f f l ,
(ΓMl/Λ yJ/H Aί/m||2 - β' 'ίΓfy., y j

Hence limm^= ε[n, ym] = (1 + ||A||2)~1/2. Thus for each integer n,
there is an integer m(n) such that

Since θ is irrational modulo 2ττ, we can pick a positive integer N
for which |Arge i W | ^ arccos (-/(I + ||A||2/2)). Then Qeθ[N, yuUn]
by Lenima 1. However, 0 $. W(TN) by hypothesis; A — 0 and
T = 7\



520 ELIAS S. W. SHIU

We note that if Sίf is finite dimensional, the proof of case (ii)
can be greatly simplified: Let a, βeC and an Φ βn, n = 1, 2, 3, ,

then w(β £)*) - Θ(a% βn; (1 + \y/(a - β)\Tm) hy Lemma 2.

For ^cC\{0}, let #Arg <& denote the cardinality of the set
{λ/|λ|:λe^}. The result in [9] may be stated as follows: Let ^
be a compact set of nonzero complex numbers such that <g* Π R+ Φ 0 .
If 0 ί Co (if"), w = 1, 2, 3 , and if #Arg i f ^ 3, then #Arg i f = 3
and ^ 7 c i ί + .

THEOREM Γ. Lei Γ e ^ ^ ) wΐίΛ, σ ( T ) n / ί + ^ 0 . Suppose 0£
, % — 1, 2, 3, , . We Aαve ίfeβ following cases:

( i ) #Arg σ(Γ) - 1 ί/wm Γ > 0.
(ii) #Arg σ(T) ^ 3, then #Arg σ{T) = 3 α r̂f T7 > 0.
(iii) #Arg ^ Γ ) = 2, ίfeew either there is a positive odd integer

m such that Tm > 0 or there exist a closed subspace 3ίfι of §ίf and
positive operators Tγ and T2 on <5ίfγ and Sίfγ

L respectively such that
T = TΊφβ^Γg, θ being irrational modulo 2π.

THEOREM 2. Let T £ &(3ίf). Suppose 0 ί W(Tn), n = 1, 2, 3,
Γ is normal if T is convexoid.

Proof. By Theorem Γ, #Arg σ{T) ^ 3. First, we consider the
case #Arg<7(T) = 2, i.e., there are two real numbers θx and θ2 such
that σ(T)aeiθl-R+ U eiθ*-R+. Let £f be the spectral projection as-
sociated with σ(T)neίθί-R+. With respect to ESίf φ {E£ίf)L, put

-£7 = (θ H)> then Γ - ( β ^ e%$lTl^f-e%$'Tl)9 where Γx> 0 and Γ2> 0.

Assume A Φ 0; thus there is a two-dimensional compression of ϊ7

whose numerical range consists of an elliptical disc with foci on
each of the two half-rays eίθΐ-R+, j = 1, 2, and eccentricity strictly
less than unity. However, T is a convexoid by hypothesis and
Co (σ(T)) is a quadrilateral, a triangle or a line segment with all of
its vertices lying on the two half-rays eίθί-R+, j — 1, 2. Therefore,
A - 0 and T - e^r x 0 eiθ*T2.

The case that #Argσ(Γ) = 3 is treated in a similar fashion.
Nevertheless, we note that the above geometric argument fails if
#Arg σ(T) ^ 4. Fortunately this case cannot arise.

By the term polygon, we mean the rectilinear figure together
with its interior domain; moreover, we do not exclude the degenerate
cases of singletons and line segments. For Γ e ^ ( ^ ) , if W(T) is
a polygon, then T is convexoid [7, Satz 1]. Thus we have
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COROLLARY 1. Let T e ^(βέf). Suppose 0 g W(Tn), n = 1, 2,
3, •••. Then T is normal if and only if W(T) is a polygon.

We note that the polygon mentioned in Corollary 1 may have
at most six sides.

4* Commutators* There are interesting applications of the
above results to the theory of commutators. Let φ be a separable
infinite dimensional Hubert space, 3tΓ($S) the set of all compact
operators on φ and Π the canonical homomorphism from ^ ( φ ) onto
the Calkin algebra, ^(φ)A^""(φ). There exists an isometric
^isomorphism τ of the Calkin algebra onto a closed self-adjoint
subalgebra of &(<&?), where 2(f is a suitably chosen Hubert space
[16, Theorem 12.41]. For T e ^ ( § ) , the Weyl spectrum σw(T) is
the largest subset of σ(T) which is invariant under compact pertur-
bations, σw(T) = Π {σ(T + K): Ke 3Γ($)}. In [5] it is shown that
σw{T) consists of σ(τ(Π(T))) together with some of the bounded
components of the complement of σ(τ(Π(T))). Consequently if σw(T)
lies on a simple arc, σw(T) = σ(τ(Π(T))).

LEMMA 6 ([11], [4, p. 62]). Let Te&(§). Suppose τ(Π(T)) is
normal and σ(τ(Π(T))) lies on a simple arc. Then, there exists a
compact operator K such that T + K is normal and σ(T + K) —
σ(τ(Π(T))).

The essential numerical range of Γe &(§) is the set We(T) =
Γί{W(T + K):Kejr(Q)}. By [17, Theorem 9] and [2, Theorem 3],
We(T) = W(τ(Π(T))). Let & denote {SX - XS: S, Xe^($), S > 0}.
In [1], J. H. Anderson proved the following deep result: & — {T e
^(Q):0eWe(T)}; also see [3, §34], Corresponding to Theorem Γ,
we have

THEOREM 3. Let Te.^(Q). Suppose Tn£^, n = 1, 2, 3, •••.
Then we have the following cases:

( i ) #Arg σw(T) = 1, then there exist θ e [0, 2π) and a compact
operator K such that (eiθT + K) > 0.

(ii) #Arg σw(T) ^ 3, then #Argσw(T) = 3 and there exist
θ e [0, 2π) and a compact operator K such that (eiθT7 + K) > 0.

(iii) #Arg σw(T) — 2, then either there exist a positive odd
integer m, #e[0, 2π) and a compact operator K such that (eiθTm +
K) > 0, or there exist a closed subspace ^ of ξ> and positive opera-
tors T1 and T2 on & and §}• respectively such that (T—e^T&e^T^
is compact, where (#x — θ2) is a number irrational modulo 2π.

Proof. We only need to prove the second half of case (iii).
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We know τ(Π(T)) = e^V^e^V, on J ^ © ^ 1 - <%r, where
and V2 > 0. Thus τ(Π(T)) is normal and σ(τoΠ(T)) lies on a simple
arc. By Lemma 6, there is a compact operator K such that T + K
is normal and σ(T + K) = σ(τ(Π(T))). Consequently, there exist a
closed subspace & of § and positive operators T1 and Γ2 on & and
$t respectively such that (T — eiΘιTι φ e^2Γ2) is compact.

THEOREM 4. Lei Te &(Q). Suppose Tn $ &9 n = 1, 2, 3, ••
TΛβ'ft T is a compact perturbation of a normal operator if and
only if We(T) is a polygon.

Proof. Apply Corollary 1.
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