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THE ABSOLUTE BAIRE PROPERTY

JOHN C. MORGAN, II

In earlier papers the author has formulated an axiomatic
foundation for a general theory of point sets, one of whose
purposes is the unification of analogous theorems concerning
Baire category and Lebesgue measure. Within this context,
a method is given in the present paper for unifying the
Baire property in the restricted sense and absolute meas-
urability on the real line.

That absolute measurability is the appropriate measure-
theoretic analogue of the Baire property in the restricted
sense was suggested by E. Marczewski in a classical paper
in 1937, after he had established the Baire property (in the
wide sense) and Lebesgue measurability as analogous concepts.

Except for §§1 and 5, X will denote the real line. In § 1 a brief
review is given of basic definitions and facts from [6] which are
pertinent to this paper. We define in § 2 the "absolute Baire property"
in terms of order preserving mappings. That this definition actually
effects the desired unification is dependent upon the intimate rela-
tionship existing between perfect sets and sets of order type λ (the
order type of the real line) as discussed in §3. The classical ex-
amples are then presented in §4.

A central role in these investigations is played by certain families
of perfect sets whose properties are given in §§ 5 and 6. In § 7 we
prove a general theorem which includes as special cases the known
invariance under order isomorphisms of absolute measurability and
of Marczewski's sets. Finally, some open problems are stated in § 8.

1* Preliminaries*

NOTATION. If Sf is any family of sets, then the members of
&* will be called ^-sets.

Upon isolating properties common to the families of all closed
intervals, all perfect sets, and all closed sets of positive Lebesgue
measure, the following notion of a ^-family was obtained (see [6]).

DEFINITION 1. A pair (X, <g*) where X is a nonempty set and
& is a family of subsets of X is a ^-family if the following axioms
are satisfied.

1. X = U ^ .
2. Let A be a ^-set and let ^ be a nonempty family of dis-

joint ^-sets which has power less than the power of ^ .
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(a) If A Π (U &) contains a ^-set, then there is a ϋ^-set D such
that ADD contains a ^-set.

(b) If A n (U^O contains no ^-set, then there is a g -̂set B e
A which is disjoint from all £

The symbol ^ will always signify a ^-family, with respect to
which the generalized Baire category concepts are defined.

DEFINITION 2. A set S c l is ^-singular if each ^-set A con-
tains a ^-set B which is disjoint from S. We denote by ^Ί the
family of all countable unions of ^-singular sets and by ^n the
family of all subsets of X which are not ^z-sets.

A set SaX is a ΐf7/-set everywhere on a ^-set A if S 0 B is
a ^/j-set for every ^-set S c i . The set S is a ^ / 7-set everywhere
if S (Ί 2? is a ^ r s e t for every ^-set I?.

We shall have occasion to use below the following fact concerning
the intersection of two ^-sets (see [6] Theorem 1).

PROPOSITION 1. If A and B are ^-sets, then either A{~) B con-
tains a ^-set or A Π B is ^-singular.

In addition, we will utilize the following generalization of a
theorem of Banach (see [6] Theorem 2).

FUNDAMENTAL THEOREM. If S is a ^n-set, then S is a c^n-set
everywhere on some ^-set.

DEFINITION 3. A set S c l has the Baire property with respect
to ^ if for every ^-set A there is a ^-set BaA such that either
B Π S or B n (X - S) is a ί f r set.

The family of all subsets of X which have the Baire property
with respect to ^ will be denoted by S5(^). This family is a σ-
field containing the family ^ and the tf-ideal of ί^Vsets. Moreover,
if ^ satisfies CCC (the countable chain condition), then S5(^) is
closed under operation ( j^) .

Finally, we recall the notion of equivalence between ^-families.

DEFINITION 4. Two ^-families ^ and & of subsets of the same
set X are equivalent if <&τ = ^ and

2. The absolute Baire property* Let φ be an order isomor-
phism mapping an ordered set K onto an ordered set L. If (if, ^ )
is a ^-family and φ(^) = M ^ ) : Ae^} then (L, ^ ( ^ ) ) is a ^-family
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with 9>(9f), = φ(^τ) and 33[φ(ίf)] = φ[%>(<έ?)].

DEFINITION 5. Assume K c X has the relativized ordering of X
and (K, &) is a ^-family. A set S c l has the absolute Baire
property with respect to (K, &?) (respectively, is an absolute <gVset)
if S Π L has the Baire property (respectively, S Π L is a <p(^)/-set)
with respect to (L, <p(ί̂ )) for every order isomorphic mapping φ of
K onto a set L a X.

NOTATION. The family of all subsets of X which have the ab-
solute Baire property with respect to (K, <^?) will be denoted by

From the definition we immediately obtain the following facts.
1. If K = X then 8ϊ(<if) is a sub σ-field of 93(<if) and the ab-

solute <gVsets form a sub σ -ideal of ^ 7 .
2. If 23(^) is closed under operation ( j^) then so also is 2ί(^).
3. If (JBΓ, <£T) and (iΓ, ^ ) are equivalent ^-families then Sί(^) =

3* The structure of perfect sets. Let P be a bounded, nowhere
dense, perfect set with a = inf P, 6 = sup P, and (aL, 6X), (α2, 62)? >
α < α% < &% < 6, w = 1, 2, , the intervals contiguous to P. Bendixson
[1] has shown that upon removing the right hand side limit points
α, b19 b2, 63, and the point b from P we obtain a set of order type
λ. A similar result holds for any perfect set. As this fact is funda-
mental to this paper a proof is provided.

THEOREM 1. Every perfect set can be represented as a disjoint
union of a set of order type λ and a countable set.

Proof. It suffices to prove the theorem for bounded, perfect
sets P.

Delete from P the smallest and largest elements of P and all
right hand side limit points of P (i.e., all points which are limit
points from the right hand side but not from the left hand side).
Only countably many points are thus removed. We show that the
set E of points remaining has order type λ. First we find a count-
able order-dense subset of E.

For each xeP associate a closed interval Ix as follows:
(1) If P contains a nondegenerate (i.e., nonempty interior) closed

interval containing x then let Ix be the largest such closed interval.
( 2 ) If P contains no nondegenerate closed interval containing x
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and every open interval containing x also contains interior points of
P then let Ix = {x}.

(3) If P contains no nondegenerate closed interval containing x
and there is an open interval containing x which contains no interior
points of P then let Ix be the largest closed interval I containing x
such that P f] I is a nowhere dense perfect set.

For each x e P, set Px = P f] Ix and define a countable set Dx in
the following manner:

( i ) If Px — [α, 6], a < 6, then Dx is the set consisting of all
rational numbers in (α, 6) and the point a if it was not deleted.

(ii) If Px = {x} then Dx - 0 .
(iii) If Px is a nowhere dense perfect set with a = inf Pxf b =

sup Px and contiguous intervals (alf 6X), (α2, δ2), , a < an < bn < δ,
% = 1, 2, then Dx is the set consisting of the points a19 α2, ,
the point a if it was not deleted, and the point b if it is not the
largest element of P.

The set D = \JxePDx is a countable subset of E which we now
show to be order-dense in E.

Suppose a,beE and a < 6. Assume first that a and 6 both
belong to Px for some x. If the interval [a, b] is contained in Px

then there is a rational number c with α < c < 6. If the interval
[a, b] is not contained in Px then Px is a nowhere dense, perfect set
with contiguous intervals (alf &J, (a2, 62), and for some positive
integer n, a < an < 6. Next, assume aePx, bePy, and x Φ y. As 6
is a left hand side limit point of P, there must be a point ce Dx

such that α < c < &. Therefore ΰ is a countable order-dense subset
of E.

Let (A, B) be a Dedekind cut of E. Set a = sup A and J5 = inf
JB, then a, be P. It a = b then, since no two-sided limit points were
removed, we must have aeE. Thus assume a <b. No points of
P will then lie in the interval {a, b) and b will be a right hand side
limit point of P so that b $E and aeE. The cut (A, JB) is thus
seen to be determined by an element of E.

As E also has no first or last element, E has order type λ.

NOTATION. For any perfect set P we denote by λ(P) the set of
order type λ obtained by removing from P its smallest and largest
elements (if any) and all right hand side limit points of P.

Note that for perfect sets A and B we have AaB if and only
if λ(A)cλ(5).

A set of order type λ is a S^Vset in X which becomes a closed
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set upon adjoining a countable set of points (see [12], p. 133-134).
Thus, by the Cantor-Bendixson theorem, the perfect sets and the
sets of order type λ are the same "modulo countable sets".

4* Classical examples •

EXAMPLE 1. Baire category* For each set E a X, let &{E)
denote the family of all subsets of E which have the classical Baire
property relative to E, let S*(E) denote the family of all subsets
of E which are of the first category relative to E, and let &(E)
denote the family of all subsets of E which are Borel sets relative
to E.

A set E c X is called "condensed-in-itself" if every point of E
is a condensation point of E.

LEMMA 1. If P and Q are uncountable Borel sets condensed-in-
themselves whose symmetric difference PΔQ is countable then for
every set SdX we have

1. Sf]PeSf{P) if and only if Sf)Qe
2. SnPe^p(P) if and only if Sf]Qe

Proof. An elementary argument shows Sί lPeS^{P) if and
only if S n ( P ί l Q ) e £f(P n Q) and S Π Pe^(P) if and only if S Π
(P Π Q) 6 &(P Π Q). The lemma then follows upon interchanging P
and Q.

LEMMA 2. If L is a set of order type λ then ^(L) coincides
with the σ-field S^ generated by all L-intervals of the form (a, b) n
L, with a,beL, a <b, and (α, b) = {x e X: a < x < b}.

THEOREM 2. // (X, ̂ ) is the family of all open intervals {a, b),
— ° o < α < & < - f o o , then 2t(^) is the family of all sets which
have the Baire property in the restricted sense and the absolute

coincide with the sets always of the first category.

Proof. Let P be any given perfect set, let L = λ(P), and let φ
be an order isomorphism of X onto L. Define

3f = {G Π L: G is an open set in X and G Γ\ L ^ 0} .

Each φ^y&et contains a ^-set and conversely. Hence the $-
families (L, φ(^)) and (L, £&) are equivalent, so that 95(^7)i == &Ί =
S*(L) and SB[9>(<ίf)] = S5(^) = ̂ ( L ) . Applying Lemma 1, we see
that if S c l has the absolute Baire property with respect to &'
then S Π Pe^(P) and if S is an absolute <gVset then S Π P e
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for every perfect set P.
Conversely, let φ be any order isomorphism of X onto a set L

of order type λ and let P be the perfect kernel of the closure of L
in X. According to Lemma 1, if S is any subset of X and Q =
Pf]L then Sf]PeS^(P) implies SnQeS*(Q) and SΓ\Pe&(P)
implies S Π Q e ^ ( Q ) . We shall now show S n Q e ^ ( Q ) implies
S n i e ^ ) , and SnQe^(Q) implies S n Le$b[<p(&)]. It will
then follow that if S has the Baire property in the restricted sense
then S has the absolute Baire property with respect to ^ and if S
is always of the first category then S is an absolute ^^-set.

If S f]Q is nowhere dense relative to Q then S ΓΊ Q is 9>(^)-
singular. Since <p(^)z = <p(&Ί) and every countable subset of X is
a <gVset, every countable subset of L is a <£>(^)z-set. Therefore,
if S Π Q e Sf(Q) then S f] L = (S f] Q) I) [S f](L - Q)] is a φ(9f ) rset.
Assume next that SnQe &(Q), then S Π Q = A U N where A 6 &(Q)
and iSΓ6^(Q). Hence S n L = A\jNU[Sf)(L - Q)], where Ae^(L)
and ΛΓ U [S Π (L - Q)] e φi^)j. By Lemma 2, Beΐ8[φ(%f)] and con-
sequently s n L 6

EXAMPLE 2. Lebesgue measure* If EaX is a Borel set and μ
is a measure on (£/, &(E)) then we shall denote by ^£{μ) the family
of all subsets of E which are measurable with respect to the com-
pletion μ of μ, and by ^4r{μ) the family of all subsets of E which
are of measure zero with respect to the completion μ of μ.

U will denote the open unit interval (0, 1) and m will be Lebesgue
measure on U.

THEOREM 3. If (X, ^ ) is the family of all closed subsets of X
of positive Lebesgue measure then 2t(^) consists of all absolutely
measurable sets and the absolute ^j-sets are the absolute null-sets.

Proof. It suffices to show the statement of the theorem is true
when (X, if7) is replaced by the ^-family {U, 9f')> where <gf' is the
family of all closed subsets of U of positive Lebesgue measure.

Let μ be a continuous probability measure on (X, &(X))9 let P
be the support of μ9 and let L = λ(P). The restriction v = μ \ ^{L)
is a continuous probability measure on (L, &(L)) which is positive
on every L-interval of the form (α, b) n L, where a, b e L and a <b.
Moreover, ^Γ(v) = {SnL:Se ^V(μ)} and ^€{v) = {S n L: S e ^€(μ)}.
Let ψ be the order isomorphic mapping of L onto U defined by
f(x) = v({y eL:y <£ x}). For all B e ^(L) we have, as shown in [11],
v(B) = m[ψ(B)\. Consequently ^"(1;) = ̂ " 1(^ /)z and ^e(v) = ίδ[f-1(^f)].
Therefore, if SeSCί^' ) then S is absolutely measurable and if S is
an absolute ^ - s e t then S is an absolute null-set.
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For the converse, let φ be any order isomorphism mapping U
onto a set L of order type λ. Let v be the measure on (L, &(L))
induced by φ and Lebesgue measure m, i.e., v(B) = m[φ~ι(B)\ for
each ΰ 6 «^(L). v is a continuous probability measure which is of
positive measure on every L-interval (α, b) Π L, a,beL, a < b, and
we have ^T(v) = p(<if')/ and ^£{v) = ^&[φ(^f)]. Extend v to a con-
tinuous probability measure μ on (X, ^ ( X ) ) , whose support is the
perfect kernel of the closure of L in X, by defining μ(B) = v(B Π L)
for each B e ^ ( X ) . Then ^ ( v ) = {S{~)L:Se ^V(μ)} and ^ ( v ) =
{S Π L: S G ^C(μ)}. It follows that if S is absolutely measurable
then S e St(^7') and if S is an absolute null-set then S is an absolute

EXAMPLE 3. Marczewski sets* A set S c l is a Marczewski set
(see [10]) if every perfect set P e l contains a perfect set Q such
that either Q a S or Q c X — S. The Marczewski sets are the sets
which have the Baire property with respect to the ^-family of all
perfect subsets of X. A set SczX will be called a Marczwski
singular set if it is singular with respect to this ^-family, i.e., if
every perfect set P e l contains a perfect set Q which is disjoint
from S.

THEOREM 4. // (X, ^ ) is the family of all perfect subsets of X
then St(^) = S5(^) and the absolute ^j-sets are the same as the
Marczewski singular sets.

Proof. Suppose S is a Marczewski set and let φ be an order
isomorphism of X onto a set L of oredr type λ. If A is any φ(^)-
set then A contains a perfect set P which in turn contains a perfect
set Q such that Q c S o r Q c X — S. Moreover Q contains a
set B such that B aS f) L or B czL - (S f] L), whence Sf] L e
The set S thus has the absolute Baire property with respect to ^ .
It is also clear that the Marczewski singular sets are absolute •'gr-
eets.

5. ^-families* Throughout this section (X, d) will denote a
complete, separable metric space with no isolated points.

DEFINITION 6. A ^-family (X, ^ ) consisting of perfect sets is
called a ^β-family if it satisfies the condition

( + ) for every ^-set A and every point xeA there is a de-
scending sequence (An)~=1 of ^-sets such that x e Anf An c
A, and diam (An) ^ 1/n for each n.

An equivalent condition is given in the next theorem.
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THEOREM 5. A necessary and sufficient condition that a $-
family of perfect sets be a ^-family is that for each ^-set A, each
positive integer n, and each pair xίf x2 of distinct points in A, there
exist disjoint ^-sets Alf A2 such that xt e At, At c A, and diam (A{) <;
1/n for i = 1, 2.

Unless otherwise indicated (X, &*) will hereafter denote a 3̂-
family.

Examples of ^-families (see [5], [6], [9]).
4. Let Q be a countable set dense in X and let cέ? be the family

of all closures of open balls {x e X: d(x, r) < 1/n}, reQ, n — 1, 2,
5. Let μ be a continuous probability measure defined on the

Borel subsets of X and let ^ be the family of all closed sets which
are of positive meaure in every neighborhood of each of their points.

6. Let <& be the family of all perfect sets. We shall also
denote this ^-family by ^ .

7. Assume the continuum hypothesis. Let X be ^-dimensional
Euclidean space, let h be a continuous function in Sίf^ let μh be the
Hausdorff measure associated with h, and let ^ be the family of all
closed sets which are of positive μΛ-measure in every neighborhood
of each of their points.

8. Assume the continuum hypothesis. Let X be ^-dimensional
Euclidean space and let ^ be the family of all closed sets which
are of positive Hausdorff dimension in every neighborhood of each
of their points.

Note that, when X is the real line, the first three examples above
are equivalent to the ^-families of §4.

DEFINITION 7. A ^-family (X, ^ ) , where X is an arbitrary
uncountable set, is called an S-family if the following properties
hold:

1. every ^-set is a ^ / z-set.
2. every countable set is a ^j-set.

All theorems in [6] which are true for SJί-families are also true
for S-families. We also have

BAIRE'S THEOREM 6. Every ^-family is an 2-family.

We next give some basic facts concerning ^-families (X, ^ ) .

THEOREM 7. // A and B are ^-sets whose symmetric difference
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AΔB is a ^rset then A = B.

Proof. It suffices to show that if A — B is a ^ - s e t then A c
B. Assume xeA and let <A%>~=1 satisfy condition ( + ). From the
equality An = (AΛ Π B) U (AΛ - JB) and the fact that An - B is a <gV
set, we conclude AΛ Π B Φ 0 for every n. Therefore xeB.

THEOREM 8. If P is a perfect set which is not ^-singular then
P contains a ^-set.

Proof. If P is not ^-singular then there is a ^-set A such
that Pf]BΦ0 for every ^-set Be A. It follows from condition
( + ) that Ac.P.

THEOREM 9. // {X, <&) is not equivalent to (X, &*) then there
exists a ^-singular perfect set.

Proof. If there are no ^-singular perfect sets then every
perfect set contains a ^-set. Hence every ^-set contains a ̂ -set
and conversely, so (X, ̂ ) is equivalent to (X,

COROLLARY 10. If {X, <&) satisfies CCG then there exists a %?-
singular perfect set.

THEOREM 11. Every Borel set has the Baire property with re-
spect to <&.

Proof. Suppose G is a nonempty open set and A is any ^-set .
If Af)Gφ0 then there is a point xeG and a <g*-set BcAf)G
such that x e B, whence B Π (X — G) = 0 . It follows that every
open set has the Baire property with respect to ^.

REMARK. In general, the σ-field generated by ^ will not con-
tain all the Borel sets.

THEOREM 12. Every ^u-set with the Baire property contains
a perfect set.

Proof. Let S be a ^7 /-set with the Baire property and let S
be a ^z z-set everywhere on a ^-set A. The set A — S is then a
<gVset, say A — S = U"=i S» where each Sn is ^-singular. A dyadic
schema of ί^-sets can be constructed in A to determine a perfect
set P disjoint from every Sn. Thus P is a perfect subset of S.
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COROLLARY 13. A set with the Baire property either contains
a perfect set or its complement contains a perfect set.

For every ^-set A the family ^ \ A of all ί^-sets contained
in A is a ^-family, called "the restriction of (X, ctf) to A".

THEOREM 14. If for every ^set A the ^β-family (A, ̂  \ A) is
not equivalent to (A, 3^ \ A) then every ^u-set with the Baire
property contains a ^-singular perfect set.

Proof. Assume S is a ^ j-set with the Baire property. By
Theorem 12, the set S contains a perfect set P. If P is ^-singular
then we are finished. Suppose then that P is not ̂ -singular. By
Theorem 8, there is a ί^-set A contained in P. Since (A, ̂  Γ A)
is not equivalent to (A, ̂  \ A), we obtain from Theorem 9 the
existence of a ^ f A-singular perfect set QaA. That Q is also
^-singular is a consequence of Proposition 1.

COROLLARY 15. // (X, <&) satisfies CCC then every ^n-set with
the Baire property contains a ^-singular perfect set.

DEFINITION 8 (cf. [6]). A set ScX has property (L) with
respect to ^ if S is uncountable and every uncountable subset of
S is a ^jj-set.

THEOREM 16. // for every ^-set A the ^-family (A, i f \ A) is
not equivalent to (A, & \ A) then any set having property (L) does
not have the Baire property.

Proof. This is an immediate consequence of Theorem 14.

COROLLARY 17. If for every W-set A the ^-family (A, ΐf \ A)
is not equivalent to (A, & \ A) then an uncountable set S has
property (L) if and only if every subset of S having the Baire
property is countable.

A set which contains no perfect set and whose complement also
contains no perfect set is called, following [8], a "Bernstein set."

THEOREM 18. A Bernstein set does not have the Baire property
with respect to any ^-family. In fact, any subset of a Bernstein
set which has the Baire property with respect to a ̂ -family (X,
is a ^rset.
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Proof. Apply Theorem 12.

THEOREM 19. Every ^n-set has a subset which does not hav
the Baire property. Equivalently', if every subset of S has th
Baire property then S is a ^rset.

Proof. See the proof of Theorem 5.5 of [8].

COROLLARY 20. // (X, <if) and (X, 2f) are nonequivalent ?β-
families and <& c 3f then there is a set which has the Baire prop-
erty with respect to <& but which does not have the Baire property
with respect to 2$.

Proof. Since (X, <&) and (X, £&) are not equivalent, there is a
^-set A which contains no ^-set. Hence A is a i^/z-set and is
^-singular. Now apply Theorem 19.

6* The absolute Baire property with respect to a $β-family*

THEOREM 21. Sί(^) is contained in the σ-field of Marczewski sets
and the absolute ^rsets are contained in the σ-ideal of Marczewski
singular sets.

Proof. Assume S has the absolute Baire property with respect
to <g*. Let P be any perfect set and let φ be an order isomorphism
mapping X onto L = λ(P). If S Π L is a φi^n-set then by Theorem
12 there is a perfect set R such that R c φ~\S Π L) and if S f] L
is a <£>(̂ )7-set then there is a perfect set RczX — φ'^S Π L). Since
φ(R) is an uncountable Borel set, there exists a perfect set Q c φ(R)
with either Q (zS Γ\ L or QaL — S. Hence S is a Marczewski set.
That the absolute <gVsets are Marczewski singular sets is now
obvious.

As we have seen, for the family & of all perfect sets we have
8ί(^) = S3(.^). This property is characteristic of & in the follow-
ing sence.

THEOREM 22. If (X, <iT) is a ^-family with 21(<sr) = S3(<£f) then
(X, <£f) is equivalent to (X,

Proo/. Assume SΪ(<Sf) = 93(9f) and (X, ̂ ) is not equivalent to
(X, ^ ) . By Theorem 9 there exists a ^"-singular perfect set P.
Every subset of P has the Baire property with respect to ^ and
hence, according to the preceding theorem, every subset of P is a
Marczewski set. Applying Theorem 19 we conclude P is a Marczewski
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singular set!

THEOREM 23. Sί(^) contains all Borel sets.

Proof. It suffices to show Sl(^) contains all open intervals.
Let φ be any order isomorphism of X onto a set L of order type
λ. We show for every open interval I and every <p(^)-set A there
is a <£>(̂ )-set B c A such that either B f] I or B Π (L — I) is a

lί Af] I contains at most two points then A Π / is a
Thus assume i n ί contains at least three points a, b, c with a <
c < b. If J is the open interval with endpoints φ~1(a)f φ~\b) then
there is a ̂ -set E c φr\A) Π «/" such that ^ ( c ) e E. Hence 5 =
is a <p(^)-set contained in A Π I and I? Π (L — I) = 0 is a

COROLLARY 24. // (X, <δf) satisfies CCC £ft*m Sί(^) contains all
analytic sets.

Concerning the existence of uncountable absolute ^-sets we
can easily generalize the theorem of Lusin and Sierpiήski [4] to
obtain

THEOREM 25. There exists a set S c X of power yj^1 which is
an absolute ^j-set with respect to every ^family (X, <g>) satisfying
CCC.

7* On order isomorphic images of sets* In general the Baire
property is not invariant under order isomorphisms. Specifically,
we have

THEOREM 26. // (X, ̂ ) is not equivalent to (X, &) then the
Baire property with respect to & is not invariant under order
isomorphisms.

Proof. By Theorem 9 there is a ^-singular perfect set P and
by Theorem 19 there is a set S which does not have the Baire
property with respect to ^ . If φ is any order isomorphism of λ(P)
onto X then φ~ι(β) has the Baire property and S does not.

REMARK. If we remove from λ(P) the dense set D defined in
the proof of Theorem 1 then the restriction of φ to the set λ(P) —
D is an order preserving homeomorphism. Hence, if (X, ̂ ) is not
equivalent to (X, £7>) then the Baire property with respect to ^ is
not invariant under homeomorphisms.
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The remainder of this section is devoted to establishing, under
certain conditions, the in variance of the absolute Baire property
under order isomorphisms.

Without loss of generality, we can assume the space X belongs
to ΐf. For we can easily prove the following:

LEMMA 3. // (X, ^) is a ^-family (resp. a ^3-family) then
(X, ^ U {X}) is an equivalent B-family (resp. φ-family).

Next, we associate with a ^3-family (X, ^ ) an equivalent
family each of whose sets has order type λ.

LEMMA 4. // (X, <if) is a ^-family, with I e ^ , and Sf =
): A e ^} then (X, £?) is a Si-family which is equivalent to

(X,

Proof. We first show (X, ^f) is a ^-family. Axiom 1 is a con-
sequence of the assumption l e ^ . Assume ^ = {Ma: a < Θ),
where Θ is a limit ordinal, is a nonempty family of disjoint .Sf-sets
of power less than the power of £f9 hence of power less than the
power of ^ , and let L be an ^-set . For each set S c X we denote
the closure of S by S.

Suppose L n (U« Ma) contains an ^-se t K, then K Π (U« Ma)
contains a ί^-set. For, if K Π (U« Ma) contains no ^-set then there
is a <Sf-set A c K - (\Ja Ma) and hence X(A) aK - (U« Ma), con-
tradicting the fact that X(A) c \Ja Ma. Choose now a < Θ so that
K Π ii?α contains a ^-set B. Then λ(B) is an ^f-set contained in
Lni,

Suppose L n (U« Λf«) contains no i^-set. If L Π (U« -M"«) contains
a ^-set then there is an index a < Θ such that L n Ma contains a
^-set A and consequently λ(A) c L Π -M« c L Π (U« Λf«) Therefore
£ Π (U« -M"«) contains no ^-set and there is a ^-set A c L - (U«iίίff).
Hence λ(A) is an £f-set contained in L — (\Ja Ma). Axiom 2 is thus
satisfied.

To prove (X, £f) and (X, ^) are equivalent we first show ^ =
«5f/. It is easily seen that if S is a ^-singular set then S is .Sf-
singular. Therefore ^ 7 c =S .̂ Suppose now that S is an ^'-singular
set. If A is any ^-set then there is an .Sf-set iίcλ(A) — S and it
follows that if Π S is countable. We have thus shown that for every
ί^-set A there is a ^-set Be A such that B Π S is a <gVset. By
the Fundamental Theorem, iS is a ^-se t . Therefore we have i?J c

Assume S has the Baire property with respect to ^ and suppose
S is an ĵ ί/j-set everywhere on an jSf-set L. Then for every ^-set
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4 c L , the set A Π S is a <gV set. Hence there is a ^-set BczL
such that B Π (X - S) is a <§frset. It follows that λ(jB) is an £f-
set contained in L and λ(i?) Π (X — S) is an ^ - s e t . Thus S has
the Baire property with respect to £f.

Conversely, assume S has the Baire property with respect to
^f and suppose S is a ^j-set everywhere on the ^-set A. Then
for every ^-se t L c λ(A) the set L Π S is an ^ z - s e t . Hence there
is an ^-set KczX(A) such that Kn ( X - S) is an ^ - s e t . The set
K is a ί^-set contained in A and j£ (Ί (X — S) is a ^j-set. Thus S
has the Baire property with respect to <gr.

We shall also require an order-theoretic analogue of Lavrentieff 's
theorem (see [3]) on extending homeomorphisms to 5̂

DEFINITION 9. A set S c l is called ordinally closed (see [2],
p. 128-136; [12], p. 132-134) if S, endowed with the relativized or-
dering of X, is a conditionally complete lattice.

Note that ordinally closed sets are S^ysets in X.

LEMMA 5. An order isomorphism between sets S and T can be
extended to an order isomorphism between ordinally closed sets
S*Z)S and T*Z)T.

Proof. We first extend the isomorphism between S and T to
the families S? and ^~ of all ideals of S and T, respectively, ordered
by set-inclusion. Let 6^ be the subfamily of &* obtained by re-
moving from S? all nonprincipal ideals whose supremum relative to
S is an element of S and let S~* be the corresponding subfamily of
^T The families S^ and ^ are isomorphic, all principal ideals of
S and T belong to Sζ and ^ , respectively, and the subfamilies of
principal ideals are isomorphic to S and T. If either S or T is
unbounded as a subset of X (i.e., the supremum relative to X is
+ oo) then we remove from S^ and ^ their last (nonprincipal)
elements. Denote by SS* and ^ * the families of ideals now re-
maining and define S* - {sup I: l e ^ * } and T* = {sup /: Jejr~*},
where the suprema are taken over X. The isomorphism between
^ * and ^~* carries over to an isomorphism between S* and T*
which is an extension of the original isomorphism. Moreover the
sets S* and T* are ordinally closed.

THEOREM 27. Let (X, ^) be a ^-family such that every Borel
^irset contains a ^~set and let (X, ^f) be the ^-family of Lemma
4 associated with (X, ^ ) . If (X, JZf) satisfies the condition
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(*) for ever J5f-set A there is an order isomorphism ψ mapping
X onto A such that ψ(£f) = {B e £?\ B c A},

then the absolute Baire property with respect to {X, ^) is invariant
under order isomorphisms.

Proof. Assume S has the absolute Baire property with respect
to (X, JSf) and / is an order isomorphism mapping S onto a set
T a X. Let φ be an order isomorphism mapping X onto a set L.
We show T Γ\ L has the Baire property with respect to (L, φ(^f)).

Suppose E is a φ(^f)-set and T f] L is a φ(BSf)II-set everywhere
on E. Apply Lemma 5 to extend / to an order isomorphism g be-
tween ordinally closed sets S*=)S and T*ZDT. The set £ n Γ
being a ŜY set, φ^EnT*) is a Borel ί^-set. By hypothesis
φ^iEΓ) T*) contains a <g*-set. Hence EnT* contains a φ(^)-set
ί7.

Let α/r be an order isomorphism mapping Xonto A = φ~ι{F) such
that Ή-Sf) = ( δ e ^ ΰ c i ) and set h = g-ιo(φoψ). It is easily
seen that φ°φ(£f) = { G e ^ ^ Gcί 7 } and, using Proposition 1, that
every φof(^)rset U a F is a 9?^)7-set. Since T Π i77 is a ?>(„£?%-
set everywhere on JP, the set T f) F is a, φoψ(€^f)II-set everywhere
on F, and g~ι{T n ί 7 ) = S(Ί h(X) is an fe(=^7)//-set everywhere on
g~ι(F) — h(X). Because S has the absolute Baire property with re-
spect to j ^ , there is an h(£f)-set Hαg-ι(F) such that H Π [g~ι{F) -
g-\TnF)] is an h(^f)rset. Therefore D = g(H) is a φoψ(^f)-set
and ί )n[L - (Tf)L)](zD f)[F - (Tf]F)] is a φoφ(£f)r&et. Conse-
q u e n t l y JD is a φ ( = S ^ ) - s e t c o n t a i n e d i n ^ a n d D Γ\[L — (T Π L)] i s a

REMARK. Summarizing facts stated above, we see that the
Marczewski sets are characterized up to equivalence among SJMamilies
by any one of the following properties:

2. 23(^) is closed under order isomorphisms.
3. Every perfect set is a ^7 /-set.

8* Problems* The following questions remain unanswered, the
last two of which are in the setting of [7].

1. Is the Baire property in the restricted sense invariant under
order isomorphisms?

2. Does there exist an uncountable set which is a ^7-set with
respect to every ^β-family (X, ^ ) ?

3. Does every ©-family satisfy CCC?
4. Is every translation invariant ^-family (X, ^ ) satisfying

CCC an ©-family?
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