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THE RADICAL OF A REFLEXIVE
OPERATOR ALGEBRA

ALAN HOPENWASSER

The radical of a reflexive operator algebra % whose
lattice of invariant subspaces 2 is commutative is related
to the space of lattice homomorphisms of 2 onto {0,1}. To
each such homomorphism φ is associated a closed, two-sided
ideal Wψ contained in H. The intersection of the ^ is
contained in the radical; it is conjectured that equality
always holds. The conjecture is proven for a variety of
special cases: countable direct sums of nest algebras; finite
direct sums of algebras which satisfy the conjecture; algebras
whose lattice of invariant subspaces is finite; algebras whose
lattice of invariant subspaces is isomorphic to the lattice
of nonincreasing sequences with values in N U {°°}.

1* Introduction* This paper studies the radical of a certain

class of non-self-ad joint operator algebras. Given an algebra 21 and
a lattice S of orthogonal projections acting on a separable Hubert
space φ, we use the standard notations, Sat 21 and SttgS, to denote,
respectively, the lattice of all projections invariant under Sί and the
algebra of all (bounded) operators which leave invariant each projec-
tion of 2. 2t and 2 are said to be reflexive if 2ί = Stlg Sat 2C and
S = Sat 2CIg S, respectively. The algebras which we study are re-
flexive algebras which contain a maximal abelian self-adjoint algebra
(m.a.s.a.).

A commutative subspace lattice is a lattice of pairwise com-
muting, orthogonal projections on $ which contains 0 and 1 and
which is closed in the strong operator topology. It follows auto-
matically that a commutative subspace lattice is a complete lattice.
If 2C is an operator algebra containing a m.a.s.a., then Sat SI is a
commutative subspace lattice. Every commutative subspace lattice,
S, is reflexive ([1], p. 468), and SίlgS is a reflexive algebra which
contains a m.a.s.a. Henceforth, all lattices of projections in this
paper will be commutative subspace lattices and all algebras will
be reflexive algebras which contain a m.a.s.a. An incisive study of
these lattices and algebras by Arveson is found in [1].

At least in certain special cases, the radical of a reflexive algebra,
2ί, containing a m.a.s.a. can be described in terms of the set of
lattice homomorphisms from S = Sαt2t onto {0,1}. To each such
homomorphism φ we shall associate a closed two-sided ideal %φ in St.
The radical, % of Sf is equal to the intersection of these ideals. It
appears reasonable to conjecture that this equality holds for all
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algebras in this class. The conjecture serves as a test problem for
our understanding of the algebraic structure of these algebras.

2. General results. For the following, fix 8 as a commutative
subspace lattice and 2C = SCIg (8). Let 2 denote the trivial lattice
{0,1} with the usual lattice structure. Let X = X(2) be the set of
lattice homomorphisms from 8 onto 2. Observe that X is a subset
of 2s = Πs 2, the set of functions defined on 8 with values in 2. Put
the discrete topology on 2, the product topology on 2s, and the re-
lative topology on X. We claim that X is a closed subset of 2s.
Indeed, if φueX and φv —> φ, where φ e 2s, then for each Ee2>, there
is a vQ, such that v :> ly implies φu(E) = Φ(E). With E and i*7 arbi-
trary in 8, choose v sufficiently large that ^Xϊ?) = 0(2?) and φ£F) =
^(JF7). Since ^ is a lattice homomorphism, we obtain φ(E Λ F) =
φ{E) A φ(F) and φ(E V F) = φ(E) V ̂ (i7*). Thus φ is a lattice ho-
momorphism, and so ψeX. Since 2s is a compact Hausdorff space
and X is closed, we see that X also is a compact Hausdorff space.

If φeX, let ker φ = {E\φ(E) = 0} and coker φ = {#|0(#) = 1}.
It is immediate that ker^ is an ideal and coker φ is a co-ideal.
(An ideal is a subset © of 8 which satisfies the properties:

(a) Eιe®,E2e®->E1V E2e®,
(b) Ee®,Ge2,G^ E-+Ge®.

A co-ideal is a subset $ which satisfies the dual properties:

(a') ^ea^eg-^Λ^eS
(b') Fe%,Ge&,F<,G-+Ge$.)

An ideal is prime if its complement is a co-ideal. The prime ideals
of 8 are precisely the kernels of the lattice homomorphisms onto 2.
(See [2], p. 28.)

DEFINITION. A family, f§, of non-zero orthogonal projections in
31 is called a frcmc family provided:

( i ) Each P e g is of the form P = F - E, where F,Ee% and

(ii) % satisfies the finite intersection property,
(iii) % is maximal with respect to properties (i) and (ii).

REMARKS. Condition (i) guarantees that g is contained in the
(abelian) algebra generated by 8; hence, condition (ii) simply means
that, if P1? , Pw e g, then P = PtP2, , Pn is a nonzero projection.
Condition (iii) ensures that P e f$.

LEMMA 1. The set X of lattice homomorphisms of 8 onto 2 is
in a natural one-to-one correspondence with the set of basic families
of projections in 31. Explicitly, to each φ in X associate the basic
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family g = {F — E\E < F, Eeker φ, and Fe coker φ}. The inverse
is given by associating to each basic family g the unique lattice
homomorphism φ in X whose co-kernel is the prime co-ideal

gns.

Proof. Assume φ e X and let g = {F - E\ E < F, Ee ker φ, and
Fe coker φ}. It is immediate that g satisfies condition (i). To show
condition (ii) is satisfied, it suffices to show that P, Q e g implies
PQ e g. li P = F1- Ex and Q = F2 - E2, with Flf F2 e coker φ and
Eί9 E2 e ker φ, then PQ = F,(l - EJF^l - E2) = F.F^l - E1 - E2 +
E,E2) = 2?VFS(1 - ^ V E2) = F,ΛF2- [(E, V E2) A (F, A F2)]. Now,
φ(F, A F2) = ^(J^) Λ ^(i^2) = 1 and φ{{E, V -Ei) Λ (F, A F2) £ φ(E, V E2) =
^(EΊ) V ^(ϋy = 0, hence PQ e g. To verify condition (iii), suppose
© is a family of projections in St which contains g and satisfies con-
ditions (i) and (ii). Let P be an arbitrary element of ©. Then P =
F - E, for some E, Fe2 with E< F. If φ(F) = 0, then 1 - Fegc®
and (S does not satisfy (ii); hence φ(F) = 1. Similarly, if φ(E) = 1,
then ί / ^ ί l - O e g c © and again © cannot satisy condition (ii); so
φ{E) = 0. But # 6 k e r 0 and Fe coker 0 imply that P = F - Ee%.
Thus © = g and g is a basic family.

Now assume g is a basic family of projections in 2t. If E is
an arbitrary projection in S, then either E intersects each projection
of g or 1 — E intersects each projection of g. For, if there exist
P, Q e g with both P Λ E = 0 and Q A (1 - E) = 0, then P ^ 1 - E
and Q ̂  E, whence PQ = 0, a contradiction. If E intersects each
projection of g, then g U {E} satisfies (i) and (ii); likewise, if 1 — E
intersects each projection of g, then g U {1 — E) satisfies (i) and (ii).
Since g is maximal, we may conclude that, for each Ee2, either
# e g or 1 - Ee%.

Now let © = {Fe2\Fe%} = g n 8 and % = {EeZ\l - # e g } . It
is straightforward to check that © is a co-ideal and $ is an ideal.
The paragraph above shows that $ is prime, and this determines
the lattice homomorphism φ associated with g.

It will be convenient in the sequel to call a projection P of the
form P = F — E, where E, F e £ and E < F, an interval projection
from 2. If φ is an element of X such that φ(F) = 1 and φ(E) = 0,
we say P is a test-interval for φ.

In the case in which S is totally ordered (and so % is a nest
algebra), it is easy to describe the elements of X. For each E Φ I
in S, let φi be defined by the formula,

1 if Pίί.
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For each E Φ 0 in 8, let ψi be defined by the formula,

(1 if F^E,
φ~ΛF)=[0 if F<E.

It is immediate that the φ\> φ^ all lie in X and that, if E is an
immediate predecessor of G, then φ\ — φ^ . Further, every lattice
homomorphism φ in X arises in this fashion. Indeed, since £ is
totally ordered, each projection in the co-kernel of φ dominates each
projection in the kernel of φ. Let E = Λ {FΊΦ(F) = 1} a n ( i G =
V {F\φ(F) = 0}. If E Φ G, then G is the immediate predecessor of
E and Φ = ΦE "= ΦG- It G = E, then φ is φt or 0i according as φ(E) =
0 or (̂JB7) = 1, respectively. We can define a total ordering on X
as follows: if E < G then we say ^J < ^J (except when φ% = φ^);
we define φE- < φE± for all E Φ 0, I. This ordering induces a to-
pology on X, which coincides with the topology defined above.

In the particular case in which S is order isomorphic to the unit
interval, / = [0, 1], we may realize the topological space X in an
amusing way. Let the cartesian product / x I be provided with
the lexicographic order: (α, V) < (c, d) if a < c or if a = c and b <d.
Let ί x ί have the order topology induced by this order and let Y
be the subset, {(α, b) | either 6 = 0 and a Φ 0, or 6 = 1 and α ̂  1},
provided with the relative topology. It is easy to see that Y is
homeomorphic to X.

We return to the general case in which S is any commutative
subspace lattice (on separable Hubert space), SC is the reflexive alge-
bra, Stlg (8), and X is the space of lattice homomorphisms of S onto 2.

DEFINITIONS. For each φβX and Te A, defined

= inf {\\PTP\\ I P is a test interval for φ}.

For each φeX, define % = {Γe2l|iNΓ,(Γ) = 0}.

LEMMA 2. Nφ is a continuous mapping of 3t onto R+ and it is
a semi-norm.

Proof. To prove continuity, suppose Tυ —> T. Let ε > 0. Choose
v0 such that v ^ v0 implies \\TV — Γ|| < ε. Then, if P is any test
interval for φ, \\PTJ> - PΓP| | < ε. Hence, \\PTP\\ - ε < \\PTVP\\ <
\\PTP\\ + ε. It then follows that NΦ(T) - ε < JSΓ/ΓJ < NΦ(T) + e.
Thus NΦ(TU)->NΦ(T).

It is immediate that NΦ(\T) = \X\NΦ(T). To prove the sub-
additivity of Nφ, suppose S and T belong to 2t and let Px and P2

be test intervals for φ such that WP.SP.W < NΦ(S) + ε/2 and \\PZTP2\\ <
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NΦ(T) + ε/2, where ε > 0. Then P = P,P2 Φ 0 is a test interval for φ

NΦ(T) + ε. Since ε is arbitrary, we obtain JV^S + T) ^
NΦ(T). Thus JV, is a semi-norm.

LEMMA 3. 2^ is a closed two-sided ideal in 2ί.

Proof. %φ is closed since Nφ is continuous and %φ is a linear
subspace of 2( since iV̂  is a semi-norm. Suppose TeSf^ and S is
any element of Sϊ. lί P = F - E is a test interval for ^ then PSTP =
PSPΓP. (This follows from the facts (I - F)S = (I - i^)S(I - ί7)
and 2Ή = #T#.) Hence \\PSTP\\ ^ | |S | | | |PΓP| | , which implies that
NΦ(ST) = 0. In the same way it can be shown that NΦ(TS) = 0;
thus 2^ is a two-sided ideal.

REMARK. The mapping φ—>Nφ(T) is not continuous. It is true
that if φu—>φ in X, then lim supiV^T) ^ NΦ(T); but strict inequality
may occur. Indeed, given ε > 0, let P = i*7 — E be a test interval
for ζ£ such that \\PTP\\ ^ iV^T) + ε. Since φ,->φ, there exists a vQ

such that v ̂  vQ implies ψu(F) = ̂ (ί7) = 1 and &,(!?) = φ(E) = 0. Hence,
P is a test interval for &, and NΦu(T) ^ | |PΓP| | ^ iV^Γ) + ε. As
ε is arbitrary, lim sup NΦu(T) ^ NΦ(T).

For an example of strict inequality, let φ = L2[0, 1] (with
Lebesgue measure) and let Et be the projection corresponding to the
set [0, ί], for each ίe[0, 1]. Let £ - {Et\t e [0, 1]} and Sί = SCIflS.
Let P be the projection corresponding to the union of all the in-
tervals of the form (2~n~\ 2~n) with n even. For each odd n, let tn

be the mid-point of the interval (2"*"1, 2~n), and let φn be either of
the lattice homomorphisms associated with Et%. (It is irrelevant
which is chosen.) It is easy to see that φn -+φt in X (as n —> ^
with n odd), that NΦn(P) = 0, for all odd n, and that ^ ( P ) = 1.

We now consider the relation between the ideals $lφ and the
radical of the reflexive algebra Sί. Recall ([3], Chapter 2, §3) that
if 3ΐ is the radical of 31 then

3t = p| {ker π \ π is a continuous topologically irreducible repre-
sentation on a Banach space}

= {T\ST is quasi-nilpotent, for all
= {Γ|ΓS is quasi-nilpotent, for all

PROPOSITION 4. Γbe A £ 3ΐ.

Proof. Let Γ e Π^ex^. Let π be any continuous irreducible re-
presentation of §1 acting on a Banach space Y. Since any i? in S
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is idempotent, π(E) is a projection. Since SE = ESE, for all
π(S)π(E) = π(E)π(S)π(E), for all SfeSί, and so the range of TΓ
is left invariant under the representation π. Thus π{E) = 0 or
π{E) = I, for each 2£eS. Let φ be the restriction of π to £. ^ is
thus identified with an element of X. Given ε > 0, choose a test
interval F - E such that ||(i^ - E)T{F - £7)11 < e. Then, since
τr(F - E) = ττ(.F) - τr(JS7) = / - 0 = I, we have

| |π(T)| | - \\π((F - E)T(F - JS))|| <£ ||τr||ε .

As ε is arbitrary, ||τr(Γ)|| = 0 and T e k e r π . This is true for all
continuous topologically irreducible representations, hence Te3ΐ.

REMARK. If S is complemented then 2f is a von Neumann alge-
bra, hence 3ΐ = 0. From this it follows that Γϊφex^ίφ = 9t. At the
other extreme, if £ is totally ordered (and so 21 is a nest algebra),
then again Γ\φex$tφ = 9ΐ. This result is due to Ringrose [4]; for the
convenience of the reader a sketch of a somewhat simplified proof
of this theorem will be given later.

Let us agree to say that an algebra 3t satisfies the radical con-
dition if ΓϊφBx^ίφ = 3ΐ. We conjecture that any reflexive algebra
which contains a m.a.s.a. satisfies the radical condition. We shall
show in this paper that any algebra with a finite (commutative)
subspace lattice satisfies the radical condition; that the radical con-
dition is satisfied by a finite direct sum of algebras, each of which
satisfies the radical condition; and that an arbitrary (countable) direct
sum of nest algebras satisfies the radical condition. We shall also
show that the radical condition is satisfied by any algebra whose
lattice of invariant projections is isomorphic to what may be described
as the tensor product of the lattice N{J {^} with itself.

As a result of Proposition 4, the problem consists of proving
that 3ΐ C %φ, for each φ e X(2). Where difficulties arise, they are
caused primarily by the lack of an explicit description of the φ e X.

We begin with a crude classification of the lattice homomorphisms
of X. Fix φ 6 X and denote:

E_ = V {Fe2\φ(F) = 0}

Each of the following possibilities may occur:
(1) E_ = E+.
(2) E_<E+.
(3) E+<E_.
(4) E_ and E+ are not comparable,
(a) φ{EJ) = 0 and φ(E+) = 0.
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(b) φ(EJ) = 0 and φ(E
+
) = 1.

(c) φ(EJ) = 1 and φ(E+) = 0.
(d) φ(E_) = 1 and φ(E

+
) = 1.

PROPOSITION 5. Tfce only possible combinations from the two
lists are the following: la, Id, 2b, 3a, 3c, 3d, and 4b.

Proof. It is immediate that 1 is incompatible with b or c, and
that 2c and 3b are impossible. If φ(E+) = 0 then, by the definition
of E_, we have E+ ^ E_. This eliminates 2a, 4a, and 4c. If φ(EJ) =
1, then E+<^E_, eliminating 2d and 4d. Only the specified possibilities
remain.

Examples of homomorphisms of types la, Id, and 2b can be
obtained from nest algebras. Assume 8 is totally ordered. If F is
an element of 8 with no immediate successor, then φ% is of type la.
If, on the other hand, F has no immediate predecessor, then φj is
of type Id. Finally, if G is an immediate predecessor to F, then
Φi = ΦF is of type 2b. Examples of types 3a, 3c, 3d, and 4b will
be given later.

DEFINITION. An interval projection P from 8 is called an atom
if, for any E e 8, either P ^ E oτ PE = 0.

REMARK. If P is an atom then it is evident that {E e 81 PE = 0}
is an ideal in 8, while its complement, {Ee2\P tί E) is a co-ideal.
Hence P determines an element φ of X, where φ is defined by φ(E) = 1
if and only iί P <. E. Since P is an interval projection, P is in the
basic family associated with φ and it is clear that P is a sub-projec-
tion of each projection in that basic family. Hence NΦ(T) = \\PTP\\,
for all ΓeSL The fact that P is an interval also implies that the
mapping π(T) = FTP is a representation. This representation is
clearly continuous and, when P is an atom, it is also irreducible.
(Any element of 23(P£>) can be extended to an operator S on § such
that S = PSP. Since every projection E in 8 either contains P or
is orthogonal to P, it follows that S leaves each such projection
invariant. Thus SeSI and π{%) = S3(P£).) So we see that % = ker π
and from this it is clear that 3ΐ E %.

PROPOSITION 6. // φ is an element of X of type 2b or of type
4b then 3t £ SI,.

Proof. From the remarks above, it is sufficient to show that φ
arises from an atom. In the case that φ is type 2b, let P = E+ — 2£_.
Any projection in ker φ is a sub-projection of E- and hence orthogonal
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to P; any projection in coker^ contains E+ and hence P; thus P is
an atom. It is evident that φ(E) = 1 if and only if P ^ E, and so
3tS2f,.

Now suppose φ is type 4b. Let P — E+ — (E+) A (E_). Since P
is orthogonal to E_, it follows again that P is orthogonal to each
projection in ker φ, while P^E+ again implies P is contained in each
projection in coker^. Here, too, φ arises from the atom P and 3^2^.

COROLLORY 7. If 2 is a finite lattice then 3t = 20g (8) satisfies
the radical condition.

Proof. Since Γ\φeχ$tφ £ 3ΐ, we need only show 9ΐ Q $lφ, for each
# e l . Since the lattice is finite, φ(E+) = A {φ(F)\φ(F) = 1} = 1 and
0(2SL) = V {Φ(E)\φ(E) = 0} = 0. Hence 0 is either type 2b or 4b and,
in either case, 3ΐ £ 21,.

In the case in which S is a finite lattice, 3ΐ is the ideal of all
operators T in 21 such that PTP = 0 for each of the finitely many
atoms for 8.

REMARK. We conclude this section with a few general comments
which will prove useful later. If 8 is a commutative subspace lattice
acting on £ and 2t = 2Πg 8, let <£S = {JS7| I - E e 8}. Then (£8 is again
a commutative subspace lattice and 2U©((£S) = 81*. If ^ is a lattice
homomorphism of 8 onto 2, define ^*: ££-+2 by ^*(£r) = 1 - φ{l - E),
for all Ee&2. The mapping φ-^φ* is a bijection of X(8) onto X(<££).
It is not hard to show that the radical of 21* is 91*, (where 9ΐ is
the radical of 2ί), and that (21*)^ = (2Γ,)*. As a consequence, SΐCgf^
if and only if 3ΐ* £ (2t*),».; further, 2t satisfies the radical condition
if and only if 2t* does. It is also easy to see that if k is any of
1, 2, 3, 4, b, c, then φ is type k if and only if φ* is. Finally, φ is
type a (resp. d) if and only if φ* is type d (resp. a).

3* Algebras which satisfy the radical condition* We begin
this section with a technical lemma. This lemma contains a simplified
and generalized version of the essential ingredients in Ringrose's
proof that any nest algebra satisfies the radical condition.

LEMMA 8. Let T be an operator in % and let (PΛ), n = 1,2, ,
be a sequence of mutually orthogonal interval projections in 2C such
that the following conditions are satisfied.

( i ) If m<n, then PmQPn - 0, for all Q e 2ί.
(ii) For any Re58(Q), R = Pn+1RPn implies Re%.
(iii) There exists a number λ > 0 such that \\PnTPn\\ > λ, for

all n.
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Then there exists an element S in 2t such that ST is not quasi-
nilpotent. In particular, T does not lie in the radical 3ΐ of %.

Proof. If the conclusion is true for a nonzero scalar multiple
of T then it is also true for T. Hence, replacing T by a scalar
multiple if necessary, we may assume λ = 1.

For convenience, we henceforth use the same symbol to denote
both an orthogonal projection and its range.

For each n > 0, there exists a unit vector, xn e Pn, such that
\\PnTxn\\ > 1. Let yn = PnTxn and let Sn = \\yn\\~2yn <g> xΛ+ί. (The
operator yn (x) xn+1 is defined by (yn (g) xn+ι)(x) = (x, 2/»)&»+i, for all
xeξf.) Observe that \\Sn\\ = \\yn\n\yn\\ \\xu+ί\\ = WvΛ~ι < 1, and
that, since Sn = Pn+1SnPn, each Sn e 2t. From the fact that the Pn

are mutually orthogonal, it follows that the sum Σ^ = 1 S % converges
in the strong operator topology to an operator S which lies in Sί
and has norm equal to sup{l|SJ|} ^ 1.

Let Qn = Σfc^» P*> f ° r e a c ^ n = 1,2, . Then, if n> m, we
have QΛQΛ - Qn. We also have S = SQ, and SQ% = Qn+1SQn = QΛ+1S,
for all w. Since P i Γ P , = 0 whenever j < w, it follows that QιTPn =
Q,TP%, and hence Q.ΓQ, = QnTQn, for each Λ.

We claim that, for each n there exists a vector £Λ + 1 e Qn+2 such
that (ST)nx1 = ίcw+1 + «n+1. Verification of this claim will prove the
lemma; indeed, since zn+ι is orthogonal to xn+ι, we have {{(STYx^l ^
H ^ + i ί l ^ l , whence | | ( S T ) Λ | | ^ 1 . Thus ST is not quasi-nilpotent.
The claim is proven by an induction argument. First observe that
Tx1 = Vι + a19 where a, 1 Px (since yx = PTxt). Then Si/i = x2 and
Sαx = SQ.a, - SQ^! = Q^SQ.a,. So if z2 = S ^ e Q3, then SΓ^! = x2 + ^2.
Next assume (STY^x, = a?n + ^,with sΛ e Qft+1. Then Γ^% = j / n + αn,
where an 1 Pn. Since QiΓP. = QnTPn, we obtain Q ^ = Qn+1an.
Hence Sα% - SQ,an = SQw+1αw = QΛ+ίiSαn. Also, S2X = SQ,TQn+1zn =
SQn+1TQn+ιzn = Qn+2STzn. Therefore,

x, - STxn + SΓ«Λ = Syn + San + STzn

Take 2;w+1 = San + SΓ^% = Qn+2(San + S I X ) to complete the proof of
the lemma.

With aid of Lemma 8, we sketch a short proof of Ringrose's
theorem (cf. [4]).

THEOREM 9 (Ringrose). Every nest algebra satisfies the radical
condition.

Proof. If S is a nest and φ e X(2), then φ — φ% or φ = <fe, for
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some Ee2. The two possibilities are interchanged in the natural
correspondence between X(S) and X((£8), so it suffices to consider
φ = ΦE only. If E has an immediate predecessor, then φ is type 2b,
and R Q$lφ. Assume E has no immediate predecessor and T £ 2t«j.
Then there exists a number, λ > 0, such that \\(E - F)T(E - F)\\ > λ,
for all F < E. Further, E is a strong limit of projections F < E.
Hence, if F1 < E, there exists F2 such that Ft < F2 < E and
\\(F2 — F^)T(F2 — 2̂ )11 > λ. Indeed, continuing inductively, we can
find a sequence Ft < F2 < .F8 < < E of projections such that the
intervals Pt — Fi+ί — Ft satisfy the hypotheses of Lemma 8. Con-
sequently, T ί 3ΐ and we have 9ΐ £ 2t*. This proves the theorem.

Suppose S1? S2, 83, is a finite or countable sequence of com-
mutative subspace lattices. Define the product lattice S to be the
Cartesian product of the 8* with co-ordinatewise lattice operations.
We may realize 8 as a commutative subspace lattice as follows: let
§t be the Hubert space on which each £< acts. Let Qt be orthogonal
projection of φ = Σ ® ^ onto Qt. Then {E\E is a projection in 33(φ)
and each Q ^ l ^ lies in SJ is a commutative subspace lattice which
is lattice isomorphic to 8. We take this lattice as the subspace
lattice direct sum of the S<# If, on the other hand, 8' is any com-
mutative subspace lattice which is lattice isomorphic to 8, let Qt

denote the element of 8' which corresponds under the isomorphism
to the element of 8 which is / in the ith co-ordinate and 0 in all
other co-ordinates. Then the compression of 8 to Q^ is a com-
mutative subspace lattice £' which is lattice isomorphic to 2i9 and
S' is the subspace lattice direct sum of the 8'.

If Si, 82, are commutative subspace lattices, if 8 is the sub-
space lattice direct sum of the 8,, if 21 = §Πg8 and % = 2CIg 8,, for
each i, then it is clear that 2C = ΣfSΪ<

Theorem 10 below proves that if 2ί is a finite direct sum of
algebras, each of which satisfies the radical condition, then 2t also
satisfies the radical condition. Actually, a bit more is true. Let
us say that a commutative subspace lattice 8 satisfies the radical
condition concretely provided that 2tlg 8 satisfies the radical condition
and that 8 satisfies the radical condition universally provided that
2ttg8' satisfies the radical condition whenever 8' is a commutative
subspace lattice which is lattice isomorphic to 8. Theorem 10 es-
sentially proves that if 2lf , SΛ satisfy the radical condition uni-
versally, then the product lattice 8 also satisfies the radical condition
universally. We remark in passing that the following natural ques-
tion remains open: if 8 satisfies the radical condition concretely,
does it satisfy the radical condition universally? The question arises
from that fact that if 8 and 8' are lattice isomorphic but not uni-
tarily equivalent, then Sίlg 8 and Stlg 8' need not be algebraically
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isomorphic.

THEOREM 10. Let S19 , 2n be commutative subspace lattices
such that each SCIg (S^), i = 1, •••, n, satisfies the radical condition.
Let 8 be the subspace lattice direct sum of the 8*. Then Sίϊg 8 satisfies
the radical condition.

Proof. Let φ, be the Hubert space on which 8* acts, for i =
1, •••, n. Then 8 acts on § = Σ?€>* and 8 contains each Qif where
Qt is orthogonal projection of φ onto φ< Let ^ e I ( S ) and suppose
T £ Stjj. Since the Q̂  are mutually orthogonal intervals from 8 whose
sum is /, one of the Q/s is a test interval for φ. Let i be the
unique index such that φ(Qi) = 1. Define a lattice homomorphism
φ0 e X(2i) by 0oCϊ?) = Φ{E). (Each projection i? in 8* may be extended
to a projection in 8 by defining it to be 0 on Σf*<Φi ) Let Γo =
QiTQi. It then follows that To $ (2Ci)s5o. Consequently, there is an
operator, SeSί,, such that ST0 is not quasi-nilpotent. We may
extend S to an operator in §1 be defining it to be 0 on Σf*ι Qf, then
SQiTQi is not quasi-nilpotent in §1 and so QiTQt does not lie in the
radical, % of St. Since 9ΐ is a two-sided ideal, T g 9ΐ. Thus 3ΐ £ &„
for all 0 e X(8) and 2Cίg 8 satisfies the radical condition.

THEOREM 11. Let &19 82, •••, δβ a sequence of totally ordered
commutative subspace lattices. Let 8 be the subspace lattice direct
sum of the 8,. Then §Πg 8 satisfies the radical condition.

Proof. Let £>, denote the Hubert space on which each £< acts.
8 acts on # - Σ?Sti- Each 2C, = §Hg(8,) is a nest algebra and §1 =
2UsS = Σ?2ί< Let Q< denote orthogonal projection of £> onto φ<β

Note that, for any nonempty subset K £ N, ΣjeKQj is a projection
in 8. Denote this projection by Q(K). Each Q(K) is an interval
from 8. Fix a lattice homomorphism φ e X(8). If one of the Q̂  is
a test interval for 0, then we may argue exactly as in Theorem 10
to show 3Ϊ Q %φ. (9ΐ is the radical of §1.) Since there are infinitely
many Qiy it may be that none of them is a test interval for φ.

Let g be the family of all nonempty subsets, K, of N, such
that Q{K) is a test interval for φ. If Kx and iζ> lie in g, then
^(Qί^ ΓΊ K2)) = ̂ (Q(iQ Λ Q(ίΓ2)) = 1 Λ 1 = 1, hence ^ n ^ e g. Also,
if I ζ e g and iΓ2 2 JSΓ,, then Q(iί2) ^ QίiΓJ, hence φ(Q(K2)) = 1. So
lf 2 eg also, and we see that g is a filter. Finally, if Kxl} K2e$
then φiQiK,) V Q(K2)) = φ{Q{K, U ίΓ2)) = 1, whence one of K, and Kt

must b^ in Sξ. Thus g is an ultrafilter. (It is not difficult, by the
way, to construct at least one lattice homomorphism φ for each
ultrafilter % on N.)
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If one of the Qi is a test interval for φ, then % is the family
of all subsets of N which contain i. Assume henceforth that no Qt

is a test interval for φ; consequently each set in g is infinite. Now
suppose T&$ίφ. Since NΦ(T) > 0, we may, without loss of generality,
assume NΦ(T) > 1. Let λ be a number such that NΦ(T) > λ > 1.
Let K = {i\ WQiTQtW > λ}. Using the fact that each Qt is reducing
for T, we have || Q(N - K)TQ(N - JΓ)|| = s m w || Q.TQ,:|| ̂  λ. Since
NΦ(T) > λ, it follows that Q(iV—Jί) is not a test interval for 0,
and hence that Q{K) is. Thus iΓeg and, in particular, if is infinite.
Suppose there is no upper bound for the set of integers, n, for
which there exist some index ieK and some operator Ste%i9 with
US,|| ^ 1, such that WT^S.T.YW ̂  1. (Here, Ti denotes the restric-
tion to §t of QiT. Clearly, T.eWί,.) Then for each ieK, choose a
positive integer nt and an operator S^eSt,, with \\St\\ ^ 1, so that:

(i) sup {Ui I i e K} = oo
(ii) | | Γ ^ Γ J 'II ^ 1, for all ieK.

(If conditions (i) and (ii) cannot be obtained, it means that there
exists a finite subset, Ko, of K such that, if Ko is deleted from K,
then there is an upper bound on the set of integers, n, with the
required properties. Whenever this is the case, the proof preceeds
as in the following paragraph, with K replace by K — KQ. Since
Ko is finite, Q(K - KQ) is a test interval for φ.) If i $ K, let S, = 0.
Let S = Σ ? $ . Then S is bounded (| |S| | = sup, | |SJ| ^ 1) and, for
each ieK, \\T(ST)^\\ ^ WT^T^W ^ 1. Hence 1 £ \\T\\ | | (S2>| | t
for each nt. Therefore \\(ST)n*\\1/ni ^ (1/||Γ||)1/ΛS for each nx. Since
the nt are unbounded, we obtain limΛ_00 | | (SΓ)"| | l M ^ 1. Hence ST is
not quasi-nilpotent and thus T $ 3ΐ.

We shall now assume that TeΐR and show that this leads to a
contradiction. From what has just been proven, we know that there
exists an integer, n, such that || T^S,!7,)*!! < 1, for all ieK, and for
all S.GSί,, with HSJI <Ξ 1. We need the following lemma:

LEMMA 12. Let So δβ α complete nest and let 2(0 = Sίlg So 6e ίAβ
associated nest algebra. Assume Re$ίQ, \\R\\ — μ > 1, and R belongs to
the radical of 2t0. Assume further that \\R(SR)n\\ < 1, /or all Se$ί0

with \\S\\ ^ 1. Then there exist n + 1 disjoint intervals, Pk, from
So swft ίfcαί I = Σ*ί ί ^ αwd HPfc-BPfcll ^ 1, /or eαcfe fc = 1, , n + 1.

Proof. We shall assume that the required intervals do not exist
and deduce a contradiction. As a first step, observe that there exist
projections / = Ex> E2> > En+2 > 0 in S such that

(i ) \\(Ek - Ek+1)R(Ek - Ek+1)\\ ^ 1, for fc = 1, , n + 1.
( i i ) l ΐ F< Ek+1 then \ \ ( E k - F ) R ( E k - F ) \ \ > 1 , f o r f c = l , . ,

^ + 1.
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Indeed, set E1 = I and assume inductively that E19 , Ek > 0 have
been constructed satisfying these conditions. Let

Ek+ι = int{Fe&\F<Ek and \\{Ek - F)R{Ek - F)\\ ^ 1} .

The set over which the infimum is taken is nonempty (since R belongs
to the radical of 31), is strongly closed, and contains Ek+1 as a limit
point. This shows that Ek+1 satisfies condition (i), while condition
(ii) follows automatically from the definition of Ek+1. Further, as
long as k <* n + 1, we must have Ek+ί Φ 0, for otherwise the projec-
tions Pj = Ej — Ej+ι, j = 1, •••,&, would satisfy the conclusion of
the lemma. Thus we may construct inductively the desired n + 2
projections in £ satisfying (i) and (ii).

Observe that, since R lies in the radical of Sί, if P is any atom
from 2, then PRP = 0. Consequently, if E e S and if F is an im-
mediate predecessor of E, then RE = FRE.

Next construct projections Fι > F2 > >Fn+1 and vectors
α» »ί> , #*+i satisfying:

(iii) Fk < 2£fc for all k = 1, , n + 1, and, if ϋ^ has an im-
mediate predecessor, then Fk is the immediate predecessor of Ek.

(iv) | |%| | - 1, for all k.
( v ) Each xkeEk — Fk+1. Further, if Ek has no immediate pre-

decessor, then xk e Fk — Fk+1; if Ek+ι has an immediate predecessor,
then xk e Ek — JE^+1.

(vi) | |iίa;n + 1 | | > 1 and \\(Ek - .F,+1)-ff%ll > 1, for all ft = l, ,w.

Indeed, from the construction of 2^, , jδ/̂ +2 we know that
\\En+1REn+1\\ > 1. If En+1 has an immediate predecessor, let Fn+1 be
that immediate predecessor and let xn+1 be any unit vector in En+1

such that ||^Λ+1JBa;Λ+1|| > 1. If En+1 has no immediate predecessor,
then En+1 is a strong limit of projections in 8 which are strictly
less than En+1. Hence there exists a projection Fn+1 < En+1 in S such
that ||i'7

%+1iί!i<
τ

ίl+1|| > 1. Let xn+1 be a unit vector in Fn+1 such that
IIF^^^IIM.

Suppose projections Fk+19 , i^^+i and vectors flcΛ+1, , xn+1 have
been constructed satisfying (iii)-(vi). We construct Fk and xk as
follows; since Fk+ί < Ek+1, \\(Ek - Fk+1)R(Ek - Fk+ί)\\ > 1. If # f c has an
immediate predecessor, we set î fc equal to the immediate predecessor
and let xk be any unit vector in Ek — Fk+1 such that \\(Ek — Fk+1)Rxk\\ >
1. If Ek has no immediate predecessor, then there exists a projec-
tion Fk<Ek in S such that \\(Fk - Fk+ί)R(Fk - Fk+1)\\ > 1. Let
xk be a unit vector in Fk — Fk+1 such that | |(F f c — Fk+ι)Rxk\\ > 1 .
In the event Fk+1 is the immediate predecessor of Ek+1, we have
( # , + 1 - Fk+ι)R(Ek+ί - Fk+ί) = 0. Consequently,
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(Ek — Fk+1)Rxk = (Ek — Fk+1)R(Ek — Ek+1)xk .

Therefore, we may assume, without loss of generality, that xkeEk —
Ek+1, whenever Ek+ι has an immediate predecessor.

Note that, regardless of whether or not Ek has an immediate
predecessor, Rxk eFk, k = 1, , n + 1. For each k = 1, , n, let
Vk = (Fk — Fk+1)Rxk. By (vi), \\yk\\ > 1, for all k. Hence the operator
Sk = \\yk\\~2yk®xk+ί has norm less than one. Let S = ^k=lSk. It
is clear that the {yk} form an orthogonal set of vectors. To see that
the {xk} also form an orthogonal set of vectors, it is in this case
sufficient to show that xk JL xk+1, for each k = 1, , n + 1. If Ek+1

has an immediate predecessor then xk e Ek — Ek+ι and xk+1 e Ek+1, hence
they are orthogonal. If Ek+1 has no immediate predecessor, then
xk 6 Ek ~ Fk+1 and xk+1 e Fk+ί, and again they are orthogonal. As a
consequence of the fact that the families {yk} and {xk} are orthogonal,
we obtain | |S | | = supfc{||Sfc||} < 1.

Finally, we claim that (SB)^ = %n+ί. This will prove the lemma,
since 11i2(£β)χ11 = \\Rxn+1\\ > 1 implies \\R(SR)n\\ > 1, a contradic-
tion. To prove the claim argue much as in Lemma 8: show induc-
tively that for 2 <; k <; n, (SRf^x, = xk + bkt where bk e Ek+1 if Ek+1

has an immediate predecessor and bk e Fk+1 otherwise (and in either
case, Rbk e Fk+1), and also that RiSR)16'^ = yk + ak, where ak e Fk+1.
In the final step, San = 0, since SFn+ί = 0; hence (Siϋ)"^ = a?n+1, as
required.

We now return to the proof of theorem. Recall that T is an
operator in 9ϊ which is not in ^Hφ and that n is an integer such that,
for all ieK, \\ T^S.T^W < 1, for all S^eSί, with | | ^ | | ^ 1 . From
Lemma 12, it follows that for each ieK, there exist n + 1 disjoint
intervals P<*>, from 84, such that Qt = Σ*ίί Pί4) and U P ^ P f || ^ 1,
for each k - 1, . •, n + 1. Let P(fc) - Σ® ̂ Pί fe). Each P(ft) is an
interval from S, the P(fc) are mutually orthogonal, and Q(K) =
ΣKlP ( f c ). Since Q(if) is a test interval for φ, one of the P{k) is also
a test interval for φ. But | |P^ΓP ( A ; ) | | = sup<ejP HP^Γ.P^H ^ 1, for
each k. Hence NΦ{T)^1, a contradiction. Thus, T ^ φ implies
T $ 3ΐ and we obtain 9ΐ £ 2t̂ . This proves the theorem.

We have yet to provide examples of lattice homomorphisms of
types 3a, 3c, 3d, and 4b. The class of examples described next yields
homomorphisms of types 3a and 4b. The adjoint algebras yield
homomorphisms of type 3d, while type 3c may be obtained by means
of a variant construction. The lattice in the examples which follow
may be considered to be the tensor product of the lattice N U {°°}
with itself.

Let Y = N x N be provided with the product order: (n, m) ^
(p, q) if and only if n ^ p and m ^ q. Define a subset S C Y to
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be increasing if xeS and y ^ x imply y eS. For each xe Y, let
$x be a separable Hubert space and let Q = ΣferΦx Identify each
subset S C Y with the subspace Σfes©* of φ and with the orthogonal
projection of § onto that subspace. A projection associated with a
subset S is said to be increasing whenever S is an increasing set.
The family S of increasing projections is a commutative subspace
lattice. Let SI = 2CIg 8.

PROPOSITION 13. 2t satisfies the radical condition.

Proof. In order to prove the proposition we must show that
9ΐ £ 31̂ , for any lattice homomorphism φ in X We already know
this to be true if φ is of type 2b or 4b. (Actually, there are no
lattice homomorphisms of 8 of type 2b — but we do not need this
fact.) Of the other possible types, only types la and 3a can occur,
and these can be handled with the aid of Lemma 8. The following
notation will be helpful: let

Ex = {y

Each of these symbols denotes both an increasing set and a projec-
tion in 8.

LEMMA 14. Let φeX. Then φ(EJ) = 0 and, further, if φ is
not of type 4b, then E_ is either 0 or Hn or Vn, for some n }> 2.

Proof. There is nothing to prove if EL = 0, so assume E_ > 0.
Hence there is some nonzero projection F in S such that φ(F) = 0.
In particular, by choosing a point x = (m, n) in F, we have that
φ(Ex) = 0. Since Hn A Vm = Ex, at least one of Hm and Vm lies in
ker φ. If both do, then G = Hn V Vm e ker φ. Hence / — G is a test
interval for φ; since I — G can be written as a finite sum of atoms,
one of these atoms is a test interval for φ. Therefore φ must be
of type b. The atom is just a singleton {(p, q)} (and the correspond-
ing projection); it is clear that E+ = E{p>q) and E_ = Hq+1 V VVK
(This shows φ is of type 4). Thus φ(E_) = 0.

Assume henceforth that 0 is not of type 4b. Then exactly one
of Hn and Vm lies in ker^. To fix the argument, let us say that
Φ(Vm) = 0. The considerations above imply that φ(Hq) = 1, for all
q. Therefore E+ = 0 and types Id and 3d cannot occur. Now let
V = (p> tf) be any point of E__. Then y must be in some increasing
set in the kernel of φ and, in particular, φ(Ey) = 0. Since ^(iϊg) = 1,
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we have φ(Vp) = 0 and Vp £ £L. Thus 2£L is a union of Vp and so
£L = F r for some r. Since Fx = I and ^(J) = 1, r ^ 2. The facts
that φ(Hs) = 1 and (̂.ffβ Λ F r) = 0(#<β>r>) = 0, for any s, imply that
Φ(EJ) = ^(F r) = 0. The alternative case, in which φ(Hn) = 0 and
φ(Vm) = 1, yields £L = i? r for some r ^ 2 and (̂i£L) = 0 in exactly
the same fashion. This proves the le nma.

As a consequence of this lemma we have only limited possibilities
for φ. If E_ = 0, then φ(F) = 1 if and only if JP > 0, and 0 is type
la. This is the only homomorphism of type la. If φ is neither type
4b nor la, then we must have EL — Vn or EL = Hn for some n ^ 2. In
either case, !£+ = 0 and 0 is type 3a. Further, we know that φ(F) = 0
if and only if F ^ .EL. We use Lemma 8 to dispose of the type la
homomorphism. For each x = (p, g) 6 Y, let JF. = {# e Γ|i/ £̂ a?}.
Each 2*̂  e S, and if p —> ^>, g —> oo then ^ —• 0 in the strong operator
topology. If x < y then Ex — Fy A Ex is an interval from 8 cor-
responding to the "rectangle" {z | x ^ z ^ y). Suppose T 0 %. Then
there exists a number λ > 0 such that NΦ(T) > X. We construct
inductively a sequence Pn satisfying the hypotheses of Lemma 8.
Since each Ex is a test interval for φ, \\EXTEZ\\ > λ, for all x. Fix
a?! = (Pi, #i). Since I — Fy—+I strongly as y—+(oof oo), there exists
»i = K β i ) such that, if Px = EXl - FVι A EXl, then \\P1TP1\\>X.
Suppose Plf , P%_! are intervals of the form Ex — Fy A Ex which
satisfy the hypotheses of Lemma 8. Let xn = (pn, qn) be such that
pn > rn_! and gΛ > sΛ_lβ Choose i/ft such that Pn = £7^ - JP^ Λ £?βw

satisfies | |PnίΓPΛ | | > λ. In this fashion we obtain a sequence (PΛ) of
projections satisfying the hypotheses of Lemma 8; hence T ί 3ΐ. Thus

Finally, assume ^ is type 3a and Tί^.φ. We know that JSL =
7. or £/_ = Hn, for some ^ > 2. Let F = F%_! or F = #*_! ac-
cordingly. Let P = F - £/_. Then \\PTP\\ ^ iSΓ#(Γ) > 0. The lattice
PS may be viewed as a commutative subspace lattice on Pξ>; it
is clearly a nest. We may identify PδtP as the nest algebra of
this nest. If ψ is the lattice homomorphism φt defined on the nest
PS, then it follows that P T | P £ does not lie in (P2tP)^. Since PStP
is a nest algebra, PTP does not lie in the radical of the algebra.
In particular, there is an operator SeP^ίP such that SPTP is not
quasi-nilpotent. Since S may be viewed as an element of 21 also, it
follows that T&ΪR. This completes the proof of the proposition.

REMARKS. 1. The lattice in the example above is isomorphic to
the lattice of all nonincreasing sequences with values in iVUί00},
where the lattice operations are given by (αn) Λ (δft) = (max (αn, bn))
and (an) V (bn) = (min (an, bn)).
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2. If % is a reflexive algebra with subspace lattice 8 isomorphic
to the type above, and if φ is a lattice homomorphism of type 3a,
then φ* is a lattice homomorphism of type 3d. (cf. the remark at
the end of §2.)

3. We have now displayed an example of a lattice homomorphism
of every type excepting type 3c. An example of a homomorphism
of type 3c may be obtained by using Z x Z in place of N x N in
the construction above. Use the product order to define a lattice
of "increasing sets" and a commutative subspace lattice on

in exactly the same way; again let Vn = {(p, q)\p ^ n) and Hn =
{(P> Q)\Q ̂  n}> for each integer n. Observe that © = {EG 2\E ^ Vn,
for some neZ} is a co-ideal and that $ = {Ee 2\E <Ξ Hn, for some
^ e Z } is an ideal. A simple argument from lattice theory guarantees
the existence of a prime ideal containing $ whose complement con-
tains ©. Thus there exists an element φeX such that φ(Vn) = 1 and
φ{Hn) = 0, for all n. Hence E+ ^ A Vn = 0 and #_ ^ V Λ = J
Such a ^ is of type 3c.

In the example based on Z x Z it is precisely homomorphisms
of type 3c which stand in the way of a proof that 5XIg S satisfies
the radical condition. All other types can be handled in a fashion
similar to the homomorphisms in the N x N example. There are
many homomorphisms of type 3c; in fact the cardinality of the set
of type 3c homomorphisms in 2*°. One large class amenable to
analysis has the property that if T is not in Sί̂  for some φ in this
class, then the compression of T to some one of the !QX must be
nonzero. Such T cannot lie in the radical (cf. the analysis of type
b homomorphisms). Two more examples (or four if the roles of Hn

and Vn are interchanged) may be obtained by noticing that 3 is a
prime ideal and that © is a prime co-ideal. For either of these, a
technical and elaborate extension of lemma 8 can be used to show
that 3ΐ £ $Hφ. We omit details since they are complicated and do
not result in a complete verification of the conjecture. The sticking
point is that there exist still other homomorphisms of type 3c than
the ones alluded to above; but we do not have a sufficiently explicit
description of them to prove the relation 9ΐ £ St̂ . A theorem similar
to Theorem 11, with the condition "each 2t is a nest" replaced by
"each 2i is a finite lattice," would be sufficient to permit proof of
the conjecture for the Z x Z example.
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