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PACKING SPHERES IN ORLICZ SPACES

CHARLES E. CLEAVER

A collection of open balls of radius » can be packed in
the unit ball U of a Banach space provided each ball is a
subset of U and the intersection of any two is empty. In
an infinite dimensional Banach space, it is possible to find
a largest number 4 so that if » < 4 then an infinite number
of spheres of radius » can be packed in U. In this paper,
upper and lower bounds are found for this number in Orlicz
spaces.

For the space l,, this number was found by Rankin [7] to be
1/(1 + 1/2) and this result was extended in [1] to show that the
number in [,(L<p < ) is 1/(1 +27?), In 1970 Kottman [4]
showed that 1/3 < 4 <1/2 for any Banach space. More recently,
Wells and Williams [10] used a generalized Riesz-Thorin interpola-
tion theorem to obtain the exact value of 4 in the L?(#¢) (1=p< =)
spaces with some restrictions on the measure space when 2 < p<eco,
The results in this paper include all the above and also show that
all restrictions can be removed in the L” case. Recent results have
demonstrated that the structure of Orlicz spaces is quite different
from L* spaces and very little seems to be known in the Orlicz
case. The packing criteria lead to some results on isometric embed-
dings of subspaces and to notions of noncompactness.

2. Preliminaries. An Orlicz function M will be a continuous
convex nondecreasing function defined for x =0 and such that
M) =0, M(c<)= o and M(x) >0 for x> 0. The Orlicz space
L(X, .7, t)(=L,) is the set of measurable scalar-valued functions
defined on the measure space (X, %7, ¢) such that feL, if and only
if || f|I' < « where

' i |
17 1l = inf {& > 0: SXM<——k—>ol;z <1}.
For each Orlicz function M, a complementary function N is
defined by
N(x) = sup {xy-M(y): 0 <y < oo} .

If M(x) = Sxp(t)dt where p is a right continuous nondecreasing func-

tion, then 0N(zo(ac)) = gp(x) — M(x) (cf [5]). Using this function,
another norm can be defined on L,
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1£ 1 = sup{{_I7glde: gl <1} .

These norms are equivalent if every set of positive p-measure
contains a subset of positive finite y-measure and in this paper the
latter will be used. In the case of M(x) = z?, p > 1, it follows that
N = 1Fl% = K| fllx where K is independent of f (ef [11]). It
will be assumed in the remainder of the paper that M is chosen so
that the simple functions are dense in L,.

If M, and M, are two Orlicz functions then M, will denote the
inverse of M;' = (M) *(M;') for 0 <s =<1, where M™ is the
unique inverse of the Orlicz function M. The function M, is an
Orlicz function and satisfies most of properties of M, and M, includ-
ing the fact that the simple functions are dense in L, if the same
is true in Ly, and Ly, The complementary function to M, is not
always the same as the inverse of N;' = (N7 *(N;')* where N, and
N, are the respective complements of M, and M,. However, the
complement of M, and the inverse of N;' generate the same Orlicz
space with equivalent norms (ef [8]). Since the complementary
function is the one of interest in this paper, N, will denote the
complement of M,.

One condition which guarantees the separability of L, is the
d-condition. An Orlicz function is said to satisfy the 4,-condition
at oo if lim, .. sup M(2x)/M(x) < . In the case of sequence spaces,
separability occurs if and only if the 4,-condition holds at 0. A
necessary and sufficient condition that M satisfy the 4,-condition is
that lim,_., sup aM'(z)/M(x) = o < - where M'(x) is the derivative
of M (cf [5], p. 24). If M’ and N’ are both continuous where N
is the complement of M, then this condition is equivalent to

liminf* N @) < aje — 1.
N(x)

L—>00 X

This and elementary calculus lead to a lemma that will be useful in
later sections.

LemmA 2.1. Let M and N be complementary functions with
M and N' continuous. If

a = liﬁsup%

then

..o N7Yx) 1
lim inf = .
1 x_}w N-(2z) — 2v/a
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3. Interpolation. In this section a generalized interpolation
theorem is described and then applied to obtain inequalities that
will be useful in next section. This theorem generalizes Theorem
1 in [8] and follows the development in [10] of the L, case.

Let (X, 1), (X, ), - -+, (X, #,) be measure spaces and M =
(M, M,, ---, M,) be an n-tuple of Orlicz functions. Define the direct

sum P Ly, (1) by

@LMk(#k) = {f = (fu f27 Tty fn) [ fksLMk(#k), k= 1; 2, 000y n} with
usual addition and scalar multiplication. For each 7, 1 = r =< o
and each n-tuple » = (\,, - -+, \,) of positive weights, introduce the
following norm on P L, (t4),

[l 1sr<e

max || 5], r=co.
1Sk=n

S e =

The space of all f such that || ||y, < co is a Banach space and will
be denoted by L3(M).

For two n-tuples M,=(M,,, My, ---, M,,) and M,=(M,,, My,+ -+, M,,)
define M, = (M,,, M,,---, M,,), 0 <s <1, where M,, is the inverse
of the function M = (M7) (M), k=1,2, ---, n.

Now let (Y, v), (Y, v), ++-, (Y,, v,) be another collection of
measure spaces, ) = (%, -+, 9,) and define m-tuples @, Q. in the
same manner as M, and M, Letting X =(X, X,, -++, X,) and
Y=(Y,Y, -, 7Y,), the following interpolation theorem was proved
in [2].

THEOREM 3.1. Let 1< 7, t; < o0, 1=1,2,0=s <1 with 1/r=
1 — s/r, + s/ry, 1/t =1 — s/t, + s/t, and suppose M; and Q,, 2 =1, 2,
are defined on X and Y respectively. If T is a linear transfor-
mation from Lf;;i (\) into LZZ(’?), 7 =1, 2, with bounds K, and K,

respectively, then T takes L} into Lj, and

TS Vleyr = Ki K3 || f llir,ue -

This result is quite useful in establishing inequalities as the
following theorem demonstrates.

THEOREM 38.2. Let M be an Orlicz function, Myx) = «* and
M= (M) (M5, 0 <s=<1. Then for any collection of positive
numbers ¢, ¢, -, ¢, such that 2. ¢, = 1, the inequality

n 7
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holds wherever fi, f,, «-+, fueLy, and 7 = max, ., (1 — ¢,).

Proof. Let M, i =1, 2 be the constant n-tuple with each com-
ponent M and Q,, ¢ =1, 2, the constant n’-tuple with each compo-
nent M. Setting ¢, =7r=1, {,=r=2, ¢ = (¢, ¢, -+, ¢,) and
¢’ = (¢ic;)? j-, define T from L% (¢) into Lgi(c®) by T(fy fa +o0y fu) =
(fi = )iz Now

1T Nl = 35 ccs 1fe = Filla
< 3 eIl + 15lle) — 2 35 eIfill

1yj=

s

il

23 1F:llu(l = e, < 2735 e0 il = 27 (11l -

It follows from properties of Hilbert space that [[Tf|x,.=
V2| flluper According to Theorem 3.1, T takes L%® (") into
S279(e*) and

TS a2 0m0 = (27)7 (V2) sty e «
This says

{ 3 el —mlneo} " = @y

i,5=1

(S etpise] ™

Raising both sides to the 2/(2 — s) power, the desired inequality is
obtained.

The above theorem reduces to the results found in [10] for the
L, case.

COROLLARY 3.3. Let 1< p < c and ¢, ¢y, -+, ¢, be any collec-
tion of positive numbers such that >, ¢; = 1 Then for any

Ju Lo vy fu in Ly,
(1) 3 eelfi—filp=2r Selfill 1sp<2
and ’
(ii) Z cici |lfs — filly = 27v7" Zlcillfili:’;fz <p < oo
where p' = p/p — 1.

Proof. To prove (i), choose ! so that 1 <l < p <2 and let
Mx)=o" If we set s=2/p((p — /(v — 2)), M/(x) =2 and let
l—1, then 2/(2 — s) approaches p. Similarly one can show (ii) by
choosing ! > p and allowing | — co.
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4. Packing. The main object of this section is to find bounds
on the number 4, where 4, satisfies the property that for » < 4,,
infinite packing is possible and for » > 4,, only a finite number of
balls of radius » can be packed in the unit ball of the Orlicz space
Ly. It has been shown by Kottman [4] that 1/3 < 4, < 1/2. These
bounds are improved below in the spaces L,[0, 1] but it is clear
that the techniques apply to a wider class of spaces.

DeFINITION 4.1. A family of balls {B.(f;)};e; of radius » and
centers {f;};c; can be packed in the unit ball B, of L, provided

(i) B,(f;)< B, for each jeI

(ii) int (B,(f)) N int (BAf) = ¢, J # k.

If a family of balls {B,(f;)};.; can be packed in B, then it is
clear that

(4.1) Ifill£1—m7, jel
(4.2) Wfi—rfll=z2r, 3+k

must be satisfied. Thus to find an example to serve as lower bound

one needs to find vectors f, f;, ---, satisfying these inequalities.
Given an Orlicz function M with complement N, choose a

sequence of disjoint measurable sets {E;}7., in [0, 1] and define

g = L XE k:]-yz,"

Ny B

Each ¢, has the property that ||g.|ly =1 (cf [5]). To compute the
norm of the difference of two of these, consider the function

hsN”(z#—(lET))XEk n N“(zﬂ (}m)x% .

Then

SxN(h) = SE;JZTlEJ Az, + SEnZﬂ_(lE':)XE% =1

and hence ||k]|]y < 1. Now

los = aallu = sup | 1. — 0,117 1dn

Ay st

¥ (g ) Y ()

> — p—
2| 1o, —aulih] = — L
Vmr) My
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By choosing a subsequence we obtain

1
9= 0l 2 2 lim int L8
Putting /o, =1 — 7)gw, £ =1,2, -+, it follows that |[f;|| =1 — »
and

Ifi = full 2 @ — 7)21lim inf Nl(;x))

Setting

B = lim inf ivl—@l
e N(21) |
the inequalities (4.1) and (4.2) will be satisfied provided (1—7)28=2»
or *+<1/(1 + 1/8). This example shows that 4, = 1/(1 + 1/8) and
leads to the following theorem.

THEOREM 4.2. L,[0,1] be an Orlicz space with N the comple-
ment of M and set M7 = (M) ~*(M;") where My(x) = 2% 0<s=<1.
Then with

N7'(x)

B =lim 1nf
e No@a) |
1 < < 1

4.3 e S Ay S
.3 1+18~ T 1427

Furthermore, if 1/(L + 2°?) < r <1 then at most a finite number
Iy (r) of balls of radius r can be packed in B, and that number
satisfies

(4.4) [y (r) < [1 - 1/2( 1 o )MT .

Proof. It remains to show (4.4) and the right hand side of
(4.3). Suppose there are n» disjoint balls of radius » with centers
fu o+, f. packed in B,. Then by Theorem 3.2,

(45) 35 s llf — £l = 222D S 1y
r.y= -_ =1
for any collection ¢, ¢, -+, ¢, of positive numbers such that
»,c;=1. In particular, if ¢, =1/n, ©=1,2,---,n then 7=
1 —1/n and (4.5) reduces to
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n 2(1—s8)/(2—8) n
@8 3 lf-flurs2(1- 1) > L s
Lhi=1 N n i=1 N
since the balls are disjoint, ||f; — f;|| =27, 1 # 7, and ||f;|| <1 — 7.
Hence (4.6) implies
2(1—s)/(2—8) 1

._1_2/,,,(% — 1)@y < 2 (’n — 1) Sl — e
" n n

This inequality then reduces to

1

1+ 25/2(77' — ]-)8/2 )
n

4.7) r=

If we allow n — o, the right hand side of (4.3) is obtained. The
inequality (4.4) follows by solving (4.7) for =.

In the case when M and N have continuous derivatives, pro-
position 2.1 gives a lower bound in terms of M,.

COROLLARY 4.3. Let M and N be complementary Orlicz func-
tions with M satisfying the d,-condition. If M and N have conti-
nuous derivatives and M;' = (M) (M), 0=<s <1, then

1 1

(4.8) 1 4 Qe v/a = Au, = 1+ 2¢
where
: Mi(x)
a = lim sup X22&)
R M @)

If we set M(x) = «® and use a proof similar to Corollary 3.3,
the exact value 4, = 4, is obtained for L?,1 < p < 2.

COROLLARY 4.4. Let 1<p<2. Then 4,=1/1+ 2"V?) for
the space L,(1).

This holds for any measure space because, for M(x) = x? in the
example preceding Theorem 4.2, N'(2x)/N~'(xz) = 2""V? for all .

The upper bounds are independent of the measure space but not
the lower. Corollary 4.3 does not give the exact number for
2 < p < o but gives a lower bound which was shown in [1] to be
exact for /,. However, it is demonstrated in [10] that the number
in L,0,1], 2<p <« is 1/(1 + 2¥?). A simple generalization of
this gives us new lower bounds in Orlicz spaces.
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For each positive integer n and each integer 7, 0 < j <27,
define E,; = (( — 1)/2", j/2"). Now for each integer =, define the
function ¢, by

k+1
gn = N—l(l) Z( ) XEns
where N is the complementary function of the Orlicz function M
and Yz, is the characteristic function of the set FE,. Then
l9.llx =1 for each n and ||g, — 9.l = N'(2)/N~'(1), n = m. Con-
sider the spheres S,(f;), 7=1,2, --- with centers f; = (1 — 7)g;.
Thus ||f;ll =1 —r and ||f; — fell = 1 — ) N*(2)/N7*(1). The inequa-
lities (4.1) and (4.2) will be satisfied provided (1 — r)N™'(2)/N*(1)=2r
or r=1/(1 + 2N"Y(1)/N"'/N~(2)).

THEOREM 4.4. Let L,[0,1] be an Orlicz space and set M;' =
(MY M7y where ¢(x) = «* and 0 <s <1. If N, is the comple-
mentary function to M,, then

1 oy, <1
1+2N7' 1)~ " T1 42
N7'(2)

The example constructed above does not depend on [0, 1] but
rather on being able to find sets E,; with the same properties.
However, for the L, spaces the construction on [0, 1] is enough and
theorem 16.2 in [10] generalizes to the following.

COROLLARY 4.5. Let 2 < p < oo and pt be any measure which
is not purely atomic. Then for L,(p),

1

4,(p) = 15 207"

Proof. For the space L,[0,1], the usual argument gives the
result. It is known ([3] or [9]) that if g is not purely atomic,
L,(¢) has a subspace isometric to L,[0, 1]. Suppose there are infini-
tely many balls of radius 7 in L,[0, 1] then there is a sequence of
points satisfying inequalities (4.1) and (4.2) in the subspace and
hence in L,(#). Thus the lower bound for 4 in L,(#) is greater
than or equal to 4, and since the upper bound is independent of the
measure, the result follows.

The problem of embedding L,[0, 1] into L,[0, 1] has been studied
extensively and it has been shown [e¢f 3] that for 1 <7 =< p <2,
L,[0, 1] is isometric to a subspace of L,[0, 1]. More recently Nielsen
[6] has given conditions under which L,(0, ) is isomorphic to a
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subspace L,[0,1]. Also the Khintchin inequality implies [, is isomor-
phic to a subspace of L,[0,1] for every Orlicz function M and
furthermore [, is actually isometric to a subspace of L,[0, 1] for
every p,1 < p < . Consistent with these results is the following.

THEOREM 4.6. Let M, and M, be Orlicz functions and suppose
L,, is isometric to a subspace of Ly, Then Ay, = Ay. In parti-
cular if 1, is isometric to o subspace of L, then 1)1 +1/2) <
4, <1/2.

A converse to this theorem would be of interest. A reasonable
conjecture might be to try to show that if [ay, a,,] < [ay, @] <2
(see [3] for definitions) and 4,, = 4,, then L, [0, 1] is isometric to
a subspace of L,,[0, 1].

For the sequence case, the situation is different. Using the
example preceding Theorem 4.2 with each E, a singleton, it follows
that ny = 1/ + (N'(1)/N*(1/2)). The proof in [1] for !, depends
on the strong property

“.9) M 5 M@)) = 1 Xl

where M(x) = x?/p. If we mimic their proof the following is
obtained.

THEOREM 4.7. Let M and N be complementary functions both
satisfying the A,-condition at 0, and M satisfies (4.9). Then for
the space Ly,

1 1
1+N'@Q) ~— " 1+ 2
N—1<l) M=(2M(1))
2

Furthermore, if N7(1/2) < 1/2 N"(1)M-(2M()), then for

A

<
_ 1+ 2
* M*(2M(1)) * N7(2)

any finite number of spheres of radius r can be packed in the
unit ball of 1, dbut not an infinite number.

Proof. The 4d,-condition on both M and N is equivalent to
reflexivity. Now suppose there are an infinite number of balls of
radius 7 in !, with centers v, ¥, --- satisfying inequalities (4.1)
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and (4.2). Assume y is the weak limit point of {,}, then yel, and
ly]| =1 —r. Let ¢ >0 and fix a positive integer . Then there
exists N such that {|7,|| < (1 — 7) where

- {0 jéN}
yka

Yi 7> N)
Then
M(l 27"7) < M(M_{_:_%ML) _ z (tyni Ly = B [)
=]§=1M(lyn{:zml> M(lyn ~ym,!>
Now
a2
Thus

Il/\

M(1_> é (l—yL{—E—g’"—"b#-M(l-i—s).

This argument is independent of m and hence

M(lz“” ) - M+ < ﬁ.M('—yl—:—f——b

Letting N — o and ¢ — 0, this becomes

M( 2r )-M(l)g ;';M(lyw —%-l)_

1—17r 1—7r

Repeat the argument using ¥ in place of y, obtaining

M(lz’" ) - M) = s M('_?/—-——J) L M1+,

-7 =t 1-—

Now, letting m — «~ and ¢ —0, it follows that

M(l ar T) < 2M(1)

and
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1
2
L ey

?
IA

The last statement follows by constructing the example preceding
Theorem 4.4 on the set (1,2, --+, 2") in place of [0, 1].

COROLLARY 4.8, For 1< p < o, A, =1/1 + 2'7Y7)  for the
spaces l,. Furthermore if 2 < p < o then for

1 1
1T =177

’

any finite number of spheres of radius r can be packed in 1, but
not an infinite number.
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