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PACKING SPHERES IN ORLICZ SPACES

CHARLES E. CLEAVER

A collection of open balls of radius r can be packed in
the unit ball U of a Banach space provided each ball is a
subset of U and the intersection of any two is empty. In
an infinite dimensional Banach space, it is possible to find
a largest number A so that if r ^ A then an infinite number
of spheres of radius r can be packed in U. In this paper,
upper and lower bounds are found for this number in Orlicz
spaces.

For the space l2, this number was found by Rankin [7] to be
1/(1 + l/2) and this result was extended in [1] to show that the
number in lp(l £ p < oo) is 1/(1 + 2ι~Up). In 1970 Kottman [4]
showed that 1/3 <̂  A <; 1/2 for any Banach space. More recently,
Wells and Williams [10] used a generalized Riesz-Thorin interpola-
tion theorem to obtain the exact value of A in the Lp(μ) (l^p<°°)
spaces with some restrictions on the measure space when 2<p<°°.
The results in this paper include all the above and also show that
all restrictions can be removed in the Lp case. Recent results have
demonstrated that the structure of Orlicz spaces is quite different
from Lp spaces and very little seems to be known in the Orlicz
case. The packing criteria lead to some results on isometric embed-
dings of subspaces and to notions of noncompactness.

2 Preliminaries. An Orlicz function M will be a continuous
convex nondecreasing function defined for x ^ 0 and such that
M(0) = 0, M(oo) = oo and M(x) > 0 for x > 0. The Orlicz space
LM{X, j / , μ)( = LM) is the set of measurable scalar-valued functions
defined on the measure space (X, j ^ , μ) such that fsLM if and only
if 11/11' < oo where

i = inf k > 0:

For each Orlicz function M, a complementary function N is
defined by

N(x) = sup {xy-M(y)\ 0 < y < oo} .

p(t)dt where p is a right continuous nondecreasing f unc-

0

tion, then N(p(x)) — xp(x) — M{x) (cf [5]). Using this function,
another norm can be defined on LM
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These norms are equivalent if every set of positive /^-measure
contains a subset of positive finite ^-measure and in this paper the
latter will be used. In the case of M(x) = xp, p> 1, it follows that
Il/H, = ll/HSf = ^ll/lljf where K is independent of / (cf [11]). It
will be assumed in the remainder of the paper that M is chosen so
that the simple functions are dense in LM.

If Mx and M2 are two Orlicz functions then M8 will denote the
inverse of M71 = (MrO^CMj1)8 for 0 ^ a ^ 1, where AT1 is the
unique inverse of the Orlicz function M. The function Ms is an
Orlicz function and satisfies most of properties of Mλ and M2 includ-
ing the fact that the simple functions are dense in LMs if the same
is true in LMι and LM%. The complementary function to M8 is not
always the same as the inverse of N71 = (Nr^'iNT1)' where Nλ and
N2 are the respective complements of Mλ and M2. However, the
complement of Ms and the inverse of N71 qenerate the same Orlicz
space with equivalent norms (cf [8]). Since the complementary
function is the one of interest in this paper, Ns will denote the
complement of Ms.

One condition which guarantees the separability of LM is the
J2-condition. An Orlicz function is said to satisfy the 4rcondition
at 00 if lim^oo sup M(2x)/M(x) < 00. In the case of sequence spaces,
separability occurs if and only if the zf2-condition holds at 0. A
necessary and sufficient condition that M satisfy the 4rcondition is
that lim^co sup xM'(x)/M(x) = α < 00 where Mr{x) is the derivative
of M (cf [5], p. 24). If M' and N' are both continuous where N
is the complement of M", then this condition is equivalent to

N(x)

This and elementary calculus lead to a lemma that will be useful in
later sections.

LEMMA 2.1. Let M and N be complementary functions with
Mr and Nf continuous. If

M(x)

then

lim inf , , . X*Λ ^ — —



PACKING SPHERES IN ORLICZ SPACES 327

3* Interpolation* In this section a generalized interpolation
theorem is described and then applied to obtain inequalities that
will be useful in next section. This theorem generalizes Theorem
1 in [8] and follows the development in [10] of the Lp case.

Let (Xί9 μj, (X2, μ2), , (Xn, μn) be measure spaces and M =
>(M19 M2, , Mn) be an %-tuple of Orlicz functions. Define the direct
sum ®LMk(μk) by

Θ LMk(μk) = {/ = (f19 f2,..., f) I fkεLMk(μk), k = 1, 2, . , n} with
usual addition and scalar multiplication. For each r, 1 <; r 5̂  °°
and each %-tuple λ = (Xlf , λft) of positive weights, introduce the
following norm on φ LMk(μk),

r = oo .

The space of all / such that | | / | U , r < °° is a Banach space and will
be denoted by Lr

M(x).
For two ̂ -tuples M1 = (Mllf M12, , Mln) and Λf2 = (Λf21, M22, , lf2Λ)

define Λί5 = (Λfsl, Ms2- , Jlf.J, 0 <̂  s ^ 1, where Msk is the inverse
of the function Mτk

ι = ( J ί s T W ) 1 * fc = 1, 2, , w.
Now let (Yi, &0, (F 2, v2), •••, ( F m , v j be another collection of

measure spaces, rj = (^, . , ̂ w) and define m-tuples Qlf Q2 in the
same manner as Mx and M2. Letting X = (X^ X2, , X J and
Y = (Ylf Y2, , Y"m), the following interpolation theorem was proved
in [2].

THEOREM 3.1. Let 1 <; r t , ί< ^ ©o, i = l , 2, O ^ s ^ l wiίfe l/r =

1 — s/rt + s/r2, 1/t = 1 — s/^ + s/ί2 α^ώ suppose Mt and Qi9 i = 1, 2,

are defined on X and Y respectively. If T is a linear transfor-
mation from L*}. (λ) into Lrj{r]), i = 1, 2, wiίfc bounds Kγ and K2

respectively, then T takes Lι

Ms into Lr

Qs and

\\τf\\Qs,r^κrκι\\f\\Ms,t.

This result is quite useful in establishing inequalities as the
following theorem demonstrates.

THEOREM 3.2. Let M be an Orlicz function, M0(x) = x2 and
M71 = (M~ί)1"'(M^iy9 0 ^ 8 ̂  1. Γfce^ for any collection of positive
numbers c19 c2, •••, cn such that Σ ? = i ^ = 1, the inequality

2
Ory2(l-s)/(2-s) V •» I I f
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holds wherever f, /2, , fnsLMs and 7 = max^ ί S l ι (1 — c%).

Proof. Let Mt, i = 1, 2 be the constant w-tuple with each com-
ponent M and Q€, i = 1, 2, the constant %2-tuple with each compo-
nent ilί. Setting ίt = r1 — 1, £2 = r2 = 2, c = (clf c2, , c%) and
c2 - M ? J = 1 define Γ from U£χ(c) into L^c 8 ) by Γ ( / w /2, — , / J =
(Λ-/i)?.y-i. Now

^ Σ cMWfiW* + WMM) - 2 Σ c? 11/,II*
ΐ,i=i ι=i

= 2 Σ ll/.IUα - c ^ ^ 2 7 Σ c« ll/illif = 2
i = l <=1

It follows from properties of Hubert space that 0

0,2. According to Theorem 3.1, T takes Lψs

2-8)(c2) into
and

This says

(2-s)/2
12(2—s) ί

Raising both sides to the 2/(2 — s) power, the desired inequality is
obtained.

The above theorem reduces to the results found in [10] for the
Lp case.

COROLLARY 3.3. Let 1 < p < °o and clf c2, , cn be any collec-
tion of positive numbers such that Σ?=i ct = l TAe^ /or any

fif ft* " *> fn in Lp,

( i ) Σ cιcj\\fι-fj\\ζ^27^±ci\\f\^ 1^P^2
i,j=ί i=ί

and

( ϋ ) Σ ctcs H/ - fj IIΓ ^ 2 7 - ' ' Σ c< UMΪ 2 < p < oo
ί,3 = l i = l

— 1 .

Proof. To prove (i), choose I so that 1 < I < p ^ 2 and let
Λf(a?) = xι. If we set s = 2/p{(p - ί)/(p - 2)), Ms(x) = ̂ p and let
£ —> 1, then 2/(2 — s) approaches p. Similarly one can show (ii) by
choosing I > p and allowing I —> ©o.
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4* Packing* The main object of this section is to find bounds
on the number ΛM where ΛM satisfies the property that for r ^ ΛM9

infinite packing is possible and for r > AM9 only a finite number of
balls of radius r can be packed in the unit ball of the Orlicz space
LM. It has been shown by Kottman [4] that 1/3 ^ ΛM <; 1/2. These
bounds are improved below in the spaces LM[0, 1] but it is clear
that the techniques apply to a wider class of spaces.

DEFINITION 4.1. A family of balls {Br(fό)}jel of radius r and
centers {/,-}*• ej can be packed in the unit ball B1 of LM provided

( i ) Br(fd) c Bx for each j e I
( i i ) int (Br(fd)) Π int (Br(fk)) = φ, j Φ k.
If a family of balls [Br{fά)}jeI can be packed in B1 then it is

clear that

(4.1) I I Λ H ^ l - r , j e l

(4.2) H Λ - Λ H ^ 2 r , jΦk

must be satisfied. Thus to find an example to serve as lower bound
one needs to find vectors flf f2, , satisfying these inequalities.

Given an Orlicz function M with complement N, choose a
sequence of disjoint measurable sets {Ej}J=1 in [0, 1] and define

4 ^ u > fc = l , 2, .

Each gk has the property that \\gk\\M = 1 (cf [5]). To compute the
norm of the difference of two of these, consider the function

Then

r r i r 1

z* = i

and hence ||Λ||5v ^ 1. Now

WQIC-QUWM^ s u p \ \gk - gn\ \f\dμ

N-ι( i \ W i Λ
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By choosing a subsequence we obtain

Putting /» = (1 - r)gk, k = l,2, ~, it follows that ||/»|| = 1 - r
and

IIΛ - All ^ (1 - r)2 lim mf ̂ g - .

Setting

the inequalities (4.1) and (4.2) will be satisfied provided (1 —
or r ^ 1/(1 + 1//3). This example shows that ΛM ̂  1/(1 + 1//3) and
leads to the following theorem.

THEOREM 4.2. LM[0, 1] be an Orlicz space with N the comple-
ment of M and set M71 = (M" 1 ) 1 "^^ 1 ) ' where MQ(x) = x\ 0 ̂  s ^ 1.
Then with

Furthermore, if 1/(1 + 2s/2) < r < 1 έ/̂ ê  αί most a finite number
ΓMs(

r) of balls of radius r can be packed in Bx and that number
satisfies

(4.4) ΓMs(r) <: [ 1 -

Proof. It remains to show (4.4) and the right hand side of
(4.3). Suppose there are n disjoint balls of radius r with centers
fifA, •••,/» packed in Bt. Then by Theorem 3.2,

(4.5) ± c&Wfi -fΛ\ΨΓs) ^ ? g ^
2 — S *=i

for any collection cw c2, , cn of positive numbers such that
Σ?=*i cΐ = l In particular, if ct — 1/w, i = 1,2, -* , n then 7 =
1 — 1/n and (4.5) reduces to
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n 1 / -| \2(l-s)/(2-β) n 1

(Λ c*\ v 1 x II -P -P 112/(2—s) < r * o / i •*• I V 1 - ! ! / * 112/(2—s)

since the balls are disjoint, H/* — /, || ̂  2r, i Φ j , and ||/<|| ^ 1 — r.
Hence (4.6) implies

1 / m 1 \2(l-β)/(2-β) 1

—n(n - l)(2r)2/(2"s) ̂  2 ( - -) —-n(l - r)27'2"8' .
n \ n I n

This inequality then reduces to

(4.7) r ^ 1

If we allow w—>oo, the right hand side of (4.3) is obtained. The
inequality (4.4) follows by solving (4.7) for n.

In the case when M and N have continuous derivatives, pro-
position 2.1 gives a lower bound in terms of M8.

COROLLARY 4.3. Let M and N be complementary Orlicz func-
tions with M satisfying the J2-condition. If M and N have conti-
nuous derivatives and M~ι — (M~1)ι~~'(M'ϊ'iy, 0 ̂  s ̂  1, then

(4.8) ± < AM <

where

a = lim sup

If we set M(x) = α?p and use a proof similar to Corollary 3.3,
the exact value ΛM = ^ p is obtained for Lp, 1 ̂  p <; 2.

COROLLARY 4.4. Lβί 1 ̂  j> ̂  2. Then Λp = 1/(1 + 21~1/p) for
the space Lp(μ).

This holds for any measure space because, for M(x) = xp in the
example preceding Theorem 4.2, iV"1(2x)/iVr~1(̂ ) = 21~1/p for all x.

The upper bounds are independent of the measure space but not
the lower. Corollary 4.3 does not give the exact number for
2 < p < oo but gives a lower bound which was shown in [1] to be
exact for lp. However, it is demonstrated in [10] that the number
in LP[0,1], 2 < p < oo is 1/(1 + 21/p). A simple generalization of
this gives us new lower bounds in Orlicz spaces.
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For each positive integer n and each integer j , 0 < j ^ 2\
define Enj = ((j — 1)/2W, i/2%). Now for each integer n, define the
function gn by

where N is the complementary function of the Orlicz function M
and %Enk is the characteristic function of the set Enk. Then
||gΛ\\M = 1 for each n and ||ffn - βrJI = N-\2)IN~\1), n Φ m. Con-
sider the spheres Sr(fj), j = 1, 2, with centers /,- = (1 — r)^-.
Thus \\f\\ - 1 - r and H/, - Λ| | = (1 - r)N-ι(2)/N-\l). The inequa-
lities (4.1) and (4.2) will be satisfied provided (1 - r)iVr-1(2)/iVΓ-1(l)^2r
or r £ 1/(1 + 2AΓ-1(l)/JV-1/i\ri(2)).

THEOREM 4.4. Let LM[0,1] be an Orlicz space and set M71 —
(M-J-'iMT1)8 where φQ(x) = x2 and 0 ^ s ^ 1. If Ns is the comple-
mentary function to M8, then

1 + 2N7ι(l) ~ s ~1 + 28/2

iVrΓ1(2)

The example constructed above does not depend on [0, 1] but
rather on being able to find sets Enj with the same properties.
However, for the Lp spaces the construction on [0, 1] is enough and
theorem 16.2 in [10] generalizes to the following.

COROLLARY 4.5. Let 2 ^ p < co and μ be any measure which
is not purely atomic. Then for Lp(μ),

Proof For the space Lp[0, 1], the usual argument gives the
result. It is known ([3] or [9]) that if μ is not purely atomic,
Lp(μ) has a subspace isometric to LJO, 1]. Suppose there are infini-
tely many balls of radius r in Lp[0, 1] then there is a sequence of
points satisfying inequalities (4.1) and (4.2) in the subspace and
hence in Lp{μ). Thus the lower bound for A in Lp(μ) is greater
than or equal to Λp and since the upper bound is independent of the
measure, the result follows.

The problem of embedding LJO, 1] into Lr[0, 1] has been studied
extensively and it has been shown [cf 3] that for 1 <Ξ r ^ p < 2,
JLP[O, 1] is isometric to a subspace of Lr[0, 1]. More recently Nielsen
[6] has given conditions under which LM(0, 00) is isomorphic to a
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subspace Lp[0, 1]. Also the Khintchin inequality implies l2 is isomor-
phic to a subspace of LM[Q, 1] for every Orlicz function M and
furthermore l2 is actually isometric to a subspace of Lp[0, 1] for
every p, 1 5s P < °°. Consistent with these results is the following.

THEOREM 4.6. Let M1 and M2 be Orlicz functions and suppose
LM2 is isometric to a subspace of LMl. Then ΛM% ̂ > ΛMl. In parti-
cular if l2 is isometric to a subspace of LM then 1/(1 + i/2) ^

A converse to this theorem would be of interest. A reasonable
conjecture might be to try to show that if [aMv aM2\ < [aMί, aM2] < 2
(see [3] for definitions) and ΛM% ;> ΛMι then LMl[0, 1] is isometric to
a subspace of LM2[0, 1].

For the sequence case, the situation is different. Using the
example preceding Theorem 4.2 with each Ek a singleton, it follows
that \M ^ 1/(1 + (iSr~1(l)/iVr-1(l/2)). The proof in [1] for lv depends
on the strong property

(4.9) M

where M(x) = xp/p. If we mimic their proof the following is
obtained.

THEOREM 4.7. Let M and N be complementary functions both
satisfying the Λ2-condition at 0, and M satisfies (4.9). Then for
the space lM,

M-\2M(1))

Furthermore, if #-'(1/2) ^ 1/2 iV"1(l)Λf-1(2ikί(l)), then for

finite number of spheres of radius r can be packed in the
unit ball of lM but not an infinite number.

Proof. The 4rcondition on both M and JV is equivalent to
reflexivity. Now suppose there are an infinite number of balls of
radius r in lM with centers ylf y2, satisfying inequalities (4.1)
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and (4.2). Assume y is the weak limit point of {?/,•}, then y e lM and
111/11 ̂  1 ~ r. Let ε > 0 and fix a positive integer n. Then there
exists N such that |||7fc|| < e(l — r) where

0

Then

— 1 — r

j =5

i >

/ i=i 1 — r

— r

Now

— r 1-r

<cilj/Ji + i ϋ ^ <a + ε .
1 — r 1 — r

Thus

Af(l + ε)
\1 — rl J=I \ 1 — r

This argument is independent of m and hence

M(_2r_\ _ M ( 1 + e ) ^ M ( ' ^ -
VI — r/ y=i V 1 — r

Letting N—+°° and ε—*0, this becomes

( ) Λf(i) g Σ Af(
VI — r/ i=i V 1 — r

Repeat the argument using y in place of yn obtaining

^ y - Vs\\
1 — r 'I —

Now, letting % —* oo and ε —* 0, it follows that

M -2Z
I —

^ 2M(1)

and
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1 +
M~\2M{1))

The last statement follows by constructing the example preceding
Theorem 4.4 on the set (1, 2, , 2n) in place of [0, 1].

COROLLARY 4.8. For l ^ p ^ ^ o , xp = 1/(1 + 2ί~ί/p) /or ίfte
spaces lp. Furthermore if 2 ^ p < ^ then for

< r

any finite number of spheres of radius r can be packed in lv but
not an infinite number.
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