SOME *n*-ARC THEOREMS

E. D. TYMCHATYN

G. T. Whyburn gave an inductive proof of the *n*-arc theorem for complete, locally connected, metric spaces. In this note Whyburn's proof is modified to generalize this theorem to the class of regular, T_1 , locally connected spaces. This result is then used to obtain an affirmative solution to a conjecture of J. H. V. Hunt.

Our notation will follow that of Whyburn [3] and Hunt [1].

Let X be a topological space and let P and Q be disjoint closed sets in X. A set C is said to separate P and Q in the broad sense in X if $X \setminus C = A \cup B$ where A is separated from B, $P \setminus C \subset A$ and $Q \setminus C \subset$ B. The space X is said to be *n*-point strongly connected between P and Q if no subset of X with fewer than *n* points separates P and Q in the broad sense in X. A subset of X is said to join P and Q if some component of the set meets both P and Q.

1. The second *n*-arc theorem.

THEOREM 1. The locally connected, regular, T_1 space X is n-point strongly connected between two disjoint closed sets P and Q if and only if there exist n disjoint open sets in X which join P and Q.

Proof. The sufficiency is obvious. We shall prove necessity by induction on n. The case n = 1 follows from the fact that the components of X are open (as X is locally connected) and hence some component of X meets both P and Q. Suppose the theorem holds for all positive integers less than n.

Suppose X is *n*-point strongly connected between the disjoint closed sets P and Q. Let S denote the set of all $x \in X$ such that there exists a set S_x which is the union of *n* disjoint open connected sets n-1 of which join P and Q and the *n*th one joins P and x. Then S is clearly open in X. If $y \in X$ then $X \setminus \{y\}$ is (n-1)-point strongly connected between $P \setminus \{y\}$ and $Q \setminus \{y\}$. By induction $X \setminus \{y\}$ contains a set U_1, \dots, U_{n-1} of disjoint open connected sets joining P and Q. Since X is regular and locally connected there exist by the chaining lemma open connected sets V_1, \dots, V_{n-1} such that for each $i \ \overline{V}_i \subset U_i$ and V_i joins P and Q. The sets V_1, \dots, V_{n-1} have closures which are disjoint from y and from each other. If $y \in P$ then y is clearly in S so $P \subset S$. The set S is also closed in X. For let $y \in \overline{S}$. We may suppose $y \notin P$. Let A be the union of (n-1) connected open sets V_1, \dots, V_{n-1} with disjoint closures joining P and Q such that $y \notin \overline{A}$. Let R be a connected region containing y such that $\overline{R} \cap (P \cup \overline{A}) = \emptyset$. Let $x \in R \cap S$. Let S_x be the union of n open connected sets U_1, \dots, U_n with pairwise disjoint closures such that U_1, \dots, U_{n-1} join P and Q and U_n joins P and x. For each $i = 1, \dots, n-1$ let $\alpha_i = \alpha_{i,1} \cup \dots \cup \alpha_{i,n_i}$ be an irreducible chain of open connected sets in V_i such that $\alpha_{i,1} \cap Q \neq \emptyset$, $\alpha_{i,n_i} \cap P \neq \emptyset$ and each $\alpha_{i,j}$ meets at most one of $\overline{U}_1, \dots, \overline{U}_n$. For each $i = 1, \dots, n$ let $\beta_i = \beta_{i,1} \cup \dots \cup \beta_{i,m_i}$ be an irreducible chain of open connected sets in V_i such that $\alpha_{i,1} \cap Q \neq \emptyset$, $\alpha_{i,n_i} \cap P \neq \emptyset$ and each $\beta_{i,j} \cap P \neq \emptyset$, $\beta_{i,m_i} \cap (Q \cup R) \neq \emptyset$ and each $\beta_{i,j}$ meets at most one of the disjoint closed sets $\overline{V}_1, \dots, \overline{V}_n$, \overline{R} . Let $B = \beta_1 \cup \dots \cup \beta_n$.

In α_i let $n_{1,i}$ be the smallest integer such that α_{i,n_1} meets $B \cup P$. Let ${}_{1}\alpha_i = \alpha_{i,1} \cup \cdots \cup \alpha_{i,n_1}$. Let $A_1 = {}_{1}\alpha_1 \cup \cdots \cup {}_{1}\alpha_{n-1}$. In β_i let $m_{1,i}$ be the smallest integer such that β_{i,m_1} meets $Q \cup R \cup A_1$. For each *i* let ${}_{1}\beta_i = \beta_{i,1} \cup \cdots \cup \beta_{i,m_1}$ and let $B_1 = {}_{1}\beta_1 \cup \cdots \cup {}_{1}\beta_n$. In α_i let $n_{2,i}$ be the smallest integer such that α_{i,n_2} meets $B_1 \cup P$. Let ${}_{2}\alpha_i = \alpha_{i,1} \cup \cdots \cup \alpha_{i,n_2}$ and let $A_2 = {}_{2}\alpha_1 \cup \cdots \cup {}_{2}\alpha_{n-1}$. In β_i let $m_{2,i}$ be the smallest integer such that α_{i,n_2} meets $B_1 \cup P$. Let ${}_{2}\alpha_i = \alpha_{i,1} \cup \cdots \cup \alpha_{i,n_2}$ and let $A_2 = {}_{2}\alpha_1 \cup \cdots \cup {}_{2}\alpha_{n-1}$. In β_i let $m_{2,i}$ be the smallest integer such that β_{i,m_2} meets $Q \cup R \cup A_2$. Let ${}_{2}\beta_i = \beta_{i,1} \cup \cdots \cup \beta_{i,m_2}$ and let $B_2 = {}_{2}\beta_i \cup \cdots \cup {}_{2}\beta_n$. We can continue this process indefinitely. For each *i* $1 \leq m_{r+1,i} \leq m_{r,i}$ and $n_{r_i} \leq n_{r+1,i} \leq n_i$. It follows that there exists a positive integer *s* such that $A_i = A_s$ and $B_i = B_s$ for all $j \geq s$.

Now A_s and B_s are unions of n - 1 and n respectively disjoint chains of open connected sets. For each $j = 1, \dots, n_s \beta_i$ meets at most one α_i . and $_{s}\beta_{i} \cap _{s}\alpha_{i} \subset \alpha_{i,n_{s}}$. Also, for each $i = 1, \dots, n-1$ $_{s}\alpha_{i}$ meets at most one $_{s}\beta_{i}$. For each $i = 1, \dots, n-1$ let $e_{i} = {}_{s}\alpha_{i}$ if ${}_{s}\alpha_{i}$ meets P and let $e_{i} = {}_{s}\alpha_{i} \cup {}_{s}\beta_{i}$ where j is the unique integer such that ${}_{s}\beta_{i}$ meets ${}_{s}\alpha_{i}$ if ${}_{s}\alpha_{i}$ does not meet P. The sets e_1, \dots, e_{n-1} are disjoint chains of connected open sets such that e_i joins P to Q. Note that each e_i is disjoint from R. Since each α_i for $i = 1, \dots, n-1$ meets at most one ${}_{s}\beta_{i}$ for $j = 1, \dots, n$ there exists an $_{\beta}\beta_{i}$ which is disjoint from each of e_{1}, \dots, e_{n-1} . If $_{\beta}\beta_{i}$ meets Q then $e_1, \dots, e_{n-1}, {}_{s}\beta_{l}$ are *n* disjoint open sets which join *P* and *Q* and the theorem is true for X. If $_{s}\beta_{i}$ is disjoint from Q then $_{s}\beta_{i}$ meets R and so $e_1, \dots, e_{n-1}, s_{\beta_1} \cup R$ are *n* disjoint open connected sets such that e_1, \dots, e_{n-1} join P and Q and ${}_{s}\beta_i \cup R$ joins P and y. Hence $y \in S$ and S is closed. It follows that S is a union of components of X. Since $P \subset S$ and X is n-point strongly connected between P and Q some component of X meets both P and Q. Hence $Q \cap S \neq \emptyset$. If $x \in Q \cap S$ then S_x satisfies the theorem.

The following result is called the second n-arc theorem by Menger [2]. It was first proved in the form given below by Whyburn [3].

COROLLARY 2. If X is a complete, locally connected, metric space

that is n-point strongly connected between the two disjoint closed sets P and Q, then X contains n disjoint arcs joining P and Q.

Proof. The corollary follows immediately from Theorem 1 since an open connected set in a complete, locally connected, metric space is arcwise connected.

2. *n*-large point connectedness. Let \mathscr{C} be a family of disjoint closed subsets of a topological space X. Following Hunt [1], we call a subset S of X a large point of X with respect to \mathscr{C} if S is a point or S is a member of \mathscr{C} . We shall say that X is *n*-large point strongly connected between two disjoint closed sets A and B with respect to \mathscr{C} provided no set of fewer than n large points with respect to \mathscr{C} separates A and B in the broad sense in X.

If A_1, \dots, A_n and B are disjoint closed subsets of a topological space X we say that a set of n disjoint sets $\alpha_1, \dots, \alpha_n$ in X joins A_1, \dots, A_n and B if each α_i joins $A_1 \cup \dots \cup A_n$ and B, each α_i meets exactly one A_j and each A_i meets exactly one α_i .

The following theorem was proved by Hunt [1] for the case X a locally compact, locally connected, metric space. It is obtained here as an easy corollary of our Theorem 1.

COROLLARY (Hunt) 3. Let X be a normal, T_1 , locally connected space and let A_1, \dots, A_n and B be disjoint closed sets in X. Let $\mathscr{C} = \{A_1, \dots, A_n\}$. A necessary and sufficient condition that there be n disjoint open sets in X joining A_1, \dots, A_n and B is that X be n-large point strongly connected between $A_1 \cup \dots \cup A_n$ and B with respect to \mathscr{C} .

Proof. Define an equivalence relation \sim on X by setting $x \sim y$ if and only if x = y or $x, y \in A_i$ for some $i \in \{1, \dots, n\}$. Then \sim is a closed equivalence relation on X. Let $\pi: X \to X/\sim$ be the natural projection of X onto the quotient space X/\sim . Then X/\sim is T_1 . Since X is normal and \sim has only a finite number of nondegenerate equivalence classes it follows that X/\sim is regular. It is well-known (and easy to prove) that the quotient space of a locally connected space is locally connected. It is easy to check that X/\sim is *n*-point strongly connected between $A = \pi(A_1 \cup \cdots \cup A_n)$ and B. By Theorem 1 there exist *n*-disjoint open connected sets U_1, \dots, U_n joining A and B. If $U_i \cap A = \pi(A_i)$ then it is easy to see that $\pi^{-1}(U_i)$ joins A_i to B.

If A_1, \dots, A_n and B_1, \dots, B_n are disjoint closed sets in a topological space X, a family of n disjoint open connected sets U_1, \dots, U_n in X is said to join A_1, \dots, A_n and B_1, \dots, B_n if each U_i joins $A_1 \cup \dots \cup A_n$ and

 $B_1 \cup \cdots \cup B_n$, each U_i meets exactly one A_j and exactly one B_k , each B_i meets exactly one U_j and each A_i meets exactly one U_j .

The following corollary gives an affirmative solution to a conjecture posed by Hunt in [1].

COROLLARY 4. Let $A_1, \dots, A_n, B_1, \dots, B_n$ be disjoint closed subsets of a normal, T_1 , locally connected space X. Let $\mathscr{C} = \{A_1, \dots, A_n, B_1, \dots, B_n\}$. A necessary and sufficient condition that there be n disjoint open connected sets in X joining A_1, \dots, A_n and B_1, \dots, B_n is that X be n large point strongly connected between A_1, \dots, A_n and B_1, \dots, B_n with respect to \mathscr{C} .

Proof. The proof is similar to that of Theorem 3 and is omitted.

3. A question. It seems natural to ask if the preceding results have analogues for non locally connected spaces.

Question. If X is a regular, T_1 space and P and Q are disjoint closed sets in X such that X is *n*-point strongly connected between P and Q, do there exist disjoint open sets U_1, \dots, U_n such that U_i cannot be separated between P and Q?

References

1. J. H. V. Hunt, An n-arc theorem for Peano spaces, Pacific J. Math., 36 (1971), 351-356.

2. K. Menger, Kurventheorie, Teubner, Berlin-Leipzig, 1932.

3. G. T. Whyburn, On n-arc connectedness, Trans. Amer. Math. Soc., 63 (1948), 452-456.

Received April 2, 1976 and in revised form May 31, 1976. This work was supported in part by a grant from the National Research Council of Canada.

UNIVERSITY OF SASKATCHEWAN