SOME n-ARC THEOREMS

E. D. Tymchatyn

G. T. Whyburn gave an inductive proof of the n-arc theorem for complete, locally connected, metric spaces. In this note Whyburn's proof is modified to generalize this theorem to the class of regular, T_{1}, locally connected spaces. This result is then used to obtain an affirmative solution to a conjecture of J. H. V. Hunt.

Our notation will follow that of Whyburn [3] and Hunt [1].
Let X be a topological space and let P and Q be disjoint closed sets in X. A set C is said to separate P and Q in the broad sense in X if $X \backslash C=A \cup B$ where A is separated from $B, P \backslash C \subset A$ and $Q \backslash C \subset$ B. The space X is said to be n-point strongly connected between P and Q if no subset of X with fewer than n points separates P and Q in the broad sense in X. A subset of X is said to join P and Q if some component of the set meets both P and Q.

1. The second n-arc theorem.

TheOrem 1. The locally connected, regular, T_{1} space X is n-point strongly connected between two disjoint closed sets P and Q if and only if there exist n disjoint open sets in X which join P and Q.

Proof. The sufficiency is obvious. We shall prove necessity by induction on n. The case $n=1$ follows from the fact that the components of X are open (as X is locally connected) and hence some component of X meets both P and Q. Suppose the theorem holds for all positive integers less than n.

Suppose X is n-point strongly connected between the disjoint closed sets P and Q. Let S denote the set of all $x \in X$ such that there exists a set S_{x} which is the union of n disjoint open connected sets $n-1$ of which join P and Q and the nth one joins P and x. Then S is clearly open in X. If $y \in X$ then $X \backslash\{y\}$ is $(n-1)$-point strongly connected between $P \backslash\{y\}$ and $Q \backslash\{y\}$. By induction $X \backslash\{y\}$ contains a set U_{1}, \cdots, U_{n-1} of disjoint open connected sets joining P and Q. Since X is regular and locally connected there exist by the chaining lemma open connected sets V_{1}, \cdots, V_{n-1} such that for each $i \bar{V}_{1} \subset U_{1}$ and V_{i} joins P and Q. The sets V_{1}, \cdots, V_{n-1} have closures which are disjoint from y and from each other. If $y \in P$ then y is clearly in S so $P \subset S$.

The set S is also closed in X. For let $y \in \bar{S}$. We may suppose $y \notin P$. Let A be the union of $(n-1)$ connected open sets V_{1}, \cdots, V_{n-1} with disjoint closures joining P and Q such that $y \notin \bar{A}$. Let R be a connected region containing y such that $\bar{R} \cap(P \cup \bar{A})=\varnothing$. Let $x \in R \cap S$. Let S_{x} be the union of n open connected sets U_{1}, \cdots, U_{n} with pairwise disjoint closures such that U_{1}, \cdots, U_{n-1} join P and Q and U_{n} joins P and x. For each $i=1, \cdots, n-1$ let $\alpha_{i}=\alpha_{i, 1} \cup \cdots \cup \alpha_{i, n_{i}}$ be an irreducible chain of open connected sets in V_{t} such that $\alpha_{i, 1} \cap Q \neq \varnothing$, $\alpha_{i, n_{i}} \cap P \neq \varnothing$ and each $\alpha_{i, j}$ meets at most one of $\bar{U}_{1}, \cdots, \bar{U}_{n}$. For each $i=1, \cdots, n$ let $\beta_{i}=\beta_{i, 1} \cup \cdots \cup \beta_{i, m_{i}}$ be an irreducible chain of open connected sets in U_{i} with $\beta_{i, 1} \cap P \neq \varnothing, \beta_{i, m} \cap(Q \cup R) \neq \varnothing$ and each $\beta_{i, j}$ meets at most one of the disjoint closed sets $\bar{V}_{1}, \cdots, \bar{V}_{n}, \bar{R}$. Let $B=\beta_{1} \cup \cdots \cup \beta_{n}$.

In α_{i} let $n_{1,}$ be the smallest integer such that $\alpha_{i, n_{1},}$ meets $B \cup P$. Let ${ }_{1} \alpha_{i}=\alpha_{t, 1} \cup \cdots \cup \alpha_{, n_{1},}$. Let $A_{1}={ }_{1} \alpha_{1} \cup \cdots \cup{ }_{1} \alpha_{n-1}$. In β_{i} let $m_{1,}$ be the smallest integer such that $\beta_{i, m_{1}}$ meets $Q \cup R \cup A_{1}$. For each i let ${ }_{1} \beta_{i}=\beta_{t, 1} \cup \cdots \cup \beta_{i, m_{1},}$ and let $B_{1}={ }_{1} \beta_{1} \cup \cdots \cup{ }_{1} \beta_{n}$. In α_{i} let $n_{2 i}$ be the smallest integer such that $\alpha_{i, n_{2}}$ meets $B_{1} \cup P$. Let ${ }_{2} \alpha_{i}=\alpha_{i, 1} \cup \cdots \cup \alpha_{i, n_{2}}$ and let $A_{2}={ }_{2} \alpha_{1} \cup \cdots \cup{ }_{2} \alpha_{n-1}$. In β_{1} let $m_{2_{i}}$ be the smallest integer such that $\beta_{i, m_{2}}$ meets $Q \cup R \cup A_{2}$. Let ${ }_{2} \beta_{1}=\beta_{i, 1} \cup \cdots \cup \beta_{i, m_{2}}$ and let $B_{2}=$ ${ }_{2} \beta_{1} \cup \cdots \cup \cup_{2} \beta_{n}$. We can continue this process indefinitely. For each i $1 \leqq m_{r+1,} \leqq m_{r_{r}}$ and $n_{r_{i}} \leqq n_{r+1_{i}} \leqq n_{t}$. It follows that there exists a positive integer s such that $A_{j}=A_{s}$ and $B_{j}=B_{s}$ for all $j \geqq s$.

Now A_{s} and B_{s} are unions of $n-1$ and n respectively disjoint chains of open connected sets. For each $j=1, \cdots, n_{s} \beta_{j}$ meets at most one ${ }_{s} \alpha_{i}$ and ${ }_{s} \beta_{j} \cap{ }_{s} \alpha_{t} \subset \alpha_{i, n_{s_{i}}} \quad$ Also, for each $i=1, \cdots, n-1{ }_{s} \alpha_{i}$ meets at most one ${ }_{s} \beta_{j}$. For each $i=1, \cdots, n-1$ let $e_{i}={ }_{s} \alpha_{i}$ if ${ }_{s} \alpha_{t}$ meets P and let $e_{t}={ }_{s} \alpha_{i} \cup{ }_{s} \beta_{j}$ where j is the unique integer such that ${ }_{s} \beta_{j}$ meets ${ }_{s} \alpha_{t}$ if ${ }_{s} \alpha_{i}$ does not meet P. The sets e_{1}, \cdots, e_{n-1} are disjoint chains of connected open sets such that e_{t} joins P to Q. Note that each e_{i} is disjoint from R. Since each ${ }_{s} \alpha_{i}$ for $i=1, \cdots, n-1$ meets at most one ${ }_{s} \beta_{j}$ for $j=1, \cdots, n$ there exists an ${ }_{s} \beta_{j}$ which is disjoint from each of e_{1}, \cdots, e_{n-1}. If ${ }_{s} \beta_{j}$ meets Q then $e_{1}, \cdots, e_{n-1},{ }_{s} \beta_{\text {J }}$ are n disjoint open sets which join P and Q and the
 $e_{1}, \cdots, e_{n-1},{ }_{s} \beta \cup \mathcal{R}$ are n disjoint open connected sets such that e_{1}, \cdots, e_{n-1} join P and Q and ${ }_{s} \beta_{j} \cup R$ joins P and y. Hence $y \in S$ and S is closed. It follows that S is a union of components of X. Since $P \subset S$ and X is n-point strongly connected between P and Q some component of X meets both P and Q. Hence $Q \cap S \neq \varnothing$. If $x \in Q \cap S$ then S_{x} satisfies the theorem.

The following result is called the second n-arc theorem by Menger [2]. It was first proved in the form given below by Whyburn [3].
that is n-point strongly connected between the two disjoint closed sets P and Q, then X contains n disjoint arcs joining P and Q.

Proof. The corollary follows immediately from Theorem 1 since an open connected set in a complete, locally connected, metric space is arcwise connected.
2. n-large point connectedness. Let \mathscr{C} be a family of disjoint closed subsets of a topological space X. Following Hunt [1], we call a subset S of X a large point of X with respect to \mathscr{C} if S is a point or S is a member of \mathscr{C}. We shall say that X is n-large point strongly connected between two disjoint closed sets A and B with respect to \mathscr{C} provided no set of fewer than n large points with respect to \mathscr{C} separates A and B in the broad sense in X.

If A_{1}, \cdots, A_{n} and B are disjoint closed subsets of a topological space X we say that a set of n disjoint sets $\alpha_{1}, \cdots, \alpha_{n}$ in X joins A_{1}, \cdots, A_{n} and B if each α_{1} joins $A_{1} \cup \cdots \cup A_{n}$ and B, each α_{i} meets exactly one $A_{,}$and each A_{j} meets exactly one α_{i}.

The following theorem was proved by Hunt [1] for the case X a locally compact, locally connected, metric space. It is obtained here as an easy corollary of our Theorem 1.

Corollary (Hunt) 3. Let X be a normal, T_{1}, locally connected space and let A_{1}, \cdots, A_{n} and B be disjoint closed sets in X. Let $\mathscr{C}=$ $\left\{A_{1}, \cdots, A_{n}\right\}$. A necessary and sufficient condition that there be n disjoint open sets in X joining A_{1}, \cdots, A_{n} and B is that X be n-large point strongly connected between $A_{1} \cup \cdots \cup A_{n}$ and B with respect to \mathscr{C}.

Proof. Define an equivalence relation \sim on X by setting $x \sim y$ if and only if $x=y$ or $x, y \in A_{1}$ for some $i \in\{1, \cdots, n\}$. Then \sim is a closed equivalence relation on X. Let $\pi: X \rightarrow X / \sim$ be the natural projection of X onto the quotient space X / \sim. Then X / \sim is T_{1}. Since X is normal and \sim has only a finite number of nondegenerate equivalence classes it follows that X / \sim is regular. It is well-known (and easy to prove) that the quotient space of a locally connected space is locally connected. It is easy to check that X / \sim is n-point strongly connected between $A=\pi\left(A_{1} \cup \cdots \cup A_{n}\right)$ and B. By Theorem 1 there exist n-disjoint open connected sets U_{1}, \cdots, U_{n} joining A and B. If $U_{i} \cap A=\pi\left(A_{j i}\right)$ then it is easy to see that $\pi^{-1}\left(U_{\mathrm{t}}\right)$ joins $A_{j i}$ to B.

If A_{1}, \cdots, A_{n} and B_{1}, \cdots, B_{n} are disjoint closed sets in a topological space X, a family of n disjoint open connected sets U_{1}, \cdots, U_{n} in X is said to join A_{1}, \cdots, A_{n} and B_{1}, \cdots, B_{n} if each U_{1} joins $A_{1} \cup \cdots \cup A_{n}$ and
$B_{1} \cup \cdots \cup B_{n}$, each U_{1} meets exactly one A_{j} and exactly one B_{k}, each B_{i} meets exactly one U_{j} and each A_{i} meets exactly one U_{j}.

The following corollary gives an affirmative solution to a conjecture posed by Hunt in [1].

Corollary 4. Let $A_{1}, \cdots, A_{n}, B_{1}, \cdots, B_{n}$ be disjoint closed subsets of a normal, T_{1}, locally connected space X. Let $\mathscr{C}=\left\{A_{1}, \cdots, A_{n}\right.$, $\left.B_{1}, \cdots, B_{n}\right\}$. A necessary and sufficient condition that there be n disjoint open connected sets in X joining A_{1}, \cdots, A_{n} and B_{1}, \cdots, B_{n} is that X be n large point strongly connected between A_{1}, \cdots, A_{n} and B_{1}, \cdots, B_{n} with respect to \mathscr{C}.

Proof. The proof is similar to that of Theorem 3 and is omitted.
3. A question. It seems natural to ask if the preceding results have analogues for non locally connected spaces.

Question. If X is a regular, T_{1} space and P and Q are disjoint closed sets in X such that X is n-point strongly connected between P and Q, do there exist disjoint open sets U_{1}, \cdots, U_{n} such that U_{1} cannot be separated between P and Q ?

References

1. J. H. V. Hunt, An n-arc theorem for Peano spaces, Pacific J. Math., 36 (1971), 351-356.
2. K. Menger, Kurventheorie, Teubner, Berlin-Leipzig, 1932.
3. G. T. Whyburn, On n-arc connectedness, Trans. Amer. Math. Soc., 63 (1948), 452-456.

Received April 2, 1976 and in revised form May 31, 1976. This work was supported in part by a grant from the National Research Council of Canada.

University of Saskatchewan

