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CONVEX AND CONCAVE FUNCTIONS OF SINGULAR
VALUES OF MATRIX SUMS

R. C. THOMPSON

A new set of inequalities for functions of singular values of
matrix sums is established. These inequalities are complemen-
tary to a number of classically known inequalities in that the
direction of the inequality sign is reversed. A matrix valued
triangle inequality is also given. Special cases of these results
are due to S. Yu. RotfePd.

1. Introduction. Let A, B, C = A + B be n-square matrices
with singular values α, ̂  ^ αn, β^ ^ βn, y^ • ^ γπ respec-
tively. In [5] S. Yu. RotfeΓd stated and in [6] proved that

(1) / ( y i ) + . . . + / ( r n ) ^ / ( α i ) + ...+f(an) + f φ \ ) + • • . + / ( # , )

when / is an increasing concave function of a nonnegative real variable,
with /(0) = 0. This inequality is of some interest as in previously
published work a convexity (rather than concavity) hypothesis has usually
been necessary to establish results of the general type of (1). See, for
example, Gohberg and Krein [3], page 49, or Marcus and Mine [4], pages
103 and 116. In this paper we shall uncover the algebraic foundation of
(1) by giving a short proof of a generalization. Our proof, which is
simpler and more direct than the proof of (1) given by RotfeΓd, will be
based on an interesting matrix valued triangle inequality, a special case of
which was given by RotfeΓd. We note that the methods used by
RotfeΓd are very much adapted to the inequality (1) that he wished to
prove, and do not appear capable of proving the extensions of his results
to be presented below.

2. Positive semidefinite matrices. In this section we dis-
cuss an important special case for which sharper results are
possible. Throughout §2 we let A, B, C = A + B be n x n Hermitian
positive semidefinite matrices with eigenvalues α ^ ^ αn, βγ ^ ^
βn, yx ^ ^ γn, respectively. Let F(xu , x2n) and G(xu , x2n) be
functions of 2n nonnegative variables, symmetric in these variables (i.e.,
remaining unchanged if the variables are permuted), with F concave and
G convex: for all nonnegative vectors x, y and real numbers θ with

F(θx + (1 - θ)y)^ ΘF(x) + (1 - θ)F(y),

G(θx + (1 - θ)y)^ ΘG(x) + (1 - θ)G(y).
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Then we have:

THEOREM 1. For Hermitian positive semidefinite A, B, C = A + B
and functions F, G as above, the following inequalities hold:

(2.1) F(Ύι,- ;γm0,

(2.2) G(Ύu--;γn,O,

(2.3) F

^ F(α,, , am βu , βn),

) ^ G(au • am βu , βn),

Ύn

Proof. Since A and B are semidefinite, we may write A = AXA *,
B = BiB*, where * denotes adjoint. Then we have

Reversing the order of the factors in the last product, and using the fact
that this reversal leaves unchanged the nonzero eigenvalues, we see that

(3)
[AuB1]=ΓA*1Aι=ΓA*1Aι

VBXAX

has γu "-,γm 0, * ,0 as its eigenvalues. Making a block diagonal
unitary similarity to diagonalize the blocks A*Aλ and BλB* in (3), we
next see that au , am βu , βn are diagonal elements of a Hermitian
matrix having yu , γπ, 0, ,0 as its eigenvalues. Consequently

(4) Oin

β>

. βn.

= S

' Ύι '

Ύn

0

0

where S is a 2n -square doubly stochastic matrix. By Birkhoff's theorem
this implies that the left hand side of (4) belongs to the convex hull of all
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rearrangements of the column vector υ = [yu , γn,0, ,0]τ. Now it
is well known that a symmetric concave function F on the convex
polytope spanned by all rearrangements of a fixed vector υ assumes its
least value at the vector v and its greatest value at the vector ϋ in which
each component is the average of the components of v. See, for
example, [4; p. 104]. (The argument there only shows that F achieves its
maximum at a vector in the convex polytope having all components
equal; however, it is easy to show that v is the unique such vector.) This
proves the first and third inequalities of the theorem; the second and
fourth follow from the corresponding fact for convex functions G in
which the words "least" and "greatest" above are interchanged.

Previously known inequalities for functions on the eigenvalues of A,
B, C = A + B take the form

(5.1)

(5.2)

(5.3)

Fι(yu , γπ) ^ Fι(aι + βu , an + βn),

diyu ' , yn) ^ Gλ{ax + βu , an + βn),

aι+β1+

(5.4)
]? -,yn)=

where Ft(xu ,xn) and Gλ(xλ, , xn) are symmetric functions of n
nonnegative variables, with Fλ concave and Gλ convex. These follow
from the well known results that

yλ+ + yk ^ aλ -f + ak + βλ + + βk for k = 1, , n,

(with equality for k = n), and therefore

Ύn. <*n + β J

for some n-square doubly stochastic matrix Sλ. Evidently (2.1) and (2.2)
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may be regarded as inequalities complementary to the previously known
inequalities (5.1) and (5.2).

In the special case F(xu , x2n) = f(xi)+ •• + /(*2π), with f(x)
concave and /(0) = 0, inequality (2.1) reduces to the inequality (1) found
by Rotfel'd.

The device of proving matrix inequalities by reversing the order of
the factors, as in (3), was first introduced by Wielandt, in another context,
and appears in his lecture notes [9].

3. A triangle inequality for matrices. If A is a square
matrix, not necessarily Hermitian, define

| A | = (AA*)1/2,

where the positive semidefinite determination of the square root is
used. If H and K are Hermitian matrices, the notation H ̂  K will
signify that K - H is positive semidefinite.

THEOREM 2. Let A and B be square matrices, not necessarily
Hermitian. Then unitary matrices U and V exist such that

(6) IA +B\^ U\A\U* + V\B\ V*.

REMARK 1. Without the presence of the unitary matrices U and V,
this result would be false.

REMARK 2. For the special case of Hermitian A and B, with rank
β = 1, this result appears in Rotfel'd's paper [6]. The method used by
Rotfel'd can, after some simplification, be used to obtain (6) for arbitrary
Hermitian A and B, but does not immediately extend to the non-
Hermitian case.

Proof. We first present a lemma giving a result of Fan and Hoffman
[2], reproved in [1], and reproved again in [7]. For completeness we
include the short proof from [7].

LEMMA. Let M be a matrix, not necessarily Hermitian, and denote

the eigenvalues of \{M + M * ) and (MM*)m respectively by λλ^ ^ λn,

Si ̂  * ̂  sn. Then

λ, ^ 5, for i = 1, , n.

Proof of lemma. Take vu , υn and wu , wn to be orthonormal
sets of eigenvectors for \{M + M*) and MM* respectively:
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\{M + M*)Όi = λtvn MM*wt = s]wh ί = 1, , n.

Let k be fixed, 1 S k ̂  n. The spans of Vi, — -,vk and vvk, , wn

intersect in at least one dimension; let x be a unit vector in this
intersection. Then

where ( , ) denotes inner product. We now have:

λk g (KM + Af *)JC, JC) = Re(M*JC, JC) ̂  | ( M * J C , JC)|

This completes the proof of the lemma.

Turning to the proof of Theorem 2, let C = A + B. Passing to
CW = ΛW + BW with W unitary, we see that no generality is lost if we
take C to be positive semidefinite. From C = A + B we then obtain,
after forming the adjoint and adding, the equation

(7) C = \{A + A*) + \(B + B*).

We claim: \{A + A *) ̂  U | A | t/* for some unitary (7. Indeed, take U
to be such that a unitary similarity simultaneously brings \(A + A *) and
U IA I ί7* = ί7(AA *)υ2U* into diagonal form with diagonal elements in
nonincreasing order. By the lemma, each eigenvalue of \(A + A*) is
dominated by the corresponding eigenvalue of U | A | U*. This means:

H A + A * ) ^ t / | A | £/*.

In the same way unitary V exists such that i(B + B ) * ^ V | B | V*.
Substituting these inequalities into (7) and using C = | C |, we obtain (6).

This lemma may be used to give a variant of certain proofs in [8].

4. Singular value inequalities. We continue to let
F(xu - - , x2n) and G(xu , JC2M) be symmetric functions of 2n nonnega-
tive variables, with F concave and G convex. We now let A, B,
C = A + B be not necessarily Hermitian matrices with singular values
ax ^ ^ αn, βi ̂  ^ j8n and γi g ^ γπ respectively.

THEOREM 3. Let arbitrary matrices A, B, C = A + B and symmetric
functions F, G be as described above. Then:

(i) inequality (2.1) holds ifF is nondecreasing as well as concave,
(ii) inequality (2.2) holds ifG is nonincreasing as well as convex,
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(iii) inequality (2.3) holds ifF is nonincreasing as well as concave,
(iv) inequality (2.4) holds if G is nondecreasing as well as convex.

Here, for example, F nondecreasing means that F(xu , x2n) is a
nondecreasing function of xx for fixed JC2, *3, * * , Xin-

Proof. It is well known that if H, K are Hermitian matrices with
H ^ K then the eigenvalues hλ ^ ^ /ιn and fci ^ ^ kn of /ί and K
satisfy /i, ^ /c, for each i. Indeed, set K - H + F, with P positive
semidefinite, and use the easily proved inequality kx ^ h{ + pn, where pn is
the smallest eigenvalue of P. From C = A + B we get

| C | ^ E / | A | ί7*+ V | B | V*;

thus the singular values γ^ ^ γn of C are dominated, term by term,
b y t h e s i n g u l a r v a l u e s y [ ^ > • - ^ γ ' n o t U \ A \ U * + V \ B \ V*. U s i n g
first the nondecreasing nature of F, then Theorem 1 applied to
U\A\U* and V | J 3 | V*, we get

The remaining parts of the theorem are proved similarly.
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