QUOTIENT-UNIVERSAL SEQUENTIAL SPACES

R. Sirois-Dumais and S. Willard

Abstract

We produce 2^{c} mutually nonhomeomorphic countable sequential spaces. These are used (1) to answer in the negative the following question of Michael and Stone [4]: is every regular T_{1} space which is a quotient of some separable metric space and a continuous image of the space \mathbf{P} of irrationals a quotient of \mathbf{P} ? (2) to characterize c (with or without the continuum hypothesis) as the smallest cardinal κ with the property that a metric space of cardinality κ exists of which every sequential space of cardinality $\leqq \kappa$ is a quotient.

1. Introduction. We let Q denote the space of rationals, \mathbf{P} the space of irrationals, \mathbf{R} the real line, and \mathbf{c} the cardinality of \mathbf{R}. For any set X, the cardinality of X is denoted $|X|$.

We begin with the basic construction, which will be applied in the sequel in two different directions. Denote by Y the set $[Q \times$ $(Q-\{0\})] \cup\{\infty\}$ and, for $E \subseteq \mathbf{R}$, denote by τ_{E} the quotient topology induced on Y by the obvious map from the subspace $[Q \times(Q-\{0\})] \cup$ $(E \times\{0\})$ of $\mathbf{R} \times \mathbf{R}$. The set Y endowed with the topology τ_{E} will be denoted Y_{E}. Note that Y_{E} is a countable, regular, T_{1}-space which is, by construction, the quotient of a separable metric space. (Thus, see [3], Y_{E} is both an $\boldsymbol{\aleph}_{0}$-space and a k-space.)
2. Quotients of \mathbf{P}. In [4], Michael and Stone establish that every metrizable continuous image of \mathbf{P} is a quotient of \mathbf{P}. The question is raised there whether this result can be extended to nonmetrizable images of \mathbf{P}, that is, whether a regular T_{1}-space which is at the same time a quotient of some separable metric space and a continuous image of \mathbf{P} must be a quotient of \mathbf{P}. The construction of $\S 1$ provides the negative answer. To see this, first note that the countable discrete space (hence, every countable space) is a continuous image of \mathbf{P} (collapse each interval $(n, n+1)$ to a point). It follows that each space Y_{E} is a regular T_{1}-space which is a continuous image of \mathbf{P} and a quotient of some separable metric space. But:

Theorem. Not every space Y_{E} is a quotient of \mathbf{P}.
Proof. If E and F are distinct subsets of \mathbf{R}, the topologies τ_{E} and τ_{F} on Y are different, one containing a set containing ∞ which does not belong to the other.

Now let S be the set of all surjections $f: P \rightarrow Y$ such that each $f^{-1}(y), y \in Y$, is closed in \mathbf{P}, and let Φ be the set of all $\phi: Y \rightarrow 2^{\mathbf{P}}$, where $2^{\mathbf{P}}$ denotes the collection of closed subsets of \mathbf{P}. Then $f \rightarrow f^{-1}$ is a one-one map from S into Φ; since $|\Phi|=\mathbf{c}^{\boldsymbol{N}_{0}}=\mathbf{c}$, we have $|S| \leqq c$. Let J be the set of all T_{1} topologies τ on Y such that (Y, τ) is a quotient image of \mathbf{P}. Then each $\tau \in J$ is generated by some $f \in S$, so $|J| \leqq c$. Since $\left|\left\{\tau_{E} \mid E \subseteq \mathbf{R}\right\}\right|=2^{c}$, and since each τ_{E} is T_{1}, it follows that (Y, τ_{E}) is not a quotient of \mathbf{P} for some $E \subseteq \mathbf{R}$.

Notes. (1) From the above, it is easily seen that there are 2^{c} nonhomeomorphic spaces Y_{E}, at most \mathbf{c} of which can be quotients of \mathbf{P}. This result can be sharpened, with some difficulty. In fact, Y_{E} is a quotient of \mathbf{P} iff E is an analytic subset of \mathbf{R}.
(2) If, in the construction of Y, the set $Q \times(Q-\{0\})$ is replaced by a discrete space, say $\{(k / n, 1 / n) \mid k, n \in \mathbf{N}\}$, the spaces Y_{E} which result still work, and have now the additional property that each has only one nonisolated point.
3. Quotient-universal sequential spaces. Let $\boldsymbol{\kappa}$ be an infinite cardinal and let $S(\kappa)$ denote the collection of all sequential spaces of cardinality $\leqq \kappa$. A sequential space S is quotient-universal ${ }^{*}$ for $S(\kappa)$ if $S \in S(\kappa)$ and every $T \in S(\kappa)$ is a quotient of S. We are particularly interested in the existence of metrizable quotient-universal spaces for $S(\kappa)$.

Whenever $\kappa^{\kappa_{o}}=\kappa$, the disjoint union of κ copies of the converging sequence will serve as a metrizable quotient-universal space for $S(\kappa)$. In particular, there is a metrizable quotient-universal space for $S(c)$. In this section, we use the construction of $\S 1$ to demonstrate that, whether or not the continuum hypothesis is true, \mathbf{c} is the smallest cardinal for which this is true. In fact, we exhibit a countable sequential space which is not a quotient of any metric space of cardinality $<\mathbf{c}$.

Lemma. There exists a subset E of \mathbf{R} with $|E|=\mathbf{c}$ which contains no uncountable closed subset of \mathbf{R}.

Proof. Let $\left\{C_{\alpha} \mid \alpha<\mathbf{c}\right\}$ be a transfinite enumeration of the \mathbf{c} uncountable closed subsets of \mathbf{R}. Pick p_{0} and q_{0} in C_{0} with $p_{0} \neq q_{0}$. If p_{α} and q_{α} have been chosen in C_{α} for $\alpha<\beta$ so that all p_{α} and q_{α} are distinct, choose p_{β} and q_{β} in C_{β} so that $p_{\beta} \neq q_{\beta}$ and p_{β}, q_{β} are distinct from all p_{α}, q_{α} for $\alpha<\beta$. This is possible since any uncountable closed subset of \mathbf{R} has cardinal \mathbf{c} so that $C_{\beta}-\left\{p_{\alpha}, q_{\alpha} \mid \alpha<\beta\right\} \neq \phi$.

[^0]Let $E=\left\{p_{\alpha} \mid \alpha<\mathbf{c}\right\}$. Then $|E|=\mathbf{c}$ and E contains no uncountable closed subset of \mathbf{R} since $q_{\alpha} \in C_{\alpha}-E$ for each α.

Let $E \subseteq \mathbf{R}$ be the set of the lemma. Let M_{E} denote the subspace $[Q \times(Q-\{0\})] \cup(E \times\{0\})$ of $\mathbf{R} \times \mathbf{R}$. Recall that Y_{E} is the quotient of M_{E} obtained by collapsing $E \times\{0\}$ to a single point e. Let $q: M_{E} \rightarrow Y_{E}$ be the quotient map.
Y_{E} is a countable sequential space, but:
Theorem. $\quad Y_{E}$ is not the quotient of any metric space of cardinality $<\mathbf{c}$.

Proof. Suppose there is a quotient map f of S onto Y_{E}, where S is a metric space and $|S|=\kappa<\mathbf{c}$. For each $p \in E$, let $\sigma_{p}=\left(x_{p 1}, x_{p 2}, \cdots\right)$ be a sequence in $Q \times(Q-\{0\})$ such that

$$
\left|x_{p n}-(p, 0)\right| \leqq \min \left\{\frac{1}{n},\left|x_{p n-1}-(p, 0)\right|\right\} .
$$

Recall that q denotes the quotient map of M_{E} onto Y_{E}. For each n, let

$$
z_{p n}=q\left(x_{p n}\right)
$$

and denote by η_{p} the sequence $\left(z_{p 1}, z_{p 2}, \cdots\right)$ in Y_{E}. Now $\eta_{p} \rightarrow e$. Hence, since f is a hereditary quotient map, there exists some $b_{p} \in f^{-1}(e)$ and a sequence $\sigma_{p}=\left(s_{p 1}, s_{p 2}, \cdots\right)$ in $S-f^{-1}(e)$ such that $\sigma_{p} \rightarrow b_{p}$ and $f\left(\sigma_{p}\right)=\eta_{p}$. Let

$$
f^{-1}(e)=\left\{x_{\alpha} \mid \alpha<\kappa\right\}
$$

and, for $\alpha<\kappa$, let

$$
A_{\alpha}=\left\{p \in E \mid b_{p}=x_{\alpha}\right\} .
$$

We claim some A_{α} must contain a sequence $\left(p_{t}\right)$ converging to some element of $\mathbf{R}-E$. For otherwise $C 1_{\mathbf{R}}\left(A_{\alpha}\right) \subset E$ for each $\alpha<\kappa$, whence E is the union of fewer than \mathbf{c} closed sets. But since $|E|=\mathbf{c}$, one of these would be an uncountable closed set in E, contradicting the construction of E.

Without loss of generality, say A_{1} contains a sequence $\left(p_{1}\right)$ which is closed and discrete in E. Then the sequence $\eta_{p_{1}}=\left(z_{p, 1}, z_{p, 2}, \cdots\right)$ converges to e, for each i, and the sequence $\delta_{p_{1}}=\left(s_{p, 1}, s_{p, 2}, \cdots\right)$ converges to x_{1}, for each i. A diagonal sequence $\left(s_{p 1 n_{1}}, s_{p 2 n_{2}}, \cdots\right)$ with $n_{k} \geqq k$ for each k will then converge to x_{1}. Then $\left(z_{p 1 n_{1}}, z_{p 2 n_{2}}, \cdots\right)$ converges to e. Hence $\left(x_{p 1 n_{1}}, x_{p 2 n_{2}}, \cdots\right)$ must have a cluster point in M_{E}.

But $\left|x_{p k n k}-\left(p_{k}, 0\right)\right| \leqq\left|x_{p k k}-\left(p_{k}, 0\right)\right| \leqq 1 / k$, so any cluster point of $\left(x_{p m,}, x_{p m, 2}, \cdots\right)$ in M_{E} would be a cluster point of $\left(\left(p_{1}, 0\right),\left(p_{2}, 0\right), \cdots\right)$, which is impossible by choice of the $p_{\text {r }}$.

We conclude with some observations on extension of the result above.
(1) As noted in $\S 2$, there are 2^{c} mutually nonhomeomorphic spaces Y_{E}. Since there are at most c quotients of any single countable sequential space, there can exist no quotient-universal space (metrizable or not) for $S\left(\boldsymbol{\aleph}_{0}\right)$. It is at least consistent with the usual (ZermeloFraenkel) axioms for set theory (with Choice) that this result extends to all cardinals $\kappa<\mathbf{c}$, for Martin's axiom entails $2^{\kappa}<2^{c}$ for $\kappa<\mathbf{c}$.
(2) Let $M(\kappa)$ denote the collection of metrizable spaces of cardinal $\leqq \kappa$. The space Q of rationals is a (metrizable) quotientuniversal space for $M\left(\boldsymbol{N}_{0}\right)$, while the disjoint union of \mathbf{c} copies of the converging sequence is a quotient-universal space for $M(\mathbf{c})$. For cardinals κ between \boldsymbol{N}_{0} and \mathbf{c} little is known. Baumgartner ([1]) has shown that it is consistent with Zermelo-Fraenkel set theory with choice that all \boldsymbol{N}_{1}-dense subsets of \mathbf{R} are order-isomorphic. (A subset A of \mathbf{R} is \boldsymbol{N}_{1}-dense if whenever $a<b$ in $\mathbf{R},(a, b) \cap A$ has cardinal $\left.\boldsymbol{N}_{1}.\right)$ If this is the case, then every separable metric space M of cardinal $\leqq \boldsymbol{N}_{1}$ is a quotient of the unique $\boldsymbol{N}_{\text {- }}$-dense subset D of \mathbf{R}. For M is a quotient of $M \times D$, while ([7], Theorem 76) $M \times D$ is homeomorphic to a subset of \mathbf{R} and hence, by Baumgartner's result, to D.

References

[^1]Received March 12, 1976 and in revised form May 12, 1976.

[^0]: * The term "universal" has been preempted by those who study spaces with a given property P which contain as subspaces every space (of appropriate cardinality or weight) having property P. See, for example, [2], [5] and [6].

[^1]: 1. James E. Baumgartner, All $\boldsymbol{\aleph}_{1}$-dense sets of reals can be isomorphic, Fund. Math., 79 (1973), 103-106.
 2. Jonsson, Universal Relational Systems, Math. Scand., 4 (1956), 193-208.
 3. E. Michael, $\boldsymbol{\aleph}_{11}$-spaces, J. Math. Mech., 15 (1966), 983-1002.
 4. E. Michael and A. H. Stone, Quotients of the space of irrationals, Pacific J. Math., 28 (1969), 629-633.
 5. R. Pol, There is no universal totally disconnected space, Fund. Math., 79 (1973), 265-267.
 6. W. Sierpinski, Sur les espaces métriques universels, Fund. Math., 33 (1945), 123-136.
 7. - General Topology, 2nd ed., U. of Toronto Press, 1956 (translated by C. C. Krieger).
