
PACIFIC JOURNAL OF MATHEMATICS
Vol 66, No 1, 1976

HIGHLY PROXIMAL AND
GENERALIZED ALMOST FINITE
EXTENSIONS OF MINIMAL SETS

PETER S. SHOENFELD

Highly proximal extensions are a nonmetric generalization
of the notion of almost one-to-one extensions of minimal
flows. These extensions are studied and the results are applied
to the Veech structure theorem and to generalized almost finite
homomorphisms.

1. Introduction. In Veech's paper on point distal flows [7],
hyperspaces are used to associate an almost one-to-one homomorphism
with a given homomorphism of metric minimal sets. In §2, the notion of
a highly proximal homomorphism is used to obtain a nonmetric general-
ization of this construction. An abstract characterization is obtained
and a strengthened version of the Veech Structure Theorem is
proved. Generalized almost finite homomorphisms are studied in §3.

A flow (X, T) consists of a discrete group, T, acting on a compact
Hausdorff space X as a group of homeomorphisms. Since T remains
fixed in this paper, we will write X instead of (X, Γ). An extension, or
homomorphism, is a continuous, equivariant map. Given a family of
homomorphisms {ψ,:X, —> Y}, its product is the homomorphism
φ: X-+ Y where X = {(JC,)E Π,{X,}| t/φ.) the same for all /}, with the
group action and ψ defined in the obvious way. We assume the basic
material in [3] concerning βT, almost periodicity, universal minimal sets,
etc. We distinguish a universal minimal set M and let / = {idempotents
in M}. Given x E X, we define J(x) = {u E J\xu = x}. We will gener-
ally deal with a fixed homomorphism π: X—» Y, with X and Y minimal.

The hyperspace flow 2X is the space of all closed, nonempty subsets
of X with the Hausdorff topology and with the group action defined in
the obvious way. We will use the subflow 2π = {A E 2X \A Cττ~ι(y) for
some y E Y) and the naturally defined homomorphism π:2π-*Y.
Given ΛE2 X , p E βΓ, we let A°p denote the action of p on A
within 2X and let Ap = {xp \ x E A}. Generally A °p / Ap. It is
easily seen that x E A °p if and only if xntn -> x for some nets (xn) in A
and (tn) in T such that tn —>p. We may define A °p this way when the
set A CX is not necessarily closed. It is then readily shown that
A o p = A ° p.
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Basic material on hyperspace flows may be found in [5] and
[6]. The following lemma from [6] will be used frequently.

LEMMA 1.1. The following statements hold for any homomorphism
π: X—> Y, without minimality assumptions.

(i) τr(A)°p = TΓ (A op) for all A G 2X, p G βT
(ii) 7r\B)°p C TΓ^CB op) for all B G 2y, p G βT
(iii) ττ'1(y)op Cπ~ι(yp) for all y G Y, p G /3Γ.

(iv) ^•~1(y)°(P?) = π ι(yp)O(l for aM almost periodic points y G Y
and p, q G M.

Next we use hyperspaces to get a new characterization of almost
periodic homomorphisms. The following lemma is well known.

LEMMA 1.2. Suppose S is a dense subset of the equivalence relation
determined by π and JC, JC', JC"G X. Then the pair (JC, x') is regionally
proximal relative to π iff there exist nets (xn), (x'n) in X, and (tn) in T such
that each (xn, x'n) G S and

X — > X X t — > X "

X n X X nln X .

LEMMA 1.3. Suppose π is distal. Consider JC, JC'G X, y G Y, p G
βΓ, and nete (jcn) in τr- 1(y) and (tn) in T such that xn-*x, tn^>p, and
xntn->x'. Then xf = xp.

Proof Let An={xn]n'^n] for each n. Pick uEJ(y). Then
A °u = A for each closed A C ττ-1(y), since TΓ is distal, and, in particular,
An ° u = An ° u = An. Also xu = JC. Clearly, Πn {An} = {JC} and
x' G Πn {An °p}. Pick q EM so q — qu and upq = gpw = w. Now

and so JC = x'q. Pick D £ J such that upv = up. Let yf = ττ(x'). Then
y ' = π ( x / ) = 7r(limxnίn)=lim(τr(xnίn)) = limyί n = yp = ywp = yupi; = y'v.
We have xf = x'v also, since TΓ is distal. Finally, xf = x'v = x'uv =
x'qpuv = jcpui; = xupv = xup = xp.

THEOREM 1.4. The following are equivalent:
(i) TΓ is almost periodic.
(ii) £αc/ι element of 2" is almost periodic.
(iii) π is distal.
(iv) TΓ is almost periodic.
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Proof, (iv) => (iii) => (ii) is clear.
(i) φ (iv). Suppose A, A' are relatively regionally proximal (rela-

tive to π) in 2". Then there exists B E 2", nets (An), (A i) in 2", (yn) in Y,
and (ίπ) in T such that π(Af

n)= yn for each n and

An -> A Antn -> B

We must show A = A'. Consider x G A ; it will suffice to show
J C E A ' . Taking subnets, there exists xn E An, for each n, such that
xn —» x. Taking a subnet again, xΛ -> x0 for some x0 G B. Taking
subnets two more times, we can find x'nE:Af

n such that x'ntn-*x0 and
x'E. A' such that x'n->x'. We now have π(xn) = π(x'n) = ym for each n,
and

Xn —> X X n ί n —> Xo

X n —> X X n ί n —> Xo

Since π is assumed almost periodic, we have x = x ; so x E A' as
required.

(ϋ) => (iϋ). Consider y E Y, u E / ( y ) . Given A E 2" with
τr(A) = y, it will suffice to show that A°u = A. Clearly, the element-
wise almost periodicity of 2π implies that π is distal so that Bw = B
whenever B C π~ι(y) and w E / ( y ) . Thus A = Au C A ° u. Since 2U is
element-wise almost periodic, we have A°υ = A for some v E J ( y ) .
Therefore A °u = (A ° u)v C(A ° u)° v = A °(uv) = A °v = A.

(iii) => (i). Suppose x, xf relatively regionally proximal, with
τr(x) = τr(x') = y. We must show x = x'. Now π is distal since π
is. Therefore π is an open map. Thus, for every y' G Y, there exists a
net (tn) in T such that π~\y )tn -> π~\y'). Hence (Tr'^y) x Tr'^y^T is
dense in the equivalence relation determined by TΓ. By Lemma 1.2 there
exist nets (xn), (x^) in π " 1 ^ ) and (tn), (sn) in T such that

(a) xnίn->x (b) xntnsn-^x

(c) xX^x ; (d) x'HtnsH-+x.

Taking subnets, we can find xu x[Gπ~ι(y) and p, r E βT such that
tnsn -> p, ίn -^ r and

(e) xn-*X! (f) x;->x;.
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Applying Lemma 1.3 to (b) and (e), and (d) and (f) we get that
xφ = x = x[p. Since π is distal, JCI = x[. Applying Lemma 1.3 to (a)
and (e), and (c) and (f) gives x = xλr and xf = x\r\ hence x = x'.

2. Highly proximal extensions. We temporarily drop the
condition X minimal; we still assume Y minimal.

PROPOSITION 2.1. The following are equivalent:
(i) All almost periodic elements of 2π are singletons.
(ii) For some y E Yand net (tn) in Γ, lim(ττ"1(y)ίn) is a singleton.
(iii) For some y E Y, p E βT, π~ι{y)°p is a singleton.

Proof, (iii) Φ (i). S u p p o s e A a l m o s t p e r i o d i c in 2" a n d c a r d
( τ τ " 1 ( y ) o p ) = 1. Pick uEJ(y) a n d y ' E Y, u'E J, qEM such t h a t
A °u' = A, A Cττ~λ{yf), and ypq = y'. Using Lemma 1.1,

A Cτr"1(y/)°u' = π~\yupq)°u' = π~\y)°(upqu')C(π~ι(y)op)°(qu'),

a singleton.

DEFINITION. We call π highly proximal if the conditions of 2.1 are
satisfied.

LEMMA 2.2. Consider a continuous map ψ: A —> B where A and B
are compact metric spaces. Then φ is open at all points of φ~ι{b) for a
dense, Gδ set of points b E B.

Proof See [6, 4.1.4].

PROPOSITION 2.3. If X and Y are metrizable, π is highly proximal if
and only if it is almost one-to-one.

Proof. => . By Lemma 2.2, there exists y E Y with π open on
π~\y). If u EJ(y), then π~ 1 (y)= π~\y)°u, a singleton.

Highly proximal is a nonmetric generalization of almost one-to-
one. It is a purely relative notion; it is easily seen that a highly proximal
extension of the trivial flow is itself trivial. The Ellis two circle minimal
flow [3, 5.29] taken as an extension of the circle with irrational rotation
provides a nonmetric example of a homomorphism which is highly
proximal but not almost one-to-one.

We establish some closure properties. A property of extensions of
a fixed minimal flow is called admissible if it is nonvoid and closed under
restriction of products to minimal sub-flows.
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PROPOSITION 2.4. Highly proximal is admissible.

Proof. Suppose {ψt: Wt —> Y} are highly proximal and ψ: W-* Y is
a restriction of their product to a minimal sub-flow. Pick y G Y ,
u E / ( y ) and let \p]\y)°u ={w, } for each i. Then ιA

LEMMA 2.5. Consider homomorphisms φ: U-*V,ψ: V—> W, with
all flows minimal. Then ψ ° φ is highly proximal iff both φ and φ are.

Proof Lemma 1.1.

LEMMA 2.6. Suppose {φt: Ut —> V} are proximal minimal flow
homomorphisms with product φ: U—> V. Then U has a unique minimal
subflow.

The category of point transitive flows with distinguished basepoints
has unique inverse limits. Given an inverse system of minimal flows
{U,} we can choose basepoints in a consistent way; we call the inverse
limit of the point transitive system thus obtained a pointed inverse limit of
{£/,}. We can always choose a minimal pointed inverse limit.

PROPOSITION 2.7. Suppose we have an inverse system of minimal
flows {Ui} and highly proximal homomorphisms with a least element
Uo. Then the system has a unique minimal pointed inverse limit Ux and
the canonical projections Pt: CΛc—• Ux are all highly proximal

Proof Proposition 2.4 and Lemmas 2.5 and 2.6.

Veech, in [7] associates with π : X—> Y a diagram of the type

X
7Γ

with 77* open and δ and γ almost one-to-one, assuming
metrizability. We generalize by dropping metrizability and replacing
almost one-to-one with highly proximal. Our construction will coincide
with Veech's in the metric case.

Once more, we assume both X and Y minimal. We define



270 PETER S. SHOENFELD

" | y e Y, wG/(y)} and

X* = {(xιι, ir'\y)o u)\ y G Y, x G π ^ y ) , u G /(y)}.

We define γ : Y*-> Y by γ ( A ) = y iff A C T Γ " 1 ^ ) . Finally, we define
δ: X * - > X and π*: X*—• Y* as the coordinate projections. It will be
clear that these maps are all homomorphisms once we've shown that X*
and Y* are minimal flows.

PROPOSITION 2.8. With the definitions above
(i) y * is the unique minimal subflow of 2" contained in the orbit

closure of some {every) π fiber.
(ii) X* is the unique minimal set in {(x, y *)|x G X, y * G

Proof (i) Consider minimal sets M, M' in βT and points y0,
yi G y Lemma 1.1 and an enveloping semigroup argument show that
π" 1(y 0)°M = π~\yλ)°M'. This proves that there is a unique minimal
subflow as asserted and that this subflow contains Y*. Consider some
A = π~ι(y0)°p in π~ι(y0)°M. There exist w, v G J, y E Y such that
yoW = y, pv = p, and y = yopv. Then A = π~1(you)°(pv) = π~ι(y)°v by
Lemma 1.1. Hence Y* = τr" 1 (y 0 ) o M

(ii) Consider y G Y, x E. π~\y), uEJ(y). A similar argument
shows X* = (JCM, Tr '^y) 0 u)M.

PROPOSITION 2.9. T îβ homomorphisms y and 8 are highly proximal.

Proof Applying Zorn's Lemma to a fiber γ~ 1(y)CY* yields an
inclusion minimal element B with B = τr~ι(y)°p for some p G M. Also
J \y)°P C γ " 1 ^ ) and if A G γ~1(y)°p then A CB. Hence γ~1(y)°p =
{B} and γ is highly proximal. If x G X, u E J(x) then δ"!(jc)ow C{JC}X

7~V( X )) ° M - Hence δ is also highly proximal.

For y G Y, let /M(y, π ) be the set of idempotents u G J(y) such that
π " X y ) 0 " i s inclusion minimal in Y*. Zorn's Lemma implies that
/M(y, TΓ) is always nonempty. The idea of the following lemma is due
to Glasner.

LEMMA 2.10. Suppose u G JM(y, π ) and JC G τr~1(y)°M.
an idempotent v E / ( x ) 5wc/ι ίhaί π ' X y ) 0 ! ; = τr~1(y)°M.

We can find nets (x,) in 7r" !(y), <t) in Γ, and (p,) in M such
that xpt = JC,, ίt —> w, jc,ί( —>• x, and p,/( —> ^ for some q G M. Then
7r~1(y)o(plίl)C7r~1(yp/)°ίJ = TΓ^y)0?,, for each /, and so π~ι(y)°qC
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π \y)°u. Hence π \y)°q~ TT \y)°u by minimality. Pick v EL J such
that qυ = q. By Lemma 1.1, π~\y)°υ = π~\yq)° v = π~\y)°(qυ) =
τr~\y)°q = π (y)°u, and xv = xqv = xq = x.

PROPOSITION 2.11. The homomorphism TΓ*: X*—> Y* is open.

Proof. It suffices to show π*" ! (y*p)Cτr*~ 1 (y*)°p for some y * E
Y* and any p E M. Pick y G Y, u G JM(y, TΓ) and let y* = π~\y)°u.
Then ττ*"1(y *) - (π'](y)ou)x {y *}, by Lemma 2.10. It is easily seen that,
for p E M,

We've shown that in the diagram

X

X

Ύ

Ψ
Y

TT

the homomorphisms δ and γ are highly proximal while TΓ* is open. We
will use these properties to characterize Δ* abstractly.

LEMMA 2.12. We have π open iff y (and hence also δ) is an
isomorphism.

Proof =>. For y E Y, γ ^ y ) = {τr~1(y)o u \ u E J(y)} = {π'^y)},
since TΓ open.

φ . We must show π"1(yp)= π~\y)°p for y E Y, p E M. Now γ
one-to-one implies γ ~'(yp) = {π~ι(yp)} and Tr^y) 0 ^ E γ~](yp) neces-
sarily.

Clearly, if γ is an isomorphism, so is δ.

LEMMA 2.13. Suppose β is highly proximal in a diagram of minimal
flows

a
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Then, for all v G V, ττ~\β{v)) and a(ψ'ι(v)) are proximal in 2X.

Proof. We'll show {ττ-ι{β{υ)))<>u = (α(f'(«)))»H for u<ΞJ(v).

Clearly

(ψ-I(β-
proximal. Thus

(τr\β(υ)))ou = (αία-'

= α(α-1(

and finally

(ττ-\β(v)))°u =

Given minimal flow diagrams

H C(ff-'()8(tι))) u. Now (β>-'( |5(i))))) ιι =
))oM)=^-1(u), since β highly

u)ou C(a(ψ-\υ)))°u.

Δ,= and

X > Y
7Γ

X2-

X >Y,

we say that Δi is less than Δ2 if there exist homomorphisms from X2 to Xx

and from Y2 to Yλ making everything commute.

THEOREM 2.14. The diagram Δ*(ττ) is the unique (up to isomorph-
ism) least such diagram with π* open and y highly proximal

Proof. Consider another such diagram

Φ
U > V

A'(τr)= a

X * Y
π

with φ open and β highly proximal. We apply the Δ* construction to
both 77 and φ to obtain
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y

u

a

I

v*

r

y

We'll show that there exist homomorphisms a':U*-+X*,
β>. y*^> y* fQaking everything commute. Pick υ E V. By Lemma
2.13, there exists a minimal right ideal / in βT such that (ττ~ι(β(v)))°p =
(a(ψ~ι(v)))°p for all p E /. Pick an idempotent u E / such that vu = v,
let y = β(v), v* = ψ~ι(v)°u, and y* = π~\y)°u. To obtain β' with
β\v*) = y* it will suffice to show that for p, q E βT, if v*p = v*q then
y*p = y*q. Now

= a(v*p) = a(v*q) = y*q.

We obtain α' by a similar argument.

Since φ is open, δ' and y' are actually isomorphisms, by Lemma
2.12. Thus Δ* is less than Δ'. To prove uniqueness consider another
such diagram

X
IT

with the same minimality property. Then we have homomorphisms
λ : X * * - > X * , λ':X*^X** such that δ**°λ' = δ and δ ° λ =
δ**. We have δ ° ( λ ° λ ' ) = δ and δ is a proximal homomorphism; it
follows that λ ° λ ' is an automorphism and hence λ' an
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isomorphism. The same argument provides the required isomorphism
from y * to y**.

The homomorphism iτ\ X-* Y is said to be point-distal with distal
point x E X if x is proximal to no other point in its fiber. The minimal
flow X is point-distal if the trivial homomorphism X - > 1 has that
property. Veech [7] showed that if X is metric and has a residual set of
distal points it has an almost one-to-one extension which can be built up
from the trivial flow by isometric (almost periodic) and almost one-to-one
extensions. Ellis [4] extended this result to homomorphisms and
showed that it is sufficient to assume a single distal point rather than a
residual set. He also showed that the metrizability assumption could be
replaced by the weaker condition of quasi-separability if proximal
extensions were used instead of almost one-to-one extensions. Here we
strengthen the second Ellis result by replacing his proximal extensions by
highly proximal extensions. Since highly proximal and almost one-to-
one extensions are the same in the metric case, this result includes the
earlier ones.

The homomorphism Π: X - » Y is said to be quasi-separable if it is
isomorphic to a restriction of the projection onto Y of the product of Y
and a family of metrizable flows. For the rest of this section we assume
both X and Y minimal and IT point-distal and quasi-separable. Under
these hypotheses Ellis [4, 7.4] showed

LEMMA 2.15. // π is also open there exists a nontrivial almost
periodic homomorphism φ: Z—*Y and a homomorphism ψ: X—> Z such
that ΊT = φ o ψ. In other words, π has a nontrivial almost periodic factor.

THEOREM 2.16. There exists an ordinal sequence of minimal sets
{Ya\a ^ v) such that

(i) Yo=Y.
(ii) Yv is a highly proximal extension of X.
(iii) Ya+ι is either an almost periodic or a highly proximal extension

of Yα, for each successor ordinal a + 1 ̂  v.
(iv) Yλ is a uniquely determined pointed inverse limit of the system

{Ya I a < A} for each limit ordinal A ̂  v.
(v) // Ύ]V : Yv —> X, and μaφ: Ya -^ Yβ for ordinals a < β are the

homomorphisms implicitly defined by (i)-(iv), then π ° ηv = μvβ.

Proof. The proof is by transfinite induction. At each ordinal stage
β ^ v we'll get a diagram
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TΓ = TΓo

such that Yβ is as promised, ηβ is highly proximal, and πβ is point-distal
and quasi-separable. The procedure stops when πb is almost
periodic. Call an ordinal odd if it's of the form Λ + n where Λ is a limit
ordinal or 0, and n is an odd natural number. Proceed as follows.

(a) Take Xo = X, Yo= Y, and ττ0 = TΓ.
(b) At stage a + 1, with a + 1 an odd successor ordinal, stop if πa is

almost periodic, taking v — a + 1 and Yv = Xα. Otherwise, construct
the diagram

X

IΦΦ

Y

as follows. Obtain TΓ* as usual. Then TΓ* is open, γ and 8 are highly
proximal, and π j is easily seen to be point-distal and quasi-
separable. By Lemma 2.15, TΓ* has a nontrivial almost periodic factor,
φ: Z—> y*. Clearly since TΓ* is point-distal and quasi-separable, so is
,/, V * _ * 7 ΊΓHVP V — V * V — 7 Ύ — Ύ — X* TΓ = π*
ψ . y \ α ^ Z > . 1 c l K C I α + 1 — J α ? * a + 2 ~ £*"> s*a + \ — ^ α + 2 — ^ ^ α ? <*α + l TΓ α ,

and τrα + 2= Φ- We now have

Xα+2

identity I
-̂  yα + 2

I φ almost periodic

~^ *a + l

δ I highly proximal γ highly proximal

Xa — >Ya

ψ
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and everything is as needed, taking ηa+ι = ηa ° δ. This gets us up to the
next odd successor ordinal.

(c) At stage λ, where λ is a limit ordinal, let Xλ be the unique (by
Proposition 2.7) pointed inverse limit of the system {Xa \a < λ} and let
P α : X λ - » X α be the projections which are highly proximal. Define
Q : Π { X α | α < λ } ^ Π { Y α | α < λ } by Q((xa)) = (ττa <>Pa(χa)). Let Yλ =
Q(Xλ), 7rλ = Q |Xλ, and ηλ = P 0 | X A Then τrλ is point-distal and quasi-
separable and everything is as needed.

x,

The definition of the maps μα,β: Ya —> Yβ has been left to
context. By cardinality considerations and the coalescence of the
universal minimal set, the procedure must terminate at some stage of
(b). This proves the theorem.

3. Generalized almost
minimality of Y but not of X.

finite extensions. We assume

LEMMA 3.1.

A °p.
Suppose A E 2X, p E βT. If A is finite, then Ap =

Proof. Ap CA°p in any case. For x E A °p, there exist nets (xm)
in A, (tm) in T such that tm—>p and jcmίm —» x. Since A is finite, (xm) has
a constant subnet. Hence for a subnet and some JC'G A, jt'ίOT—»x. Thus
JC = x'p and JC E Ap.

PROPOSITION 3.2. 77ιe following conditions are equivalent:
(i) Card(τr~1(y)°p) = N for some y E Y, p E M, and integer N.
(ii) 77ze cardinality of each almost periodic element in 2π is not

greater than some fixed integer N.
(iii) All elements of Y* have the same finite cardinality, N.
Moreover, the integer N in (iii) equals the least integer satisfying (i)

and (ii).
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Proof. Use Lemmas 1.1, 3.1 and the minimality of Y.

DEFINITION. We call π generalized almost finite (GAF), or general-
ized almost N to one if the conditions of Proposition 3.2 are satisfied.

LEMMA 3.3. // π is GAF, y E Y , and u G/(y), then π~ι(y)°u =
ττ'\y)u.

PROPOSITION 3.4. // π is generalized almost N to one the following
are equivalent, for any yGY.

(i) π is open on π~\y).
(ii) C*τά{π-\y))=N.
(iii) 77~1(y) is an almost periodic set.
(iv) 771(y)^ Y*.

Proof Use Lemma 2.3 to prove (iii) <Φ (iv). The rest is
straightforward.

PROPOSITION 3.5. If X is metric the following are equivalent:
(i) 77 is GAF.
(ii) Some fiber is finite.
(iii) Y has a dense, Gδ subset of points with finite fibers.

Proof. Lemma 2.2 and Propositions 3.2 and 3.4.

We say that a minimal flow homomorphism is regular [6, 2] if every
almost periodic pair of points contained in a common fiber is connected
by an automorphism. If every pair contained in a common fiber is so
connected we say we have a group extension. We now assume that X is
minimal as well as Y.

There are nonmetric examples of homomorphisms which are GAF
(in fact highly proximal) but which have all fibers infinite. Suppose
77: X—• Y is almost one-to-one but has some infinite fiber and Y is distal
regular, so that every pair in Y is connected by an automorphism. Let
φ: N-* Y be the restriction of the product U{θ ° π \ θ G Aut (Y)} to a
minimal subflow. Then φ will be highly proximal but will have all fibers
infinite. The Floyd minimal flow [1], taken as an extension of the triadic
group provides an example of 77 as required.

Next we characterize regular, GAF homomorphisms. Recall the
natural map γ: Y*-> Y.

PROPOSITION 3.6. // 77 is regular and GAF there exists a group
extension φ: X—> Y* such that π = γ °ψ.
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Proof. It follows from the regularity of π and Lemma 3.3 that the
fibers of π are partitioned by the elements of Y*. Thus we define
φ: X-» Y* by φ(x) = A ^ x 6 A . It is easily seen that φ is a group
extension and π = γ ° φ.

PROPOSITION 3.7. Ήie following are equivalent:
(i) 7r is regular and GAF.
(ii) TTiere exists a finite group extension φ and a highly proximal

homomorphism a such that π = a ° φ.
Moreover, the representation in (ii) is unique.

Proof (ii) Φ (i). Suppose (x, x') is an almost periodic pair with
π(x) = π(x') = y. Pick uEJ(y) such that (x, X')U = (x,x'). Then
φ(x) = Φ(x'), since φ(x), φ(x')Ea~λ(y)°u, a singleton. Thus we get
an automorphism taking x into x\ so π is regular. Also π~λ(y)°u C
φ'1(a~1(y)°u) which is finite. Thus π is GAF.

(i) Φ (ii) has already been shown; the uniqueness follows easily.

Many examples of regular GAF extensions may be constructed by
taking products of highly proximal and finite group extensions or by
taking finite group extensions of highly proximal extensions. The
following lemma is proved in [6].

LEMMA 3.8. The relative (to π) proximal relation on X is closed iff
π = β ° a for some proximal a and distal β.

PROPOSITION 3.9. Suppose πx: Xi-» Y, ττ2: X2—• Yare highly proxi-
mal and finite group extensions respectively with product π: X —> Y. Then:

(i) π is regular GAF.
(ii) 7r is a highly proximal extension of a group extension.
(iii) The automorphism groups of the two group extensions are

isomorphic.

Proof. We have the diagram

Pi

U x2

where Pλ and P2 are the projections. X is minimal, since proximal
and distal extensions are always disjoint. Suppose x2£X2, w GJ(x2).
Let {jCi} = πϊ1(π2(x2))°u> Then clearly P2

1(x2)°u = {(xi,JC2)}, SO P2 is
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highly proximal. Let Aut (ττ2) = {θ E Aut (X2)\π2

oθ = π2} and
Aut(F 1) = {(9EAut(X) |F 1 o0 = P J . Define F: Aut(ττ2)-> Aut(Λ)
by F(θ)(xu x2) = (xu θ(x2)). It is clear that F is a group isomorphism
and that Pi is a group extension.

THEOREM 3.10. Ifπ is regular, GAF the following are equivalent:
(i) The relative proximal relation on X is closed.
(ii) π = β ° a for some highly proximal a and finite group extension

β.
(iii) π is the product of a highly proximal and a finite group

extension.

Proof, (iii) Φ (ii) Φ (i). Proposition 3.9 and Lemma 3.8.
(i) φ (ϋ). By 3.6 and 3.8 we have a diagram

with γ highly proximal, ψ a finite group extension, β distal, and a
proximal. Also, a is GAF, since π is; hence a is in fact highly
proximal. Suppose y E Y, u E J(y). Since a is proximal and β distal,
a maps π-1(y)w bijectively onto β~ι(y); hence β has finite fibers. It
now suffices to show that for arbitrary wu w2E β'^y), we can define an
endomorphism θ by θ(wλ)= θ(wί)= w2. Since γ is proximal and φ a
group extension, it follows that for any almost periodic pair (xu x2) with
a(x,)=wn there exists θ E Aut(X) with Θ(x1) = x2. From this the
existence of θ follows easily.

(ii) => (iii). We get a diagram

where π : X -> Y is the product of γ and β, Px and P 2 are the projections,
δ is defined naturally, and π = τr°δ = β°a = yoψ. We need only



280 PETER S. SHOENFELD

show that δ is one-to-one. Now if δ(x) = δ(jt'), then ψ(x) = φ(xr) and
a(x) = α(x'). We have ψ distal and a proximal, so the pair (JC, x') is
both proximal and almost periodic. Thus x = x'.

We close with the following result.

PROPOSITION 3.11. If π is GAF, then π * is almost periodic.

Proof. Suppose y * E Y* and A Cπ*~ι(y*). By 1.4, we need only
show A °u = A for some u E /. Now y * = π'^y)°w for some y E Y,
uEJ(y). Since π is GAF, TΓ*" 1 ^ *) = ττ\y)u x {y *}, a finite
set. Thus A © u = Au = A, by 3.1.

An interesting question is whether the results of this section can be
obtained with a hypothesis weaker than GAF, not involving any finite-
ness assumption. This will be the subject of a subsequent paper.
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