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A LIMIT-POINT CRITERION FOR EXPRESSIONS
WITH OSCILLATORY COEFFICIENTS

THOMAS T. R E A D

A criterion is given for the equation — (py')' + qy = 0 to
have a solution on the interval [α, °°) which is not in
L2(a,o°). The criterion permits q (or Reg if q is complex-
valued) to be decomposable into a sum q = qλ + q2 where the
expression ~ (py')' + qiy essentially satisfies the well-known
limit-point criterion of Levinson and q2 may be thought of as an
oscillatory function whose amplitude may be large, but whose
integral over [a, x] increases relatively slowly as a function of JC.

1. Introduct ion. Let p be a positive function and let q be a
complex-valued function on the interval [α, oo)? a > - °°, such that l/p
and q are Lebesgue integrable on each finite interval [α, b]. Let M be
the differential expression

(1.1) M(y)=-(pyy + qy.

Then we shall obtain conditions on p and q sufficient for the equation
M(y) = 0 to have a solution which is not in L2(a,°°).

The conditions, stated precisely in Theorem 1 at the beginning of §2,
place no restriction on the imaginary part of q. For real-valued q they
extend the well-known limit point criterion of Levinson [8]. (See also
Coddington and Levinson [3; page 229].) Roughly, for a given p,
Levinson's condition limits the rate at which q(x) can approach — o° as
x —> oc. Theorem 1 extends this by allowing q to be decomposable into a
sum q = qι + q2 where qx satisfies a condition very similar to Levinson's,
and where the integral of q2 over [α, x] grows relatively slowly as a
function of JC.

A simple example of such an expression is

(1.2) - (xy')' - (x + xex sin (ex ))y.

A slightly more complicated one is

(1.3) - y " - (JC + jc3(sin x) 4 + jc5sin(x6))y.

We shall return to these examples in §3.

Another very well-known limit-point criterion, due to Hartman and
Wintner [5], states for p = 1 and q real-valued that if the negative part,
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q', of q satisfies q~ dt ̂  Kx3 for all sufficiently large Jt, then (1.1) is
J a

limit-point. Their proof, which relies on an analysis of the frequency of
the zeros of solutions of the equation M(y) = 0, has been refined by
Eastham [4] to yield a criterion dependent only on estimates of the
integral of q ~ over a suitable sequence of pairwise disjoint intervals. We
shall show in §4 that this interval criterion is a consequence of Theorem 1
by deriving an interval criterion for (1.1) that reduces to Eastham's result
for p = 1.

For p = 1 and real-valued q one form of our result is essentially
equivalent to a recent limit-point criterion of Knowles [7]. This equival-
ence, which is not entirely obvious, is demonstrated in §5.

Theorem 1 resembles Theorem 1 of Atkinson and Evans [1] in
permitting complex-valued q and also the possibility of considering
square-integrability with respect to a weight function. However, the
conditions on Req in the two theorems are independent.

Finally we note that the hypotheses of our theorem are largely
invariant under the addition to (1.1) of a term Qy where the integral of Q
is small in a suitable sense. We illustrate this in §6 with an extension of a
theorem of Patula and Wong [9].

2. The main result.

THEOREM 1. Suppose that there exists a nonnegative locally abso-
lutely continuous function w on [α, °°) such that

(i) pw'2^K2 a.e.,

(ii) ί wp-mdt = oc,
J a

Rtq = qλ + q2 where
(iii) -qxw

2^

(iv)
J a

{w(x)}b{p(x)}~ι/2^K3 for some ft, O^b^l and

all x^a.
Then the equation — (py')f + qy =0 has a solution which is not of

integrable square on [α, °°).

REMARKS. 1. If q = q{ is real-valued, q2 = 0, and if w is positive,
then the change of notation M = w~2 gives Levinson's limit-point criter-
ion as stated in [3; page 229].

2. In general, if q is real-valued, then the conclusion of Theorem 1
may be rephrased to the statement that the expression (1.1) is limit-
point. When q is complex-valued this may still be done in some
circumstances (for instance if \mq is semi-bounded) provided the defini-
tion of the limit-point condition given in Kauffman [6] is used.
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3. If k is a positive locally integrable function which is not in
Lι(a, oo)5 then Theorem 1 can easily be adapted to a criterion for the

equation - (pyj + qy = 0 to possess a solution y such that | y 2kdt =
J a

oo. The right sides of (i), (iii), and (iv) then become K\k9 K2k, and K3k
 m

respectively and (ii) becomes w(k/p)ι/2dt = oo. The manner in which
J a

the weight function enters (i), (ii), and (iii) is the same as in Theorem 1 of
[1]. We shall comment at the end of the proof of Theorem 1 on the
small alterations necessary to deal with this version.

Proof. Let y and z be solutions of Af(y) = O such that

(2.1) p ( y ' z - y z ' ) = l .

Set

We must show that r is not of integrable square. A straightforward
calculation establishes that r satisfies the equation

(2.2) (pry-(Req)r = S

where

S = (p/r3)[(\y'\2+\z'\2)(\y\2+\z\2)-(Re(y'y + z'z)Y}.

We assert that S ̂  l/2pr3. To see this, let uu u2, u3, uA be
real-valued functions such that y = ux + iu2, and z = « 3 + Ϊ'M4. Then

y</c

The real part of (2.1) may be written as

p[(u[u3- uλu'3)-{u'2uA- u2u'4)] = 1

Thus,

S ^ (p/r3)[(Mίiι3- UiUtf+iuίut- u2u
f

4)
2]

Now let w be as in the hypotheses of Theorem 1. By inserting the
estimate just obtained for S into (2.2), multiplying by rw2, and integrat-
ing, we obtain that for each positive x,
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Γ (pr')'rw2dt - Γ qxr
2w2dt - [ q2r

2w2dt
J a J a J a

(2-3) fx

^ w2/2pr2dt.
J a

Γ °°

Suppose that || r ||2 = I r2 dt is finite. Then by Schwarz's inequality,
J a

Γ w2l2pr2dt^{ll2\\r\f)(\X wp'112dij.

Hence, by (ii), w2/2pr2dt-+™ as x ->oo. We shall see that this leads

to a contradiction.

Set / / ( * ) = p(r')2w2dt. An integration by parts yields that
J a

Γ (pr')'rw2dt = prr'w2]: - H(x)- 2 Γ prr'ww'dt.
J a J a

By (i) and Schwarz's inequality again,

From another integration by parts,

(2.4) Γ 4 2r 2w 2dί = {r(x)}2{w(x)}ι+b Γ q2w
ιbdt ~

J a J a

where

/ ( J C ) = Γ (̂  Γ q2w1-fe

Now

Γ p1/2rrfwdt + (l + b)K3 Γ pιf2r2w'dt
J a J a

The other term on the right side of (2.4) satisfies

Final ly, Γ qλr
2w2dt ^ K2 \\rf.

J a
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Thus (2.3) may be rewritten in the form

(2.5) A(x)-[H(x)- K<{H{x)}1'2- K5]^ Γ w2/2pr2dt
J a

where K4 and K5 are positive constants and

A = pw2rr' + K3p
mwr2.

The expression in brackets on the left side of (2.5) either is bounded (if H
is) or approaches + oo as x —> °o (if H does). In either case we must have
that A (x)-» + °° as x —»oo. We complete the proof by showing that this
cannot occur.

Set / = pυ2w and g = r2. Then 2A =f2g' + 2K3fg. Note that g is in
Lλ(a, oo). We now use this decomposition of A to show that A cannot
even be bounded away from 0 on an interval [d, o°). For suppose that
A(x)^c>0 for x^d. Set N = {x ^ d: gf(x)<0}. Then on N9

2K3fg>\fg'\ and also K3fg > c so that (K3/c)g>l/f. Combining
these yields that

ί -g'lgdt<{2K2lc)\ gdt
JN JN

<oc.

Hence log(g(x)/g(d))> - (l/2c) gdt so that g is bounded away from
JN

0. But this is impossible since g is in Lλ(a, oo). Thus A cannot be
bounded away from 0 and, in particular, cannot satisfy (2.5) for all
positive x. Thus it must be the case that r is not of integrable square and
the proof is complete.

We now comment briefly on the changes necessary to incorporate a
weight function k as mentioned in Remark 3 above. Inequality (2.5)

can be derived essentially as before under the assumption that I r2k at is
J a

finite, where now 2Λ = fg' + 2K3fgkm (/ and g are as before). Then
A (x) ^ c for x ^ d implies that on N = {x ^ d: g \x) < 0}, (2K2

3/c )gk >
- g'lg and one again has the contradiction that g is bounded away from
0. On the other hand it follows as before from Schwarz's inequality and
the new form of (ii) that the right side of (2.5) approaches oo as
x —» oo. Thus again (2.5) cannot hold for all positive x and the conclu-
sion follows as before.

3. Examples. In this section we return to the examples (1.2)
and (1.3) mentioned in the introduction. For (1.2), set qι{x) = x, qi{x) =
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xexsin(ex), and w{x) = x~m. Then w(x)p(x)~m = x~ι and q2dt =

- x cos(ex) + cose. Thus the hypotheses of Theorem 1 are clearly
satisfied on [1, oo) with b = 1. Note that with the same simple choice for
w one could substitute q2(x) = xd sin(xd), since it is easy to see that then

q2dt

To deal with (1.3) we must choose w more carefully. Here we take
qλ{x) = x + jc3(sin:c)4, and q2(x) = x 5sin(x 6). This example, with q = qu

has been discussed by Eastham [4]. Inspired by his discussion we set
In = [nπ - n~m, nπ + n"1 / 2], n = l,2, •••. Define w on /„ by w(x) =
x - nπ + n'λl2 for nπ - n" 1 / 2 ^ x ^ nπ and w(x) = w(2nπ - x) on the
rest of In. On the complement of the union of the /n's define w(x) =

Γ q2dt ^1/6. Thus (i), (iii),
Jo

and (iv) are satisfied. Finally, wdt = ί/n so (ii) is also satisfied and it
Jin

follows from Theorem 1 that (1.3) is limit-point.

4. An interval criterion. We shall now establish a limit-
point criterion for (1.1) (with q real-valued) in which the coefficients are
restricted only on a sequence of pairwise disjoint intervals. The argu-
ment is a refinement of that used in the previous section to treat
(1.3). For p = 1 the result is due to Eastham [4] by a quite different
method. Thus Theorem 1 may be regarded as a step toward the
integration of the "interval criteria" and the criteria of Levinson type
into a common theory.

THEOREM 2. Suppose that there is a sequence {/„}„=!, /„ = [αn, bn], of
pairwise disjoint intervals in [α, °°) and a sequence {vn}

x

n=\ of positive
numbers such that for each n,

(i) vnP
2

n^ K>0 where Pn= Γ" p~mdt,

(ii) ΣUV-: = ™,

(iii) q~ dt ^ Cv2

nP
3

nminInp
1/2 where q~ is the negative part of q.

J an

Then — (py)r + qy is limit-point.

Proof We may assume that K g l . Divide each In into [vnP
2

n] + 1
subintervals ([•••] is the greatest integer function) so that on each
subinterval /,

On at least half of these,
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(4.1) Γ qdt^2CvnPnminpl/\

For each subinterval / = [c, d] C/π on which (4.1) is valid, choose
e E (c, d) so that

Define w on each such subinterval by w(t) = p~m dt tor c ^ t ^ e and

p~mdt ίox e^t^d. Then on /,

max w = (1/2)

and

Set w = 0 on the remaining subintervals of each In and on the comple-
ment of U In.

Then for each rc, since (4.1) holds on at least (l/2)([υnP
2

n] +1)
subintervals of Jn,

ί wp~1/2Λ ^ (4ι;nPπ)
J In

Hence by (ii), I wp~1/2dt = oo. Also w is clearly absolutely continuous
J a

with p(w')2^=l a.e.. Thus (i) and (ii) of Theorem 1 are satisfied. It
remains to construct a suitable decomposition of q.

Define a step function q0 which is constant on each of the subinter-
vals / = [c, d] constructed above (whether (4.1) holds or not) by

ίd

9o= q-dtl(d-c)
J c

on [c, d].
Similarly, on the interval [bm an+ι] between In and In+1, set q0 =

q dt/(an+ι- bn). Thus [α, oo) is the union of subintervals on each of
Jbn

ich I (q~-qo)dt = O. Note that q0w
2 is bounded above onwhich
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[α, oo). This is clear outside the union of the subintervals where (4.1)
holds, for then w = 0. On a subinterval J = [c, d] Cln for which (4.1) is
valid,

q 0 w 2 ^ 2 C v n P n m i n p ι / 2 / ( 2 v n P n ) 2 ( d -c)^C

since minpυ2/(d " 0 = ( f P'm) * = 2 v ^

Now decompose q by setting qλ = q+ - q0, and q2 = — q~ + q0. From

the previous paragraph, - qxw
2^ C on [α, oo). Also wp~1/2(x) q2dί is

nonzero only in the subintervals on which (4.1) holds, and on such a

subinterval [c, d]A q2dt = q2dt since q2dt = 0. Hence on such a
J a J c J a

subinterval

l/>' ^2CυnPnminpm/2vnPnp
ι/2(x)^ C.

Thus (iii) and (iv) of Theorem 1 are also satisfied for this decomposition
and Theorem 2 now follows from that result.

5. A t h e o r e m of K n o w l e s . In this section we shall derive
from Theorem 1 the following result of Knowles [7] which was estab-
lished by a refinement of a method due to Brinck [2]. Note that w is
required here to be strictly positive (because of (iii)) rather than
nonnegative as in Theorem 1.

THEOREM 3. Suppose that there is a positive locally absolutely
continuous function w such that

(i) w' is bounded a.e.,

(ii) wdt = oo,
J a

(iii) there exists a constant C such that - I qwdt^C for each

interval I for which w 1 dt ^ 1.

Then - y" + qy is limit-point.

Proof Hypotheses (i) and (ii) are identical to those of Theorem 1
for p = 1. It remains to consider (iii). For this we need the equivalence
described in the following lemma. The author is grateful to Professor
W. N. Everitt for bringing this equivalence to his attention.
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LEMMA. Let μ be a positive continuous regular Borel measure on
[a, o°), and let Q be a real-valued function defined on this interval. Then
the following properties are equivalent.

(i) There is a constant C such that - I Qdμ ^ C for each interval

I for which / i ( ί ) ^ l .

I Q2dμ ^C2 for all
J a

(ϋ) Q = Oι + Qi where -Qx^Cλ and

Proof of Lemma. It is clear that (ii) implies (i) with C = Cλ + 2C2

since for any interval [c, d],

- J Q2dμ = I Q2dμ - \ Q2dμ ^
Jc Ja Ja

For the other direction, set xo= a and for each n choose xn so that
μ([*n-i,*π])=l. If μ([*π-i,°°))<l, set xn =00. The proof will not be
affected by whether the sequence {xn} is finite or infinite. Suppose that
on each [xn-u xn] we can write O = Oi + O2 where - Oi = C,

ί Q2dμ ^ C for all xn-x ̂  x ^ xm and | Q2dμ = 0. Then, com-
J α J Xn-l

bining the decompositions, we will have that - Oj ̂  C on [α, 00) and that
if xn_! < x ^ JCΠ, then

Q2dμ

Thus the lemma will be proved.

To simplify notation slightly we consider [α, JCJ. Let Qdμ =
Jα

αC. Note that (i) then implies that I Qdμ^{a + \)C for all x ^

jci. Suppose first that α ̂  0. Define OI(JC) = αC, α ̂  x ^ JC1? and Q2 =

Q - Oi Then - Oi = C and for α ̂  JC ̂  JC1? J Q2dμ satisfies
J a

J a

Q2dμ = f Qdμ-aCμ([a,x])
J

Now suppose that a > 0. Let m be the integer such that m < a ^
m + 1. For / = 0,1, , m, set
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a} = max j x < xλ: I Qdμ = jC\.

Set am+ι = JCj. T h e n a^k ao< ax< < α m + 1 . C h o o s e fy > ap j = 0,
1, , m - 1 so that

Q+

Ja,

rbm

and fem so that Q+dμ = (a - m)C. H e r e Q + = max{Q,0} as

usual. N o t e that as < 6y = α/+i and that Q~ = O + — Q satisfies
Γb>

Q dμ<C.
Ja,

Define Qx = O + on U ; % [ ^ , ^ ] , Oi = 0 otherwise, and O2 =
Q - Qx. Then Qλ ^ 0 so we need only verify that Q2 has the required
property. If x < a0, then Q2= Q where

-C^Γ Qdμ ^C.
J a

The last inequality follows from the fact that Qdμ = 0. If a} ^ x ^
J α

b;, y = 0,1, , m, then Q2dμ = I O 2 ^μ and
J α J α;

since Q 2 = Q - O + on [ap b}\.
If &; ^ x ^ α/+i, y ^ m - 1, then

Γ O2dμ = ί

Similarly, if bm ^ JC ^ am+lJ then O 2 d μ = I O d μ - aC ^ C

J a J a

Finally, for b} ^ x ^ α i + 1,

^ - C

since

f* Q2dμ = ί'; O2dμ + Γ O
J α J a, J b,

otherwise Qdμ = jC for some x > a,. Thus the decomposition
J a
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Q = Oi + Qi has the property (ii) with d = C2 = C and the proof of the
lemma is complete.

We now conclude the proof of Theorem 3. Applying the lemma
with Q = qw2 and dμ = w~ι dt, we have that q = qλ + q2 where — qλw

2tk

Cx and q2wdt
J a

g C2. This is (iii) and (iv) of Theorem 1 with

b = 0. Thus Theorem 3 is a consequence of Theorem 1.

6. A perturbation result. There have been some investiga-
tions recently into whether the limit-point property for a differential
expression is preserved under the addition of a term Qy where the
integral of Q is small in some sense (generally Q is assumed in Lr(a,^)
for some r ^ 1). In this direction we offer the following extension of a
result of Patula and Wong [9].

THEOREM 4. Suppose that (1.1) satisfies the hypotheses of Theorem
1 with b = 1 and that p is bounded away from 0. Suppose that Q is a
locally integrable function such that for some r ^ 1 and all x ^ α,

(6.1)

Then — (py')r + (q + Q)y satisfies the hypotheses of Theorem 1 with b = 1.

Proof We may assume that Q is real-valued. (In fact the result is
true if O is replaced by ReQ in (6.1).) It then follows from (6.1) and

r x+d

Schwarz's inequality that Qdt^ - Kλlr for each x^a and each
J X

positive d ^ 1. Thus by the lemma of §5 with dμ = dt, Q = d + Q2

with - Qλ ^ d and

- ίji + Ci and
J a

dt S C2 for all x ^ a. Then - (φ + Q,) ^

Γ Q2dt q2dt C2

Let w be the nonnegative locally absolutely continuous function of
Theorem 1 for (1.1). If w is bounded then it is clear from the previous
paragraph that the hypotheses of Theorem 1 are also satisfied for the new
expression with the same choice for w.

Suppose, then, that w is not bounded. Set

W(x)= w(x)/(l+ P wp~mdt\.
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We assert that W is bounded and has the other necessary
properties. Suppose for some xx that w(xί) > 1. Set x0 = max {JC < xx\
w(x)^l}. Then on [JCO,XIL \ w'\ ^ Kλwp-y2 so that

Γ1 wp-ί/2dt.
J a

This inequality also holds if w(x{)^ 1. Thus limsup W fkKx.
We now verify the hypotheses of Theorem 1. For x î  a,

W'(x)= w'(x)/(l+ Γ wp-ί/2d?j-{W(x)}2{p(x)}-

so that pV2W is bounded. Also

Γ Wpυ2dt = log (l + Γ wpmdt)

so that this integral tends to infinity with x.
Finally, W ^ w so that

- (qi + Oi) W2 ^ K2 - Qλ W
2 ^ K2 + d(max

and

Thus the hypotheses of Theorem 1 are satisfied for - (py')' + (q + Q)y
and the proof is complete.
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