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CONDITIONS FOR SIMULTANEOUS APPROXIMATION
AND INTERPOLATION WITH NORM PRESERVATION

IN C[a,b]

JOSEPH M. LAMBERT

This paper gives necessary and sufficient conditions for a
triple (X, M, Γ) to have property SAIN (simultaneous approx-
imation and interpolation which preserves the norm), X being
an arbitrary Banach space. The best previous result concerned
X, a reflexive, rotund Banach space. The paper proceeds to use
this result to yield geometric proofs of the work of D. J. Johnson
concerning property SAIN and C[a, b].

The concept of simultaneous approximation and interpolation with
norm preservation (SAIN) was introduced by F. Deutsch and P. D.
Morris [2].

DEFINITION 0.1. The triple (X, M, Γ) satisfies the hypotheses of the
SAIN problem if X is a normed linear space, M a dense subspace of X,
and Γ a finite dimensional subspace of X*. The triple (X, Λf, Γ) has a
SAIN solution at x in X if given e > 0, there exists y in M such that
||JC —y| |<e, | |* | | = ||y||, and y(x)= y(y) for every γ in Γ. The triple
(X, M, Γ) is said to have property SAIN if (X, M, Γ) has a SAIN solution
for every x in X.

The papers [4] and [10] took a geometrical approach to the SAIN
problem and along with [9] extended the concept by allowing M to be a
dense convex subset of X. In [7,8], specific questions posed in [2,4]
were resolved in the standard Banach spaces fu Lx and C(T). In [5], a
weak SAIN problem was formulated.

In [2], a necessary and sufficient condition was given for (X, M, Γ) to
have property SAIN, where X was a Hubert space. In [4], such a
condition was presented for X a reflexive and rotund Banach
space. One of the purposes of this paper is to give necessary and
sufficient condition for (X, M, Γ) to have property SAIN, where X is an
arbitrary Banach space.

The approach to the problem will be a geometrical attack similar to
those in [4,7,8]. The study of certain extremal subsets of the unit
sphere will yield the result.

Significant work by D. Johnson [6] in C[a, b] was the key in
formulating the correct statement of the desired condition. The work in
[6] was analytic and constructive in nature. The hope was to find
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geometrical proofs for these results. These proofs were found and they
led to the formulation of the necessary and sufficient condition for
property SAIN. The second purpose of this paper is to give these
shorter alternate proofs of the results in [6] and to provide alternate
conditions to see if the triple (C[a, ft],Π,Γ) has property SAIN.

In this paper, we will use the following notation. If X is a Banach
space, U(X) and S(X) are respectively, the closed unit ball and its
boundary in X. R denotes the real number field. A set E contained in
F is F-extremal if whenever tx + (1 - t)y E E with JC, y in F, 0 < t < 1,
then JC, y are in E. The convex hull of a set A is denoted co(A). If
ΓCX*, then Γ± = {JC E X\ y(x) = 0 Vγ E Γ}. The extreme points of a set
A will be denoted extA.

If /EC[α,ft], crit(/) = {ίE[α,fe]| | / ( 0 | = 11/11). The extreme
points of U(C[a, b]*) are the point evaluation functional et, defined via

1. Property SAIN in arbitrary Banach spaces. The
following definitions were stated in [1] and [8]:

DEFINITION 1.1. If x E S(X), then the set E(x) = {y E S(X)\ x =
λy + (1 - λ)z, 0 < λ < 1, z E S(X)} is the minimal U(X) extremal sub-
set containing x, the intersection of all U(X) extremal subsets containing
JC. F(x) is the minimal closed U(X) extremal subset containing x. The
set P{x) = {φ ES(X*)\ φ(x) = \\x\\} is called the conjugate set of
x. Q(x) = {y ES(X)\φ(y)=l VφEP(jc)} is the intersection of all
exposed sets containing x.

It was shown in 8, Theorem 1.1 that if (X, M, Γ) is a given triple and if
F(x) Π M is dense in F(JC), then there is a SAIN solution at x. It will be
shown that by looking at larger extremal sets we can obtain necessary and
sufficient conditions for a SAIN solution at JC.

DEFINITION 1.2. Let A be a convex subset of 5(X). Let E(A) be
the minimal U(X) extremal subset containing A and F(A) be the
minimal closed U(X) extremal set containing A. Further let P(A) =
ΠaEAP(a). Define Q ( A ) - { y E 5 ( X ) | φ ( y ) = l VφEP(A)}.

It is necessary to check that P(A) is a nonempty set, since otherwise
the definition of O(A) is meaningless.

LEMMA 1.3. The set P(A) is nonempty.

Proof. If aQ is in A, then P(a0) is a weak star compact convex subset
of S(X*). The sets P(at) Π P(a0), i E I, a finite index set, have the finite
intersection property. This can be seen since if b is in co(α, , ao\ i E /)
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then 6 = Σ/e/tα,-+ (1 —Σiejίjflo Thus if φ is in P{b) then φ is in
Π/e/ίP^ΠPίαo)). But P(α0) is a compact topological space and
Π f l G ΛP(α) is nonempty.

One should also note that if E is an extremal subset of S(X) and if y
is in E, then £(y) is contained in E. This fact coupled with a simple two
dimensional argument showing that Ua(ΞAE(a) is a t/(X) extremal
subset, yields that E(A) equals U α E A £ ( α ) .

For the discussion of the SAIN problem we will take Ax =
jc + Γ.Π S(X). Work in [4] showed that if P(x) Π Γ was empty, then a
solution of the SAIN problem is guaranteed at x. In this case Ax is not a
convex subset of S(X) and by convention we take E(AX) = F(AX) =
Q(Ax)=φ.

THEOREM 1.4. Let (X, M, Γ) satisfy the hypotheses of the SAIN
problem. If F(AX)Π M is dense in F(AX) then the SAIN problem has a
solution at x.

Proof If F(AX) is empty, the result is immediate from [4]. If
F(AX) is not empty, assume without loss of generality that Γ =
spanfe I i = 1, , n) and Γo = {φ G Γ| φ(x) = φ{y) Vy G F{AX)} =
span{<p, I i - 1, , σ). If Γo= φ, σ = 0. If Γ = Γo, the result is
trivial. For notational simplicity set K = F{AX). Define Φ: K-> Rn'σ

via Φ(y) = (<pσ+i(y), , <pn(y)) We assert the existence of {mα | a G B}
i n ί Π M with ||JC - mα || < e, £ an arbitrary index set such that in Rnσ,
Φ(x) G co(Φ(mα)| a G B). Since if this were not the case, then in Rnσ,
there exists a linear functional r, a linear combination of <pn i > σ, such
that without loss of generality τ(m)^τ(x) for all m in K Π M, with
|| x - m || < 6. But this implies τ ( r a ) ^ T(JC) for all m in X Π M, since if
there exists an m0 in K Π M with ||JC - mo|| > e and τ(m0) > T(JC), then
the set {y G K\ τ(y)> T(JC), || y— x || < e} would be relatively open and
nonempty (choose a suitable combination of x and m0). Thus it would
contain an m in K Π M, contradicting τ(m) ̂  τ(x) for || JC - m || <
6. Since K Π M is dense in iC, this yields τ(y)^τ(jc) for all y in
X. But then the set {y G K | τ(y) = T(JC)} is a closed extremal subset of
K, a contradiction unless r G Γo, but this contradicts τ ^ Γ 0 . Thus the
collection {ma | α: G β} exists such that Φ(x) G co(Φ(mα)| a E B). The
convexity of M and Φ(M) yields the result.

Before proceeding to the major theorem of this paper, we need a
technical result concerning extremal subsets.

LEMMA 1.5. Let Ax = x + F± Π S(X) and Ay = y + I\ Π 5(X). //

yGΛx, thenE(Ay)CE(Ax).
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Proof. Let z E E(Ay). Then there exists t such that 0 < ί < 1 with
ίz + (1 - t)s E Ay for some s G S(X). Since yGΛ x, y - JC E ΓX and by
adding tz + (1 - t)s - y E Γ±, one obtains ίz 4- (1 - t)s - x E Γ\. Thus
ίz + (1 - t)s E x + Γ± Π 5(X) and z E JE(AX).

THEOREM 1.6. Let (X, M, Γ) sαfts/y tfie hypotheses of the SAIN
problem. The following are equivalent:

(a) E(AX)DM is dense in E(AX) for all x E S(X)\M
(b) F(AX)D M is dense in F(AX) for all x E S(X)\M
(c) (X, Λί, Γ) has property SAIN.

Proof To show that (a) implies (b), let y be in F(AX). Given
6 >0, there exists z in E(AX) and m in E(AX) Π M such that ||y - z || <
6/2 and ||z - m| |<e/2. Thus F ( 4 ) Π M is dense in F(AX).

The implication (b) implies (c) follows from Theorem 1.4. To show
that (c) implies (a), set JC in 5(X) and let y be in E(AX). Since (X, Λf, Γ)
has property SAIN, y + Γx Π 5(X) Π M is dense in y + Γ± Π S(X). If
we can show that y + Γ± Π S(X) CE(AX) the result follows. Let p E y +
Γ± Π S(X). Then p - y E Γ±. Since y is in E(AX), there exists v in
JC + ΓJL Π S(X) such that y is in E(v). Therefore ίy + (1 - t)z = v for
some 0 < r < l and some z E 5(X). Thus ty + (1 - t)z - x E
IV Adding tp - ty we have tp + (1 - ί)z - JC is in Γ±. Thus ίp +
(1 — t)z E x + Γj_. Since p is in ̂ (Ay), p is in E(AX) by Lemma 1.5. The
point z is also in E(AX) and thus a convex combination of p and z must
have norm one. But then p is in E(tp 4- (1 - ί)z), which is contained in
E(AX). Thus y +Γ

2. A geometrical approach to SAIN in C[a, b]. D.
Johnson in [6] formulated the following definitions.

DEFINITION 2.0. Let X be a normed linear space, M a dense subset
of X. A linear functional JC* E X* is said to be a SAIN functional if
(X, M, x *) has property SAIN. A finite sequence JC *, JC *, * * , x * is said
to be a SAIN sequence in case every x* E span{jct| ί = 1, * *, H} is a
SAIN functional.

The dense subset to be used in this investigation will be Π the set of
polynomials in C[a,b].

Our first goal will be to show that F(AX)= O(AX) in (C[α, fc],Π,Γ),
where Ax = x + I\ Π S(X), JC E S(C[α, fc]).

LEMMA 2.1. P(AX) = P(F(AX)) = P(Q(AX)).
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Proof Since Ax CF(AX)CQ(AX), one has P(Q(AX))CP(F(AX))C
P{AX). If one assumes the lemma is false, then there exists a r E
P(AX)\P(O(AX)) and a y in Q(AX) such that τ ( y ) < l . Set B =
{z E Q(AX)\ r(z)= 1}. B is strictly contained in Q(AX), contradicting
the definition of Q(AX).

In C[a, b] we can use some properties of the closed extremal subsets
of the unit ball discussed in [1].

PROPOSITION A. [1, Corollary 2.2]. Let X be a separable Banach
space with the weak Q property. If E is a closed face in S(X), then there
exists an x in E such that E = Q(x).

PROPOSITION B. [1, Theorem 3.3]. C[a, b] has the weak Q prop-
erty.

PROPOSITION C. [1, Lemma 3.1]. In C[a, b], if x is in S(C[a, b])
then Q(x) = {yE S(X)\ y = x on critx}.

LEMMA 2.2. Let x be in S(C[a, b]). Then F(AX) = Q(AX).

Proof Since F(AX) is a closed face of S(C[a, b]), F(AX) = Q(f) for
some / in F(AX) by Proposition C. Similarly, Q(AX) = Q(q) for some q
in O(AX). P(F(AX)) is the weak star closure of the set {δ(t)\tE
cήtf 8(t) = et if f(t)= + 1, δ(t)= -et if f(t)= - 1}. P(Q(AX)) has

a similar representation. Since P(Q(AX)) = P(F(AX)) by Lemma 2.1,
we must have extP(O(A,)) = extP(F(AX)). This forces / to be in
Q(AX) and q to be in F(AX). Thus F(AX) = Q(AX).

To obtain the main result of this section, we must recall some of the
work in [6].

PROPOSITION D. [6, Lemma 2]. // [α, b] is a compact interval and
x* is a bounded linear functional on C[a,b], then (C[α, b],Π, x*) has
property SAIN (x* is a SAIN functional) if and only if either

(i) Jt* has finitely atomic support, or
(ii) x * E ±SP and> suppx* = [a, b] where $P denotes the cone of

positive linear functionals defined on a function space, or
(iii) suρpx*+Πsuppx*"^0.

Furthermore, the only SAIN functionals which attain their norm are those
satisfying property (i).

LEMMA 2.3. Let x E S(C[a, b])\U. If Γ is a SAIN sequence in
C[a,b] with respect to Π, then ext(P(Λ x)) has finite cardinality.
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Proof. As always, we assume that P(x) Π Γ ̂  0, for otherwise Ax

is the empty set by convention. Assume that ext(P(Λx)) does not have
finite cardinality. Let

B = {y G S(C[a, b])\φ(y) = 1, Vφ G P(x) Π Γ}.

Ax is contained in B and ext(P(B)) has finite cardinality since the only
extremal SAIN functional are finitely purely atomic by Proposition
D. Thus, there exists φ G Γ\P(AX)Π Γ such that supb(ΞBφ(b) = φ(x)<
1. If such a φ did not exist then F(AX) would equal B and ext(P(Ax))
would have finite cardinality. Define Bo = {y G B | φ(y) = φ(x)}. Let
/ = [a, b]. By Proposition D, we need to examine three possible cases.

Case (i). φ is finitely purely atomic. Such a functional would be
extremal contradicting the action of φ on the set B.

Case (ii). φ G SP. Assume that φ is in + <?, the argument for
-0>, being similar. Let C+ = {t G / | /(ί) = x(t) = + 1, V/Gβ0} and
C~ = {ί G 11 /(ί) = x(ί) = - 1, V/ G Bo}. The above sets are measura-
ble since B has a representation B = Q(b) for some ft in B. If
C = 0, then p = 1 is in Bo Thus φ attains its norm and Bo = {1}, a
contradiction. If C ~ ^ 0 let φ(x) = α < 1, and by Uhrysohn's lemma
define g(t) = 1, if t G C+ U X, g(ί) = - 1, if f G C", g G C[/], where K is
a compact subset of (/\C+ U C~) = Z such that φ(Z)— φ(K)< ε whose
existence is guaranteed since φ is a regular measure. Then

f gdφ=φ(C+)-φ(C-)+φ(K)+ ί gdφ
Jl J Z\K

^ φ(C+)-φ(C-)+φ(Z)-e - φ(Z\K)

Note that β = φ(C+)- φ(C~)+ φ(Z) is strictly greater than a = I fdφ

for all / in BQ. By choosing e sufficiently small, we can construct a

function g as above in B such that I gdφ > a. Hence φ does not exist

such that supb(ΞBφ(b) = φ(x) and we obtain that F(AX) = B.

Case (iii). supp φ + Π supp φ ~ ^ 0 . Let C+ and C~ be defined as

in Case (ii). Let C = C+ U C". | xrfφ = φ ( C + ) - φ(C"). Define
Jc

D = I\C. The restriction of <p to D yields a relative measure
space. Thus there exist measurable sets D+ and D~ contained in D such
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that DUD =D and D+ΠD- = 0, and ψ{D) = φ+(D+)- φ~(D).
Let

a = [ xdφ = I xdφ + ί J C ^ = φ(C + )~ φ(C")+ f xώp
Jl JC JD JD

^φ(C+)-φ(C-)+φ(D+)-φ(D-)=β.

Define g E C[I], by Uhrysohn's lemma such that g ( f ) = + l ,
( e C * U Jt+, g(ί) = - l , ί € C " U Γ where K+ and K~ are compact sets
contained in D+ and D" respectively, such that φ+(D+\K+)< e and
φ-(D-\K~)<e. Then

f g^=φ(C+)-<p(C-)+<p(X+)-<p(ί:-)+ f gdφ+ί gdφ
Jl JD+\K* JD~\K'

Thus as in Case (ii) with e being arbitrarily small, one can contradict the
existence of such a φ and F(AX) = B.

THEOREM 2.4. [6, Theorem 2]. (C[a, 6], Π, Γ) ^αs property SAIN
if and only if Γ is α SAIN sequence.

Proof. The necessity of Γ being a SAIN sequence is an obvious
consequence of the definition. We must show that if Γ is a SAIN
sequence then (C[a, 6], Π, Γ) has property SAIN. By Theorem 1.5 and
Lemma 2.2, it is sufficient to show that Q(AX) Π Π is dense in Q(AX) for
all x in S(C[a, b]. Fix x in 5(C[α, b]\Π) and assume that O(AX) is not
empty, (i.e. P ( J C ) Π Γ / 0 ) since otherwise the condition of property
SAIN is trivially satisfied. Since P(AX) is a weak star convex compact
subset of the unit ball of a dual space, Q(AX) is equivalent to the set
{y G S(C[a, b])\ φ(y) = 1 Vφ G extP(Λx)}. These extreme points are
the point evaluation functionals. By well known results [1, Corollary
4.1], (C[ay 6],Π,Γ) has property SAIN at a given point x if and only if
there are at most finitely many prescribed interpolatory points for the
function x. The Q(AX) will be dense in Q(AX) if and only if P(AX) has
at most a finite number of extreme points. But Lemma 2.3 yields this
fact.
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