R-ENDOMORPHISMS OF *R*[[*X*]] ARE ESSENTIALLY CONTINUOUS

PAUL EAKIN AND AVINASH SATHAYE

Let R be a commutative ring with identity, A = R[[X]]and B = R[[Y]] with X and Y finite sets of indeterminates. Consider A and B as topological rings with the respective X and Y-adic topologies. If $\sigma: A \to B$ is any R-homomorphism then there are R-automorphisms s and t of A and B respectively, so that $t \circ \sigma \circ s: A \to B$ is continuous. As a corollary we see that an R-endomorphism of A is surjective only if it is an automorphism.

Let $X = \{X_1, \dots, X_n\}$ be a set of indeterminates over R. R[X] and R[[X]] denote as usual the polynomial ring and the formal power series ring respectively over R in the variables X. A number of authors have studied and applied automorphisms and endomorphisms of R[[X]] over R; [3], [4], [5], [6], [7] and [1]. A common feature of many of the arguments seems to be the complexity resulting from the fact that R-endomorphisms of R[[X]] need not be continuous in X-adic topology. In this note we show that they are essentially continuous, i.e. differ from a continuous one by an automorphism. Precisely, we make the following

DEFINITION 1. If A, B are topological rings and $\sigma: A \to B$ is a homomorphism, then σ is said to be *essentially continuous* if, for some automorphisms s and t of A and B respectively, we get that $t \circ \sigma \circ s: A \to B$ is continuous.

With this definition we get the main statement that "every R-homomorphism between any two formal power series rings over R is essentially continuous." (Corollary B)

As a corollary we get an easy proof of the statement that, "an R-endomorphism of R[[X]] is surjective if and only if it is an R-automorphism of R[[X]]." (Corollary C)¹

Finally, we make

DEFINITION 2. If \mathfrak{A} is a finitely generated ideal of R we say that R is complete in the \mathfrak{A} -adic topology if there is a finite set of indeterminates X and an R-homomorphism $\sigma: R[[X]] \to R$ with $\sigma(XR[[X]]) = \mathfrak{A}$.

¹ O'Malley had done the one variable case of this result in [3]. Gilmer and O'Malley have independently given another proof of Corollary C in [2].

Let $I_c(R)$ denote the set of all $a \in R$ such that there is an *R*-homomorphism $\sigma: R[[X_1]] \rightarrow R$ with $\sigma(X_1) = a$.

Using the "essential continuity" we establish that $I_C(R)$ is an *ideal* of R contained in the Jacobson radical of R and containing the nil-radical of R. (Theorem E)

Once $I_c(R)$ is shown to be an ideal it is easy to show that $I_c(R)$ is nothing but the union of all ideals \mathfrak{A} of R such that R is complete in the \mathfrak{A} -adic topology. This fact is indeed the reason for the suffix "c" in $I_c(R)$. This fact also answers some questions raised by Gilmer; see remarks at the end.

THEOREM A. Suppose R is a commutative ring with identity and $X = \{X_i\}_{i=1}^n$ and $Y = \{Y_i\}_{j=1}^m$ are sets of indeterminates over R. Suppose $R[[X]] \xrightarrow{\sigma} R[[Y]]$ is an R-homomorphism and that for each i, $\sigma(X_i) = c_i + f_i$ where $c_i \in R$ and $f_i \in YR[[Y]]$. Then there exists an automorphism t; $R[[X]] \rightarrow R[[X]] \Rightarrow R[[X]]$ such that $t(X_i) = X_i + c_i^2$.

Proof. Let $\beta: R[[Y]] \to R$ be defined by $\beta(Y) = 0$. Then composing β and σ we get a mapping $\sigma^*: R[[X]] \to R$ such that $\sigma^*(X_i) = c_i$. Let $\{Z_i\}_{i=1}^n$ be *n* additional indeterminates. We extend σ^* to a mapping $\sigma^*: R[[X, Z]] \to R$ by $\sigma^*(Z) = 0$. We now have a sequence

$$R[[Z]] \xrightarrow{\alpha} R[[X, Z]] \xrightarrow{\gamma} R[[Z]]$$

where $\alpha(Z_i) = X_i + Z_i$ and γ is defined by regarding R[[X, Z]] as R[[X]][[Z]] and setting

$$\gamma(\Sigma h_i Z^i) = \Sigma \sigma^*(h_i) Z^i$$
 where $h_i \in R[[X]].$

We define $\tau^* = \gamma \circ \alpha$ and note that $\tau^*(Z_i) = Z_i + c_i$. Since $R[[Z]] \cong R[[Z]]$ by $X \to Z$ there is a mapping $\tau \colon R[[X]] \to R[[X]]$ such that $\tau(X_i) = X_i + c_i$. We must now see that τ is an automorphism of R[[X]]. There is an automorphism δ of R[[X]] which takes X_i to $-X_i$.

The homomorphism $\delta \circ \tau \circ \delta \circ \tau$: $R[[X]] \to R[[X]]$ is a continuous endomorphism carrying X_i to X_i . It is then clear that $\delta \circ \tau \circ \delta \circ \tau$ is the identity map and hence τ is an automorphism.

COROLLARY B. If R is a commutative ring with 1 and $X = \{X_i\}_{i=1}^n$, $Y = \{Y_{j}\}_{j=1}^m$ are indeterminates over R, then any R-homomorphism $\sigma: R[[X]] \rightarrow R[[Y]]$ is essentially continuous.

² This result in the one-variable case appears in [1].

Proof. Let $\sigma(X_i) = c_i + f_i$ with $c_i \in R$ and $f_i \in YR[[Y]]$. Then by Theorem A, there is an automorphism τ of R[[X]] such that $\tau(X_i) = X_i + c_i$. Thus $\tau^{-1}(X_i) = X_i - c_i$. The mapping $\sigma \circ \tau^{-1}$ is continuous since

$$\sigma \circ \tau^{-1}(X_i) = \sigma(X_i - c_i) = c_i + f_i - c_i = f_i$$

and $f_i \in YR[[Y]]$.

COROLLARY C. If R is a commutative ring with 1 and $\{X_i\}_{i=1}^n$ are indeterminates, then an R-endomorphism $\sigma: R[[X]] \rightarrow R[[X]]$ is surjective if and only if it is an automorphism.

Proof. One way is clear. By the proof of Corollary B we may write

$$\sigma(X_i) = l_i + F_i,$$

where l_i is a linear form in X over R and $F_i \in (XR[[X]])^2$.

Using the fact that X_i can be expressed as $\sigma(G_i)$ for some $G_i \in R[[X]]$ and comparing terms of degree one, it is easy to check that if L is the matrix formed by the coefficients of l_i (as the *i*th row) then L is invertible and hence det L is a unit in R. Then a standard argument as in Lemma 2, Corollary 2 [ZSII, p. 137] yields that σ is an automorphism.

Now we turn to proving the properties of $I_c(R)$. We will write I_c for $I_c(R)$, whenever there is no confusion.

THEOREM D. Let

 $I_1 = \{a \in R \mid \text{there exists an } R \text{-automorphism } \sigma \colon R[[X_1]] \rightarrow R[[X_1]]$ with $\sigma(X_1) = X_1 + a\}$

 $I_2 = \{a \in R \mid \text{there exists an } R \text{-homomorphism } \sigma \colon R[[X]] \rightarrow R[[Y]]$ where X, Y are finite sets of indeterminates over R such that $\sigma(X_i) = a + f$ for some $X_i \in X$ and $f \in (YR[[Y]])\}$. Then $I_c = I_1 = I_2$.

Proof. $I_1 \subset I_2$ is obvious. If $a \in I_2$ and σ and X_i are as in the definition, let $\sigma^* =$ the restriction of σ to $R[[X_i]]$ and $\tau: R[[Y]] \rightarrow R$ the unique *R*-homomorphism with $\tau(Y_i) = 0$ for all $Y_i \in Y$. Then $\tau \circ \sigma^*: R[[X_i]] \rightarrow R$ carries X_i to a. Thus $a \in I_c$ and hence $I_2 \subset I_c$. Finally, by Theorem A it is clear that $I_c \subset I_1$.

THEOREM E. I_c is an ideal contained in the Jacobson radical of R. Moreover, the nil-radical of R is contained in I_c .

Proof. Let $a \in I_c$. Since X is in the Jacobson radical of R[[X]] and by Theorem A there is an R-automorphism of R[[X]] carrying X to

X + a we get that X + a belongs to the Jacobson radical of R[[X]]. Thus a belongs to the Jacobson radical of R[[X]] and hence of R. The last remark is easy to prove, and is left to the reader.

Now let X, Y, Z be indeterminates over R. Let $a, b \in I_c$. Hence by definition we may assume that there exists an R-homomorphism $\sigma: R[[X, Y]] \to R$ with $\sigma(X) = a$ and $\sigma(Y) = b$. Let $r, s \in R$. Let $\tau: R[[Z]] \to R[[X, Y]]$ be the unique R-homomorphism defined by

$$\tau(Z)=rX+xY.$$

Then $\sigma \circ \tau \colon R[[Z]] \to R$ is an *R*-homomorphism with $\sigma \circ \tau(Z) = ra + sb$. Thus $ra + sb \in I_c$ and hence I_c is an ideal.

REMARKS. (1) The fact that I_c is an ideal shows that Theorem 3.4 of [1] is true with no restriction on the element "r". Thus the conjecture which follows that theorem is false.

(2) In his review of [5] (MR47 #8532) Gilmer suggests a program for simplifying some of the proofs. This would rest on whether a ring Ris a complete Hausdorff space in its (a_1, \dots, a_n) -adic topology, if it is a complete Hausdorff space in its (a_i) -adic topology for each *i*. However, it is easy to give an example where this does not hold. For Gilmer's example in [1] is a ring R and an element a such that R is complete, but not Hausdorff in its (a)-adic topology. On the other hand, by Theorem D there is an automorphism of R[[X]] which takes X to X + a. Since R[[X]] is a complete Hausdorff space in its X-adic topology, it is also a complete Hausdorff in its (a)-adic topology, neither is R[[X]]. So, since $a \in (X, X + a)R[[X]]$ we see that R[[X]] is not Hausdorff in its (X, X + a)-adic topology.

(3) I_c may be properly contained in the Jacobson radical of R and it may properly contain the nil-radical of R. For example if R' = Z/4[X], $\mathcal{M} = (2, X)R'$ and $R = R'_{\mathcal{M}}[[Y]]$. Then the nil-radical of R is 2R, I_c in this case is (2, Y) and the Jacobson radical is (2, Y, X).

(4) It would be nice to have an intrinsic characterization of the ideal I_c since it allows us to utilize the form of Nakayama's lemma for complete local rings, namely

LEMMA. Suppose that M is an R-module and $J \subset I_c$ is a finitely generated ideal with $\bigcap J^n M = \{0\}$. If N is a finitely generated sub-module of M with M = N + JM, then N = M.

The proof would be the same as in the complete local ring case [8, Th. 7, p. 259].

References

1. R. Gilmer, *R*-automorphisms of *R*[[X]], Michigan J. Math., 17 (1970), 15–21.

2. R. Gilmer and M. J. O'Malley, *R*-endomorphisms of $R[[X_1, \dots, X_n]]$, to appear J. Algebra.

3. M. J. O'Malley, *R*-automorphisms of *R*[[X]], Proc. London Math. Soc., (3) 20 (1970), 60-78.

4. ____, Isomorphic Power Series Rings, Pacific J. Math., 41 (1972), 503-512.

5. ——, Finite Groups of R-automorphisms of R[[X]], Michigan Math. J., 20 (1973), 277–284.

6. _____, Some remarks on the formal power series ring, Bull. Soc. Math. France, 99 (1971), 247-258.

7. M. J. O'Malley and C. Wood, *R*-endomorphisms of R[[X]], J. Algebra, 15 (1970), 314-327.

8. O. Zariski and P. Samuel, Commutative Algebra, volume II, Van Nostrand, Princeton, 1960.

Received July 28, 1975.

UNIVERSITY OF KENTUCKY