THE BOUNDARY BEHAVIOR OF HENKIN'S KERNEL

Patrick Ahern and Robert Schneider

Abstract

In this paper, the boundary behaviour of a reproducing kernel, introduced by Henkin, for strictly pseudoconvex domains is studied. As an application, an improved version of a known result about generators of certain maximal ideals is given.

The boundary behaviour of the Bergmann kernel $B(z, \zeta)$ for a strictly pseudoconvex domain has been studied by Bergmann [1] and Hörmander [5]. Among other things, they determine the rate at which $B(z, z)$ goes to infinity as z approaches a boundary point of the domain. Another type of reproducing kernel has been introduced by Henkin [3] for bounded strictly pseudoconvex domains D, in \mathbf{C}^{n}. Henkin's kernel is of the form $K(\zeta, z) / \Phi^{n}(\zeta, z)$, where K and Φ are holomorphic in a neighborhood of \bar{D} for each ζ in ∂D, the boundary of D. The denominator Φ has the properties that $\Phi(\zeta, \zeta)=0$ for all $\zeta \in \partial D$ and that $\Phi(\zeta, z) \neq 0$ if $z \in \bar{D} \backslash\{\zeta\}$. For z near ζ, Φ is given explicitly (up to a nonvanishing factor) in terms of the plurisubharmonic function ρ that defines the domain D. Precise statements about the way $\Phi(\zeta, z)$ approaches zero as z approaches ζ from inside D are given in Henkin's paper [3]. We show that this determines the behaviour of the kernel K / Φ^{n} by showing that $K(\zeta, \zeta) \neq 0$.

It has been proven in [4], [6], [7] and [9], that if f is in the space $A(D)$ of functions continuous on \bar{D} and holomorphic in D and if $a \in D$ then there exist functions $g_{1}, \cdots, g_{n} \in A(D)$ such that

$$
f(z)-f(a)=\sum_{j=1}^{n}\left(z_{\jmath}-a_{j}\right) g_{\jmath}(z)
$$

This is a solution to a problem originally posed by Gleason [2] for the unit ball in \mathbf{C}^{n}. Using Henkin's integral formula and our result on the behaviour of Henkin's kernel we can improve the result just stated in two ways. Firstly, we show that the g_{t} can be chosen in such a way that the association between f and the n-tuple of functions (g_{1}, \cdots, g_{n}) is linear, and secondly we show that the $g_{\text {}}$ may be also chosen to depend analytically on a as well as on z.

1. Notation. D will always denote a bounded strictly pseudoconvex domain in \mathbf{C}^{n} defined as $D=\{z: \rho(z)<0\}$, where ρ is defined and strictly plurisubharmonic in a neighborhood U of \bar{D}, such that the gradient of ρ is not zero on the boundary of D. For $\epsilon>0$ we let
$D_{\epsilon}=\{z \in U: \rho(z)<\epsilon\}$ and if V is a neighborhood of ∂D we let $V_{\epsilon}=V \cap D_{\epsilon}$. We denote by $C^{k}\left(V_{\epsilon}, H\left(D_{\epsilon}\right)\right)$ the space of C^{k} functions on V_{ϵ} with values in the space $H\left(D_{\epsilon}\right)$ of functions holomorphic in D_{ϵ}. In other words, functions that are C^{k} on $V_{\epsilon} \times D_{\epsilon}$ and holomorphic in D_{ϵ} for each fixed $\zeta \in V_{\epsilon}$. Finally, we let $S_{z, \delta}=\{\zeta:|\zeta-z|<\delta\}$.
2. The work of Henkin [3], modified slightly by Øvrelid [8], shows that if D has a C^{3} boundary then there are functions K and Φ and a neighborhood V of ∂D and an $\epsilon>0$ such that:
2.1. (a) $K \in C^{1}\left(V_{\epsilon}, H\left(D_{\epsilon}\right)\right)$ and

$$
\Phi \in C^{2}\left(V_{\epsilon}, H\left(D_{\epsilon}\right)\right) .
$$

(b) $\Phi(\zeta, z) \neq 0$ if $z \in \bar{D} \backslash\{\zeta\}$.
2.2. If $f \in A(D)$ then

$$
f(z)=\int_{\partial D} f(\zeta) \frac{K(\zeta, z)}{\Phi^{n}(\zeta, z)} d \sigma(\zeta), \quad \text { for all } z \in D
$$

where $d \sigma$ is $2 n-1$ dimensional volume measure on ∂D.
2.3. There are constants $\gamma, \delta_{0}>0$ such that for all $z \in \bar{D}$ and $0<\delta<\delta_{0}$,

$$
\int_{\partial D \cap S_{z, \delta}} \frac{|\zeta-z|}{\left|\Phi^{n}(\zeta, z)\right|} d \sigma(\zeta) \leqq \gamma \delta \log \frac{1}{\delta}
$$

Theorem A. Suppose K and Φ satisfy properties 2.1, 2.2, and 2.3, then $K\left(\zeta_{0}, \zeta_{0}\right) \neq 0$ for any $\zeta_{0} \in \partial D$.

Proof. We assume that $K\left(\zeta_{0}, \zeta_{0}\right)=0$ and arrive at a contradiction. If $K\left(\zeta_{0}, \zeta_{0}\right)$ were zero then, from property 2.1 , there would be a constant M such that
(a) $\left|K\left(\zeta, \zeta_{0}\right)\right| \leqq M\left|\zeta-\zeta_{0}\right|$,
(b) $\left|K(\zeta, z)-K\left(\zeta_{0}, z\right)\right| \leqq M\left|\zeta-\zeta_{0}\right|$,
(c) $\left|K\left(\zeta_{0}, z\right)\right| \leqq M\left|z-\zeta_{0}\right|$.

Now it follows from (a) and 2.3 that

$$
\int_{\partial D} \frac{\left|K\left(\zeta, \zeta_{0}\right)\right|}{\left|\Phi^{n}\left(\zeta, \zeta_{0}\right)\right|} d \sigma(\zeta)<\infty .
$$

We will show that if $f \in A(D)$, then
2.4.

$$
f\left(\zeta_{0}\right)=\int_{\partial D} f(\zeta) \frac{K\left(\zeta, \zeta_{0}\right)}{\Phi^{n}\left(\zeta, \zeta_{0}\right)} d \sigma(\zeta)
$$

Due to the remark just made, the right hand side of 2.4 is welldefined. To prove 2.4 we show that as z approaches ζ_{0} in a certain way, the expression,
2.5.

$$
f(z)-\int_{\partial D} f(\zeta) \frac{K\left(\zeta, \zeta_{0}\right)}{\Phi^{n}\left(\zeta, \zeta_{0}\right)} d \sigma(\zeta)
$$

converges to 0 . Now by 2.2 we have,

$$
\begin{aligned}
& f(z)-\int_{\partial D} f(\zeta) \frac{K\left(\zeta, \zeta_{0}\right)}{\Phi^{n}\left(\zeta, \zeta_{0}\right)} d \sigma(\zeta)=\int_{\partial D} f(\zeta)\left[\frac{K\left(\zeta, \zeta_{0}\right)}{\Phi^{n}\left(\zeta, \zeta_{0}\right)}-\frac{K(\zeta, z)}{\Phi^{n}(\zeta, z)}\right] d \sigma(\zeta) \\
&= \int_{\partial D \backslash s_{\sigma_{0} .}} f(\zeta)\left[\frac{K\left(\zeta, \zeta_{0}\right)}{\Phi^{n}\left(\zeta, \zeta_{0}\right)}-\frac{K(\zeta, z)}{\Phi^{n}(\zeta, z)}\right] d \sigma(\zeta) \\
&+\int_{\partial D \cap s_{\sigma_{0} . s}} f(\zeta)\left[\frac{K\left(\zeta, \zeta_{0}\right)}{\Phi^{n}\left(\zeta, \zeta_{0}\right)}-\frac{K(\zeta, z)}{\Phi^{n}(\zeta, z)}\right] d \sigma(\zeta)
\end{aligned}
$$

Now for any fixed $\delta>0$, the first integral above approaches zero as z approaches ζ_{0}, since we can take the limit under the integral sign. As for the second integral, its absolute value is not greater than

$$
\int_{\partial D \cap s_{\varepsilon_{0}, s}}|f(\zeta)| \frac{\left|K\left(\zeta, \zeta_{0}\right)\right|}{\left|\Phi^{n}\left(\zeta, \zeta_{0}\right)\right|} d \sigma(\zeta)+\int_{\partial D \cap s_{\varepsilon_{0}, \delta}}|f(\zeta)| \frac{|K(\zeta, z)|}{\left|\Phi^{n}(\zeta, z)\right|} d \sigma(\zeta)
$$

Now by (a) and 2.3, the first of these integrals is majorized by $M\|f\|_{\infty} \gamma \delta \log 1 / \delta$. To estimate the second of these integrals we let z approach ζ_{0} along the inward normal to ∂D. Now if z lies on this normal and if δ is sufficiently small then there is a constant C such that $\left|z-\zeta_{0}\right| \leqq C|z-\zeta|$ and $\left|\zeta-\zeta_{0}\right| \leqq C|z-\zeta|$ as long as $\left|z-\zeta_{0}\right|<\delta$ and $\left|\zeta-\zeta_{0}\right|<\delta$, and hence $|K(\zeta, z)| \leqq\left|K(\zeta, z)-K\left(\zeta_{0}, z\right)\right|+\left|K\left(\zeta_{0}, z\right)\right| \leqq$ $M\left|\zeta-\zeta_{0}\right|+M\left|z-\zeta_{0}\right| \leqq 2 M C|\zeta-z|$. So with these assumptions,

$$
\begin{aligned}
\int_{\partial D \cap s_{\delta_{0} . s}}|f(\zeta)| \frac{|K(\zeta, z)|}{\left|\Phi^{n}(\zeta, z)\right|} d \sigma(\zeta) & \leqq\|f\|_{\infty} 2 M C \int_{\partial D \cap s_{6_{0} .8}} \frac{|\zeta-z|}{\left|\Phi^{n}(\zeta, z)\right|} d \sigma(\zeta) \\
& \leqq 2 M C\|f\|_{\infty} \int_{\partial D \cap s_{z, 2 \delta}} \frac{|\zeta-z|}{\left|\Phi^{n}(\zeta, z)\right|} d \sigma(\zeta) \\
& \leqq 2 M C\|f\|_{\infty} \gamma 2 \delta \log \frac{1}{2 \delta}, \text { if } 2 \delta<\delta_{0}
\end{aligned}
$$

So now if we first choose δ sufficiently small and then let z approach ζ_{0}
along the inward normal we see that 2.5 approaches zero. This proves 2.4. Now it is easy to finish the proof of the theorem. We take $f \in A(D)$ such that $f\left(\zeta_{0}\right)=1$ and $|f(\zeta)|<1$ for $\zeta \in \bar{D} \backslash\left\{\zeta_{0}\right\}$. Applying 2.4 to f^{N} we get

$$
1=f^{N}\left(\zeta_{0}\right)=\int_{\partial D} f^{N}(\zeta) \frac{K\left(\zeta, \zeta_{0}\right)}{\Phi^{n}\left(\zeta, \zeta_{0}\right)} d \sigma(\zeta)
$$

However the right hand side approaches zero, by the bounded convergence theorem. This contradiction completes the proof of Theorem A.

We now apply Theorem A to obtain
Theorem B. Suppose D is a bounded strictly pseudoconvex domain in \mathbf{C}^{n} with a C^{3} boundary. There is a linear mapping $T: A(D) \rightarrow$ $H(D \times D)^{n}$ such that $(T f)_{t} \in C[(\bar{D} \times \bar{D}) \backslash\{(z, z): z \in \partial D\}]$ for every $f \in$ $A(D)$ and such that

$$
f(z)-f(\omega)=\sum\left(z_{\imath}-\omega_{i}\right)(T f)_{t}(z, \omega)
$$

Proof. From Henkin's integral formula we see that

$$
f(z)-f(\omega)=\int f(\zeta) \frac{\Phi^{n}(\zeta, \omega) K(\zeta, z)-\Phi^{n}(\zeta, z) K(\zeta, \omega)}{\Phi^{n}(\zeta, z) \Phi^{n}(\zeta, \omega)} d \sigma(\zeta)
$$

If $\quad L(\zeta, z, \omega)=\Phi^{n}(\zeta, \omega) K(\zeta, z)-\Phi^{n}(\zeta, z) K(\zeta, \omega), \quad$ then $\quad L \in C^{1}\left(V_{\epsilon}\right.$, $\left.H\left(D_{\epsilon} \times D_{\epsilon}\right)\right)$ and $L(\zeta, z, z) \equiv 0$, so by the argument given as a remark on page 148 of [8] there are functions $L_{1} \in C^{1}\left(V_{\epsilon^{\prime}}, H\left(D_{\epsilon^{\prime}} \times D_{\epsilon^{\prime}}\right)\right.$) (for some $\epsilon^{\prime}<\boldsymbol{\epsilon}$) such that

$$
L(\zeta, z, \omega)=\sum_{i=1}^{n}\left(z_{i}-\omega_{i}\right) L_{i}(\zeta, z, \omega)
$$

Hence, we have

$$
f(z)-f(\omega)=\sum_{i=1}^{n}\left(z_{1}-\omega_{\imath}\right) \int f(\zeta) \frac{L_{i}(\zeta, z, \omega)}{\Phi^{n}(\zeta, z) \Phi^{n}(\zeta, \omega)} d \sigma(\zeta)
$$

So it remains to show that

$$
f_{i}(z, \omega)=\int f(\zeta) \frac{L_{i}(\zeta, z, \omega)}{\Phi^{n}(\zeta, z) \Phi^{n}(\zeta, \omega)} d \Phi(\zeta)
$$

satisfies the statement of the theorem. Certainly $f_{i} \in H(D \times D)$ so we need only show that $f_{i} \in C[(\bar{D} \times \bar{D}) \backslash\{(z, z): z \in \partial D\}]$. Suppose $(z, \omega) \in$ $D \times D$ and $(z, \omega) \rightarrow\left(\zeta_{0}, \omega_{0}\right) \in \bar{D} \times \bar{D} \backslash\{(z, z): z \in \partial D\}$. We wish to show that $f_{1}(z, \omega)$ has a limit. We will assume that $\zeta_{0} \in \partial D$ and $\omega_{0} \in \partial D$ and $\zeta_{0} \neq \omega_{0}$. The other possibilities are treated in a similar fashion (and are easier). By Theorem A, $K\left(\zeta_{0}, \zeta_{0}\right) \neq 0$, and $K\left(\omega_{0}, \omega_{0}\right) \neq 0$. Hence there is a $\delta>0$ such that if $\left|z-\zeta_{0}\right| \leqq 2 \delta$ and $\left|\zeta-\zeta_{0}\right| \leqq 2 \delta$ then $K(z, \zeta) \neq 0$, and if $\left|z-\omega_{0}\right| \leqq 2 \delta$ and $\left|\zeta-\omega_{0}\right| \leqq 2 \delta$ then $K(z, \zeta) \neq 0$. We also assume $4 \delta<\left|\zeta_{0}-\omega_{0}\right|$. Let $\varphi(z)$ be a C^{∞} function that is identically equal to 1 if $|z| \leqq \delta^{2}$ and identically 0 if $|z| \geqq(2 \delta)^{2}$. Now we write

$$
\begin{aligned}
f_{t}(z, \omega)= & \int f(\zeta) \frac{L_{i}(\zeta, z, \omega) \varphi\left(|z-\zeta|^{2}\right)}{K(\zeta, z) \Phi^{n}(\zeta, \omega)} \frac{K(\zeta, z)}{\Phi^{n}(\zeta, z)} d \sigma(\zeta) \\
& +\int f(\zeta) \frac{L_{i}(\zeta, z, \omega) \varphi\left(|\omega-\zeta|^{2}\right)}{K(\zeta, \omega) \Phi^{n}(\zeta, z)} \frac{K(\zeta, \omega)}{\Phi^{n}(\zeta, \omega)} d \sigma(\zeta) \\
& +\int f(\zeta) \frac{L_{i}(\zeta, z, \omega)}{\Phi^{n}(\zeta, z) \Phi^{n}(\zeta, \omega)}\left[1-\varphi\left(|z-\zeta|^{2}\right)-\varphi\left(|\omega-\zeta|^{2}\right)\right] d \sigma(\zeta)
\end{aligned}
$$

for $\left|z-\zeta_{0}\right|<\delta$ and $\left|\omega-\omega_{0}\right|<\delta$. The third term has a limit as $(z, \omega) \rightarrow\left(\zeta_{0}, \omega_{0}\right)$ since we may take the limit under the integral sign. We write the first term as

$$
\text { 2.6. } \quad \int f(\zeta) \chi(\zeta, z, \omega) \frac{K(\zeta, z)}{\Phi^{n}(\zeta, z)} d \sigma(\zeta),
$$

where all we need to know about χ is that it is continuous on $\partial D \times \bar{D} \times S_{u 0, \delta}$ and that there is a constant C such that $\mid \chi(\zeta, z, \omega)-$ $\chi\left(\zeta^{\prime}, z, \omega\right) \leqq C\left|\zeta-\zeta^{\prime}\right|$, for all z, ω, ζ, and ζ^{\prime}. Now we just imitate the proof of Lemma 4.3 of [3] to see that 2.6 has a limit as $(z, \omega) \rightarrow\left(\zeta_{0}, \omega_{0}\right)$. The second term is handled in the same way as the first. This completes the proof.

Note that if

$$
f(z)-f(\omega)=\sum_{i=1}^{n}\left(z_{i}-\omega_{i}\right) g_{i}(z, \omega) \text { then } \frac{\partial f}{\partial z_{t}}(z)=g_{i}(z, z),
$$

so so that g_{i} need not be in $A(D \times D)$ when $f \in A(D)$.

References

1. S. Bergman, Über die Kernfunktion eines Bereiches und ihr Verhalten am Rande, I-II., J. Reine Angew. Math., 169 (1933), 1-42, and 172 (1935), 89-128.
2. A. Gleason, Finitely generated ideals in Banach algebras, J. Math. Mech., 13 (1964), 125-132.
3. G. Henkin, Integral representations of functions holomorphic in strictly pseudoconvex domains and some applications, Mat. Sb., 78 (120) (1969), 597-616.
4. -, The approximation of functions in pseudoconvex domains and a Theorem of Z, L. Leibenzan. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys., 19 (1971), 37-42.
5. L. Hörmander, L^{2} estimates and existence theorems for the $\bar{\partial}$ operator, Acta Math., 113 (1965), 89-152.
6. N. Kerzman and A. Nagel, Finitely generated ideals in certain function algebras, J. Functional Analysis, 7 (1971), 212-215.
7. I. Lieb, Die Cauchy-Riemannischen Differential-gleichungen auf streng pseudokonvexen Gebieten, Beschrankte Lösungen, Math. Ann., 190 (1970), 6-44.
8. N. Dvrelid, Integral representation formulas and L^{p} estimates for the $\bar{\partial}$ equation, Math. Scand., 29 (1971), 137-160.
9. - Generators of the maximal ideals of $A(\bar{D})$, Pacific J. Math., 39, no. 1, (1971), 219-223.

Received March 11, 1976. The first author was partially supported by an NSF grant. The second author was partially supported by a grant from the research foundation of CUNY.

University of Wisconsin-Madison
AND
Herbert Lehman Coliege of CUNY

