PACIFIC JOURNAL OF MATHEMATICS
Vol 66, No. 2, 1976

UNBOUNDED COMPLETELY POSITIVE LINEAR
MAPS ON C*-ALGEBRAS

Davip E. EvaNns

We define unbounded, completely positive, operator valued
linear maps on C *-algebras, and investigate their natural order
structure. Following F. Combes, J. Math. Pure et Appl., we
study the quasi equivalence, equivalence and type of the
Stinespring representations associated with unbounded com-
pletely positive maps. Following A. van Daele, Pacific J. Math.,
we study an unbounded completely positive map « with dense
domain which is invariant under a group G of *-automorphisms
and construct a G-invariant projection map ¢’ of the set ¥ of
continuous completely positive maps dominated by «, onto the
set %, of G-invariant elements of %,. This is used to derive
various properties of the upper envelope of %,.

1. Introduction. We investigate the structure of un-
bounded completely positive linear maps on a C*-algebra A. Our work
generalises that of Combes [3] and van Daele [15] from scalar valued
weights to operator valued ones. Haagerup [9] has also introduced a
notion of an operator valued weight, which can be described as an
unbounded conditional expectation. We note that an operator valued
weight in the sense of Haagerup is automatically completely positive by
an extension of [9, Lemma 4.5].

Recently, various authors [10, 11, 12, 13] with different applications
in mind, have considered Stinespring-like constructions for certain
positive definite operator-valued functions on involutive algebras. Rieffel
[13] generalised the notion of a conditional expectation on C*-algebras,
and used their Stinespring representations to formulate a theory of
induced representations of C*-algebras. In [11, 12] Powers defined an
unbounded *-representation of an involutive algebra, and obtained a
Stinespring-decomposition with an unbounded *-representation for a
completely positive linear map on a *-algebra with identity. Paschke
[10] has also studied completely positive maps on *-algebras, and
obtained the Stinespring decomposition for such a map on a unital
*-algebra which is linearly spanned by its unitaries.

In §2 we construct the Stinespring representation for an unbounded
completely positive linear map @ on A, and begin an analysis of the
natural order structure for such maps. In particular we study the family
Z of bounded, completely positive, linear maps majorised by a. In §3,
when « has dense domain, we are concerned with the construction of a
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largest operator valued weight «, majorised by «, and with the property
that it is the upper envelope of continuous completely positive linear
maps. The fourth section deals with the quasi-equivalence, equivalence
and type of the Stinespring representation associated with operator
valued weights, whilst in §5 we see how this study carries over to the
enveloping von Neumann algebra. We then study in §6 an unbounded
completely positive linear map a with dense domain which is left
invariant by a group G of *-automorphisms of A, parallel to [15] for
scalar valued weights. We construct a G-invariant projection map ¢’ of
the set & of continuous completely positive linear maps dominated by «,
onto the set %, of G-invariant elements of %. This is used to derive
various properties of the upper envelope of %,.

We have left Hahn-Banach type considerations as in [3, Lemma 1.5]
for further study.

H will always denote a hilbert space, B(H) the W *-algebra of all
bounded linear maps on H, and T (H) its predual, the Banach space of all
trace class operators on H.

2. The order structure for unbounded completely
positive linear maps. We first define an unbounded completely
positive map on a C*-algebra, which we wish to regard as an operator
valued weight.

Let A be a C*-algebra. If S is any subset of A, we denote SN A~
by §*. We recall that a face of A is a convex hereditary subcone of A ",
where a subset S of A~ issaid to be hereditaryif0=x=y,yE S, xEA
implies that x € S. If F is a face of A", then lin F is a *-subalgebra I of
A, and M*=F. The set {x EA:x*x € F}= L(F) is a left ideal of A
such that N = L(F)* L(F). A subalgebra I of A such that I = lin M~
and " is a face of A", is said to be a facial subalgebra of A. For details
on these matters see [4, 6].

It is convenient to introduce some more notation. We let 4,
denote the C*-algebra of all nXn matrices over the complex
numbers. If S is a subset of a C*-algebra A, let S,, for each n =1,
denote the subset of A ) M, consisting of all n X n matrices over S;i.e.

S, ={[a;]: a, €S, 1=1i,j = n}.

If « is a linear map with domain =3I, on a C*-algebra A into
another C*-algebra B, let a, be the induced linear map with domain I,
by applying a elementwise to each matrix over 8. We then say that «
is completely positive if

i) I is a facial-subalgebra of A.

ii) Given any n=1, q €N, =LM,) for i=1,2,---,n then
a,[a%a))=[a(a%q;)]=0 in B,
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We denote by cp (A, B) all (possibly unbounded) completely positive
linear maps from the C*-algebra A into B. We let ¢p(A; H) denote
cp(A, B(H)). As usual, [1], CP(A; H) denotes the everywhere de-
fined, completely positive (CP) linear maps from A into B(H), i.e.
{a €Ecp(A;H): M, = A}

We are grateful to M. D. Choi [2] for providing us with a proof of the
first part of the following proposition. We give an alternative proof
which allows us to deduce the second part simultaneously.

PROPOSITION 2.1. Let A be a C*-algebra and I a facial subalgebra
of A. Then for each n in N, IN, is a facial subalgebra of A,, and
LDt,)= L),

Proof. Suppose a = [a,] € A}, and b = [b,;] € I, with a = b. Then
a = x*x, where x € A,. Thus a; = Z, x%x,, and for each k,

Oé [xt:xk/]l,/ é [b‘/]‘,

Hence 0 = x}.x., = b;, which shows that x,, € for each pair (k, i), i.e.
x€N, and a €M,

This leads to the following characterisation:

PROPOSITION 2.2. Let A, B be C*-algebras, and a a linear map with
domain M =M, C A into B. Then «a is completely positive iff a, maps
(MR..)" into (B,)" for all n, i.e. a, is positive for all n.

Proof. Suppose x € (M,)". Then x = xix* where x*€ L(M,) =
L(IN),. Hence x is a finite sum of at most n terms of the form [a*q,]
where a, € L(I) =N,

Note that if « is as in the above proposition, then (a,), =
a,». Thus a iscompletely positive iff «, is completely positive for all n.

REMARK 2.3. We now show how operator valued maps on facial
subalgebras of C*-algebras naturally arise. Consider the following
definition of Haagerup:

DEerFNITION 2.4, [9]. Let M be a von Neumann algebra and M,
its predual. The extended positive part of M is defined as the set of
functions m: My — [0, ) satisfying

1) m(Ap)=Am(p), Vo EM;, A =0.

2) me+y)=m(e)+my), Vo, y EM;.

3) m is lower semicontinuous.

The extended positive part of M is denoted M.. Note that each x in M~
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+

defines an element in M, by ¢ — ¢(x), ¢ € M;. Hence we can regard
M~ as a subset of M..

Let A be a C*-algebra, M a von Neumann algebra and 8 an
additive, positive homogeneous map from A" into M.,; i.e.

(1) B(x+y)=Bx)+B(y), Vx, yEA”

(2) B(Ax)=AB(x), VxEA", A =0.
Then M* ={x € A*: B(x) E M"}isafacein A", and hence is the positive
part of a facial subalgebra I in A. B[y~ then has a unique linear
extension to IR, which we denote by B. We then say that B is
completely positive if 8 is completely positive.

Conversely, suppose I is a facial subalgebra of A, and « a linear
map with domain I into M, satisfying a(IR*)C M*. Then a|p- can
certainly be extended in at least one way into an additive, positive
homogeneous map B from A" into M, as follows:

If x€ A\, ¢ € M, ¢#0, define @ =B by

B(x)(¢) = c°.

It is then clear that 8 = a.

However if H is a hilbert space, and M = B(H), the cases H =C
and H # C are strikingly different. When H = C, the map ¢ — (I, ¢)
gives a bijection between the family of [0, <] valued weights on A”, and
the family of pairs (IR, 7) where It is a facial subalgebra of A and 7 a
positive linear functional on . But if H# C, and M a facial subalgebra
of A, with a a positive linear map of I into B(H), then by considering
simple examples, (e.g. direct sums of scalar valued weights), a |» may
have more than one extension to an additive positive homogeneous map
from A” into B(H)?, even if a is completely positive and I is norm
dense in A.

Having made these preliminary remarks, we now sketch our con-
struction of the Stinespring representation. Let A be a C*-algebra, and
a € cp(A; H). Define N, = L(M,). We define a bilinear form ( , )
on the algebraic tensor product N, © H as follows:

If x, y€EN, v, EH i=1,--- mj=1,---,n put

<2 x &Y ]2 v & 77,~> = ’Z (a(y’x:)y, )

This bilinear form is positive semidefinite as a is completely
positive. For each x in A, define a linear transformation (x) on
N.OH by

mo(x): Z x @y Z xx; @ i
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Then m, is an algebra homomorphism for which
(mo(x)u, v) = (u, mo(x *)v) VYu, ve N, OH.

Now suppose u=3x, @y, €N, OH, where x, €N, v EH, i=
1,---,n,andx € A. Definey, =[|x|*— x*x]'x, fori = 1,-- -, n. Since a
is completely positive, we have

i (a(y*y)vs v,)=0.

L,)=1
This means that
(mo(x)u, mo(x)u) = || x |[{u, u).

Let N,={u €N, OH:(u,u)y=0}. Then N, is a linear subspace of
. O H, invariant under m,(x) for each x in A. (,) determines an
inner product on N, OH/N, and let K, be its hilbert space
completion. If A,: N, © H— N, © H/N, denotes the canonical pro-
jection, there exists an unique representation , of A on &, such that

wa(x)Aay Ry=Axy Ry VxeEA yeEN, yEH.
Moreover

(M (ALY @Y, Auz @ M) =(a(z*xy)y,n) VX E A, y,zE€N, y,mn EH.

If @ € cp(A; H), we will use as standard notation the objects N,, N,, A,,
K., . constructed above.

We define a partial ordering > on the cone ¢p(A; H), by a > f3,
a,BEcp(A;H) if

(1 M, CMWm,.

(2) The linear map a — B with domain I, lies in ¢p(A; H).

With this order structure on cp(A; H) we can show the following
theorem, which generalises [15, Lemma 2.3] for scalar valued weights,
and [1] for bounded completely positive maps on C*-algebras. It gives
one side of a Radon Nikodym story. As we shall see in §6, the converse
is trickier.

THEOREM 2.5. Let A be a C*-algebra and a, 3 € cp(A; H) such
that B < a. The identity map on N, defines on passing to the quotient a
continuous linear map A from A, N, O H onto A;N. O H, which extends
to a linear continuous map A from §, into Q. IfT=A*) and A = WT*
is the polar decomposition of A, then:
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(i) T is an operator in the commutant w,(A) of m,(A) satisfying
0=T=1 and

BH*)y,m)=(TA.(x Dy),A.(y ®n)) Vx,y€EN, v,nEH.

(i) The partial isometry W gives an equivalence between the subrep-
resentation ., of m, induced by the support of T, which lies in w,(A)', and
the subrepresentation 7wy of m, defined by the stable subspace

[Aﬁ(ma OH)|™ of K.

Proof. B < a implies that M, CWM,z; N, C N, N, C N Hence
the identity map on 9, induces a linear map A from N, © H/N, onto

N.OH/N,CR,OHIN, ie. A:AN,OH—>A,N,OH

Let x, €N, v, EH,i=1,---,m. Then
A (4.2 x @) [=]A (2 xnew) [ =2 Batmmn
A, (Z xi®y,-> ,2

Since A is bounded, it can be extended to a linear continuous map of &,
into &, which we also write as A, with norm=1. If T =A*A, then
0=T=1. If x,y€EN, v,nE H then

= 2 (a(x¥x;)y, vi) = '

(TAX @y, Ay M) = (A" AAX Q v, Ay 1)
=(AAXx QY AAY Q1) =(Apx @ v, Ay @)
=(B(y*x)y,m).

If also z € A, then

(T7.(2)Aex @ v, Ay @) =(B(y*2zx)y,m)
=(TAx Qv, m.(2)*Ay @)

Thus T € m,(A).
Ifz€EA xEN, yEH,

ms(2)Apx Ry =Apzx @y EAN, O H.

Hence AN, O H is stable for 7, and defines a projection P in mz(A),
and a subrepresentation 7§ of m,. We now show that the partial
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isometry W gives an equivalence between P and the support of T*,
(which is the same as that of T). If z€ A, x €N,, y € H then

Wrl)TAX Ry = Wr (2) TAx Qy = WTinm, (2)Ax @y
=A@y = Apzx Qv = mp(2)Apx Dy
TUAAX Ry = 7Y 2)WT A x R y.

Since T*A,N. © H is dense in the support of T; W gives the equivalence
between m, and 7.

In the theory of scalar valued weights, progress has been made by
studying the bounded positive linear functionals dominated by a given
weight [3, 15]. In order to develop our theory of operator valued
weights we find it convenient to introduce some more definitions.

DEFINITION 2.6. Let A be a C*-algebra, and a € cp(A; H). We
denote by ¥ = %, the family

{weE CP(A;H): w=<a}

and by & = ¥**, the set of operators S in m,(A) such that there is a
positive real number A such that

ISAx @vyll=Alxllyvl, VYxeEN., yEH

The next lemma can be proved by developing the arguments in [15,
Lemma 2.3], to which it reduces if H = C.

LEMMA 2.7. A is a C*-algebra, and a € cp(A; H). Then X is a
left ideal in w,(A). For any S in ¥, there exists a bounded linear map
V = VS from Hinto [m,(N%)K, ] such that SA.x @y = m.(x)Vy forall x
in N,, yin H. Moreover if y € H is fixed, Vv is the unique element of
[m. (NEK, ] such that SAx ®y = m.(x)Vy for all x in N,.

Parallel to the theory for weights [15, Lemma 2.6], we can now
describe the relation between & and JX.

PROPOSITION 2.8. Let A be a C*-algebra, and a € cp(A; H). For
any w in &, there is a unique S in ¥ such that 0=S =1, and

(wx*x)y, y)=SAx @y VxeN., yEH.

Conversely for any S in % such that | S| = 1, there isa w in &, such that
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(wx*x)y, y)=[ISAx @y, VxEN, yEH.

Proof. Let w € % Then thereisa T, in w,(A) by Theorem 2.5
such that 0=T, =1 and

(wx*x)y, y)={(T,Ax 7, Aux R y), VxeN, yEH'
Define S = T:. Then
ISAx Qv [P =(w(x*x)y, v)=[wlllx Py
so that S € #. The uniqueness is clear.
Conversely, let S € % such that |S||=1. By Lemma 2.7 there
exists V in B(H, &,) such that
SAx Ry =m(x)Vy VxeN, yEH

Define w(z)= V*n,(z)V,VzEA. If x €N, v EH fori=1,---,n
then

2

S )y = |2 m@va = [s4.3 x @

=

2
AL X, ®%" =2 (a(x*x)y, %)
Ly
ie.w=<aqa and w € #.

REMARK 2.9. In the situation of Proposition 2.8, we note the
following:

(a) ¥ =m(A) iff a coincides on I, with an element of
CP(A; H).

(b) If also I, is norm dense in A, and w € %, then A, N, O H is
dense in &,. Thus by applying 2.5 to the pair (e, w), and if T is the
operator defined there, m, is a representation of A equivalent with a
subrepresentation of w7, defined by the support of T.

We also observe the following, which is well known in the bounded
case [1] and for weights [15, Proposition 2.5].

ProPOSITION 2.10. Let A be a C*-algebra and a € cp(A; H) such
that M, is norm dense in A, and F contains a nonzero element. Then m,
is irreducible iff a is the restriction to M, of a pure element w of
CP(A;H). If there exists an additive, positive homogenous map
B: A*— B(H)! such that B = a and x — B(x)¢ is lower semicontinuous
on A" for each ¢ in T(H)", then a = w.
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3. Upper envelopes and e-filtering families of
bounded CP linear maps. Throughout this section, A denotes a
C*-algebra, and H a hilbert space. If a € cp(A; H), we will be
concerned with the construction of a largest operator valued weight a,
majorised by a, and with the property that it is the upper envelope of
continuous CP linear maps. There arises a natural property of & called
“e-filtrating” by Combes [3] in the scalar case.

DEerFmniTION 3.1. A family 9 in CP(A ; H) is said to be e-filtering if
given € >0, w,, w, in ¥, there exists w in ¥, such that

(1-e)w,<w i=1,2.

When H = C, the following reduces partly to [3, Lemma 1.9] and is
proved but not stated by [15].

ProposITION 3.2. Ifa € cp(A; H) such that I, is dense in A, then
F is e-filtering.

Proof. Given € >0, w,, w, € %, there exist S;, S,€ X, such that
0=S =1 and

w.(x*x)y, ) =S Ax Ry Vx EN, yEH.

Since % is a left ideal in 7,(A), we can get S € ¥ by [7, Lemma 3.1]
such that (1—€)S%S, =S*S=1fori=1,2.
Let w € # be the element determined by S according to 2.8.
Then for all x, €N, vy €EH, j=1,---,n

2

}s@g&®ﬁ

=3 e x )

Ek (1—-e)Xwi(xTx )V v)=(1—¢€)

#b@2n®ﬁ

Since N, is dense in A, we deduce (1-€)w,<wi=1,2.
PROPOSITION 3.3. If a family 4 in CP(A; H) is e-filtering, then
B(x)(¢)=sup(w(x),¢) ¢ ET(H), xEA"
defines a completely positive, additive, positive homogenous map B from

A" into B(H).. If ay= B (Remark 2.3) then:
() Mo ={x€A":sup|w(x)] <o}
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(i) ayzw VweUE
(i) Ifx, €N,,v€E€Hi=12n then

Z (ao(x5x,)y, ¥i) = SUI; 2 (w(x$x)ys v)
weE iJ

i,j=1

Proof. 1t is clear by e-filtering that

B(x)(¢)=sup(w(x).¢) ¢ET(H)', xEA"

defines an additive, positive homogeneous map from A~ into B(H):.
Moreover if «,= B, it is trivial that

M, C{xeA™: sup | w(x)] < o}

Now suppose x;, € A* and sup,.cq || w(x))||= ¢ <, for some c.
Take ¢ € T(H), then

¢ =@i— @t (@3~ ¢u) o, €E T(H)

and [loi—@:f = [l@:+] el [@:= @ull =ll@sll+ sl [14]. Then the
linear extension of B(x,)(¢) to T(H) satisfies

[B(x)(e)|=2clell Ve €T(H).

Hence B(x;) € B(H)= T(H)*, and x, €I, .

In order to prove the remainder, it is enough by polarisation to show
thatif y, EN,, v €EH,i=12,---,m; e >0, w € ¥, that there exists w
in ¥, satisfying

{ao(y ¥y )y, v =W 3y )ve v <€,  i=1,---m

and w > (1—€)w,.
This follows by e-filtering.

DErFINITION 3.4. y € ¢cp(A; H) is said to be the upper envelope of
a family ¥ in CP(A; H) if

(i) If x€ A", then x €M, iff sup,eq||w(x)| <.

(ii) Forall x, in N, n,in H, i=1,---,n

Z (v (xTx)m; mi) = sup { 2 (w(xtx)m, n.->}

ij=1
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We now state our decomposition theorem. If we restrict ourselves to
scalar valued weights, Theorem 3.5 reduces to [15, 2.9, 2.11].

THEOREM 3.5. Let a € ¢p(A; H) such that I, is dense in
A. Then there exist o, a, in cp(A; H) such that

(i) a=a+a

(i) ay<a and a, is the upper envelope of ¥°. a, majorises any
other map y € cp(A ; H) which is majorised by a, and such that vy is the
upper envelope of a family in CP(A; H).

(ili) a, < a and a, majorises no nonzero element of CP(A; H).

Proof. It is clear from Propositions 3.2 and 3.3 that «,, the upper
envelope of # exists, and a,<a. Let y be any other element of
cp(A; H) majorised by «, which is the upper envelope of a family ¥ in
CP(A;H). Let x€MM;. Then sup,es|w(x)|<e. However if
wE Y w=<vy and y <a show w € F Hence sup,eq || w(x)||<x, ie.
x €M;. Thus M, CI,. Take a, €N, CN,, n€H, i=1--n
Then there exists w in ¥ C % such that

2 (y(@ta)m,m) =2 (w(ata)m,n)+1

= 2 <a0(a":a/)n/9 nl>+ 1
Ly

Hence

Z (y(a*a)m,n)=2, (ala*a)n,n.)

L]

and y < a,.

Now define I, = M and a,(x) = a(x)— a,(x) for x in M. Then
aza;>0and @ = ay+ ;. Let w € CP(A; H)such that w < a,. Then
w < aqa, hence w € ¥ so that w < a,, and 2w < a. Similarly nw <gq,
Vn. Hence w =0, since I =linI* and M is dense in A.

4. The Stinespring representation. We will now study
quasi-equivalence, equivalence and the type of representations as-
sociated with various operator valued weights. All the results of this
section are operator valued versions of those in [3, 2.6-2.17] for the case
of [0,%] valued weights. Again A denotes a C*-algebra.

DEeFINITION 4.1. Let a € cp(A ; H) with domain I, and F a family
in cp(A; H) majorised by @. We say a belongs to the closure of F for
the topology of simple convergence if any one of the following equivalent
conditions are satisfied:
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(1) Given nnm=1, and a, €M), n EHRC" for i=1,---,m
and € >0, there exists w € F such that

Kaw(@)nan) = (wo(@)mam)|<e  i=1,m.

(2) Given n,pz1,and al€N,, n,EH, i=1,---,p,j=1,---,n
and € >0, there exists w € F such that

Z (af(a))*ai]mi,n;)— 2 (wl(aj)*ailmin))

nk=1

fori=1,---,p.
3) Given q=1, a, €N, n€EH, i=1,--+,q, and € >0, there
exists w € F such that

0=(a(a*a)m,n)—(w(ata)n,n)<e
fori=1,---,q.

It is clear that an element of c¢p(A; H) can be in the closure of a
family in CP(A; H), which it dominates, without being its upper
envelope.

If « is the upper envelope of an e-filtering family F in CP(A; H),
then a belongs to the closure of F for the topology of simple
convergence. In particular if @ € cp(A; H) with I, dense in A, then
a, belongs to the closure of %< for the topology of simple convergence.

LEMMA 4.2. Leta € cp(A; H) and cp(A; H) D F, a family major-
ised by a. If w €F, let T, be the corresponding element of 7w,(A) as
defined in 2.5. Then a belongs to the closure of F for the topology of
simple convergence iff 1 is in the weak closure of {T,: w € F} C m,(A)'.

Proof. The family {T,} satisfies | T,,||= 1 for all w € F. Hence 1

lies in their weak closure iff given € >0, pn=1, 0, €H, a, €N,
i=1,---,p, j=1,---, n, there exists w € F such that

(0-Tor (3 ai@m) A (S ai@m) )<e i=1owp

Zl {a[(a)*ai]ni,n))—(wl(a))*ai]lni, )} <e

fori=1,---,p.
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PROPOSITION 4.3. Let a€cp(A;H) and F be a family in
CP(A; H) majorised by a. If wE€F, V* denotes the corresponding
element in B(H,&,) such that w(x)=(V*)*w,(x)V*, VxEA. If a
belongs to the closure of F for the topology of simple convergence, then the
set {V*H: w € F} is cyclic for m,.

COROLLARY 4.4. Suppose a € cp(A; H), A and H are separable,
and that there exists a countable family F in CP(A ; H) majorised by a
such that a belongs to the closure of F for the topology of simple
convergence, then R, is separable.

PROPOSITION 4.5. {B.}.e;r is a family in cp(A; H) majorised by a
single element a in cp(A; H) and such that a belongs to the closure of
{B:}.c: for the topology of simple convergence. Moreover suppose that for
each iin I, there exists a family F; in CP(A ; H) such that B; majorises each
element of F; and belongs to the closure of F; for the topology of simple
convergence. If M, is dense in A, then the representations m, and P, m,,
are quasiequivalent.

COROLLARY 4.6. Let o,BE€cp(A;H) such that B<a and
M, = A. Suppose that there exists a family F(respectively G) in
CP(A; H) majorised by a (respectively B) such that a (respectively B)
belongs to the closure of F (respectively G) for the topology of simple
convergence, then g, is a quasiequivalent to a subrepresentation of ..

CoOROLLARY 4.7. Suppose a,B E cp(A;H) with M, CMy, a =
Blw, (i.e. a CB), and M, = A. If there exists a family F in CP(A; H),
majorised by B and such that 3 belongs to the closure of F for the topology
of simple convergence, then =, and w, are quasiequivalent.

DEFINITION 4.8. Let {a},e; be a family in ¢p(A; H). Then E =
{x € NI, : AN <ws.t. Z,a,(x) = A1 for all finite subsets J C I} is a face
in A* and hence is the positive part of a facial subalgebra It in A. If
x € E, Z,c;a,(x) exists as an ultraweak limit, and we define this limit to
be a’(x). Let a be the unique linear extension of a’ to . Then
a>2;a, for all finite subsets J of I, and in particular « €
cp(A;H). We write a = 2, a,.

(Alternatively, we could consider (Z &;)).

PROPOSITION 4.9.  Suppose {a.}ic; is a family in cp(A; H), and
suppose a € cp(A; H) with « CZ a,. Then the representation m, of A is

equivalent to a subrepresentation of P, ..

Proof. For each i in I, let IR, N, A, &, m be the canonical
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Stinespring objects defined by «; for each i in I. Since a; < a, we have
by 2.5 a partial isometry W;: &, — &, and an operator T, € m,(A) such
that the subrepresentation induced by the support of T; is equivalent to a
subrepresentation of 7,. For n € H put Wn= (W;(n)) € @Die:®:. For
x, EN, CN, n,€EH, j=1,2,---,n we have

(2

“ WA X @

2 n
= 2 ” “/iAiE x; @
i€l j=1
=2

iel

2

Aizl X; ®ni
i=

n

;1 p: (wi (X T X )M M)
! J

= zk <a(x7xk)nk’ 7lj>

2

A2 x @,

Hence W is an isometry from & into @ K. For each i in I, W;(R,) is
stable under 7, hence W(K) is stable under @,-e,m, and defines a
subrepresentation p of @ .

For all z in A, x in N, n €EH,

W, (2)Ax @1 = WA zx @1 = (Aizx @ 1 )icx
=(mZ)AXQ@N)ier =P m(z)WAX R 7
=p(z)WAx Q.

Hence W gives the required equivalence between m, and p.

DEerINITION 4.10. We say a € cp(A; H) is of type I (respectively
I1, I11, etc.) if the representation m, is of type I (respectively II, III, etc.),
and « is factorial if 7, is factorial.

CoroLLARY 4.11. Suppose {a.}ic; is a family in cp(A;H), and
consider« =2 a,. If foreach i € I, a; is of type 1 (respectively 11, 11,, 11,
III etc.) then « is of the same type.

CoroLLARY 4.12.  Those elements in cp(A ; H) of a fixed type, form
a convex subcone of cp(A; H).

PROPOSITION 4.13.  Suppose {a;}ic;is a family in cp(A ; H) such that
foreach i in I, there exists a family F, in CP(A ; H) majorised by «;, with «;
belonging to the closure of F. for the topology of simple convergence.



UNBOUNDED COMPLETELY POSITIVE LINEAR MAPS ON C*-ALGEBRAS 339

Suppose that « € cp(A ; H) is such that M, = A and « CZ a,. Then the
representations m, and P =, are quasiequivalent.

Proof. This follows from 4.5 and 4.9.

PropoSITION 4.14. Let @ € cp(A; H) with I, = A. Suppose that
there exists at least one family in CP(A; H) whose sum is . Then the
following conditions are equivalent:

(i)  a is factorial.

(it)  There exists a family of quasi equivalent factorial maps in
CP(A; H) whose sum is a.

If a is also of type I, they are also equivalent to:

(iii) There exists a family of pure elements of CP(A;H) with

equivalent representations whose sum is .

Proof. (1) > (ii). Let {w,: i €I} be a family in CP(A; H) such
that « =2 w, and w,#0, Vi. Then by 2.5 for each j in I, =, is
equivalent to a subrepresentation of m,. If a is factonal, =, is factorial
for all j, and quasi equivalent to ..

(i) > (1). If {w,:i€I} is a family of quasi equivalent factorial
maps in CP(A; H), then & 7., is factorial. If « = 2w, «a is factorial by
Proposition 4.9.

Now suppose «a is of type I.

(i1) = (ii)). Let {w,: i € I} be a family of quasi equivalent factorial
maps in CP(A; H). For eachi in I, =, is factorial of type I. We can
decompose ,, as a sum of irreducible representations

7, = m andsuchthat K, =€P H,.
)

JEIG JEIQ)

If we write V,,n=(P,ci, V'n) n € H, where V' € B(H, H,) and define
w/(x)=(V)*m(x)V' x € A, jEI(i), then

mVan = @ mx) (@ vin)

JEIQ JEIQ)

:@ m,(x)V'n VxEA, n€EH.

JEIQW)

Thus

(w(x*x)n,m)= 2 (w(x*x)n,m) x€EA, n€EH,

JETG)

and

(w!(x*x)m, m).

i€l j€IQ)

> (w(x*x)mm) =
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It follows that

aZE E w'.

€1 jEI(i)

Moreover since each pair w’, w* are quasi equivalent and pure, they are
equivalent by [8, 5, 3, 3],
(iii) = (i1) is trivial.

5. Von Neumann algebras. We now wish to see how our
study of the representations of operator valued weights carries over to
the enveloping von Neumann algebra. It is natural to include here the
following operator valued version of [3, Lemma 4.3] concerning scalar
valued weights.

ProposITION 5.1. Let M be a von Neumann algebra, and o €
cp(M; H). Then m, is normal iff z— a(x*zx) is normal for each x in
N.. In which case, if B denotes the norm closure of M,, then every
element of CP(B; H) majorised by «a, is the restriction to B of a normal
element in CP(M; H).

We then define cp* (M ; H) to be the set of a in cp(M; H) such that
m, is normal, and CP*(M; H)= CP(M;H)Ncp*(M; H).

Let A be a C*-algebra. If w € CP(A; H), there exists an unique
CP linear extension w to A the enveloping von Neumann algebra. The
support s, of w is called the enveloping support of w, and sc,, denotes the
central support of s, in A. 1- sc, is the largest projection in ker w. If
w,, w, are two such maps, they give quasi equivalent representations iff
SC., = SC.,. We wish to extend this for unbounded completely positive
maps, and in this way our results 5.2-5.5 generalise [3, 4.8-4.11]
concerning scalar valued weights. Suppose that FC CP(A; H) is an
e-filtering family, and B given by

B(x)(p)=sup(w(x).¢), xEA", ¢ ET(H)

is the associated cp_additive, positive homogeneous map from A™ into
I?(H) Put a = B. Then F={w:w€EF} is e- filtering, and define
B:(A) — B(H). by

B(x)(p)=sup (W(x).¢) xEA", ¢ET(H)
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We define @ = (B). Note that for each ¢ in T(H)., x = B(x)(¢) is
ultraweakly lower semicontinuous on A. Suppose M is a von Neumann
algebra, and y: M*™— B(H): is additive, positive homogenous and such
that x = y(x)(¢) is u.w. Is.c. on M~

Then n, ={x € M: y(x*x)=0} is a o-weakly closed left ideal in
M. If 6 = vy, we let p; be the largest projection in n,. Then 1—p; =s;
is called the support of 8, and sc; is the central support of s, If A isa
C*-algebra, and « is the upper envelope of an e-filtering family F in
CP(A; H), we let s, = s;, and sc, = sc,.

LEmMA 5.2. If M is a von Neumann algebra, and B is the upper
envelope of an e-filtering family G in CP*(M;H), then kerm, =
M,cckerm,, and 1— sc, is the largest projection in ker .

PROPOSITION 5.3. M is a von Neumann algebra, and B € cp(M; H)
is the upper envelope of an e-filtering family G in CP*(M; H). Then the
normal representations m, and P, . are quasi equivalent.

COROLLARY 5.4. Aisa C*-algebra, and o € cp(A; H) is the upper
envelope of an e-filtering family Fin CP(A ; H) such that MM, =A. Then
the representations 1, and m; of A are quasi equivalent.

Proof. m; and B, crm, are quasi-equivalent by 5.3.  Moreover, 7,
and @P,cr 7 are quasi-equivalent by 4.5.

CoRrOLLARY 5.5. If A is a C*-algebra, o, B € cp(A; H) such that
WM, =MW;=A, each the upper envelopes of e-filtering families in
CP(A; H), then m, is quasi-equivalent to a subrepresentation of m,
(respectively quasi-equivalent) iff sc, = scs (respectively sc, = scg).

6. Invariant completely positive maps. Our investiga-
tion of the structure of operator valued weights now proceeds by studying
those completely positive maps which are invariant under a group of
*-automorphisms of the algebra. This work is an extension of van
Daele’s. If we take the hilbert space H to be one dimensional, then our
operator valued results 6.1 and 6.3-6.17 reduce to 2.1-2.4, 2.6, 2.8-2.10 of
[15] concerning scalar valued weights.

A will always denote a C*-algebra, unless otherwise stated. We
say that a € cp(A;H) is G-invariant, where G is a group of *-
automorphisms of A, if I, is G-invariant and ag(a) = a(a) for all a in
IMN,. This is equivalent to

(ag)"(a)= a(a) VgeEG, ac€A”.
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LEMMA 6.1. Leta € cp(A; H) be G-invariant. Then N, and N,
are G-invariant and there exists an unitary representation U, of G in &,
such that

(i) UAxR@n=Agx)Q®n VxeN, nEH geG

i) Um(y)U,/=mg(y) Vy€A g€l

DeriNITION 6.2, If o € cp(A; H) is G-invariant, we denote by
F,= F§, and ¥, = K the G-invariant elements of ¥ = F* and ¥ = X
respectively, where %, J are as defined in 2.6.

As expected from 2.8, there is a natural relation between %, and %,
as the next lemma shows.

LEMMA 6.3. Suppose a € cp(A; H) is G-invariant. Then

(i) ¥ is a G-invariant left ideal for m,(A)'.

(i) H, is a left ideal in the fixed point algebra of w,(A). Forany S
in #,, there is a G-invariant map V = V*® in B(H[m,.(NHK]) (i.e.
U,V =V Vg € G) such that for each fixed n in H V., is the unique
G-invariant vector in [, (NE)K]™ such that

SAXxR®n =m.(x)V, Vx €N,

LEmMMa 6.4. Suppose a € cp(A; H) is G-invariant. Then for any
w in %, there is an unique S in ¥, such that 0=S =1, and

(wx*x)n,m)=|SAx @0} VYxeN, nEH
Conversely, for any S in J,, such that |S|| = 1, there is a w in &%, such that
(wx*x)n,m)=||SAx 7|} VxEeN, n EH.

CoROLLARY 6.5. (i) Let a € cp(A; H) be G-invariant with I,
norm dense in A, then %, is e-filtering.

(i) Let A be a von Neumann algebra, a € cp”(A; H) with I,
ultraweakly dense in A. Then %, is in CP*(A; H) and is e-filtering.

Proof. (ii) The only nontrivial point is to show that %, in
CP"(A; H) is e-filtering. Suppose € >0, w,, w, E %, and for all g, in
N miin Hi=1,---, n that

Z (1—eXwi(ata)n,n)= Z (wa(ata)m, i),

Then (1—€)w,—w,>0 follows from either 2.1 or [6, 2.4] (consider
[a%p.a;], where p, are projections in N N*, p, 1 1).
This leads us naturally to:
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THEOREM 6.6. (i) Let @ € cp(A; H) be G-invariant with I, norm
dense in A. Then there exists a G-invariant element a, of cp(A; H)
which is the upper envelope of ¥,. «, majorises any other G-invariant
element of cp(A ; H) which is majorised by a and is the upper envelope of a
G-invariant family in CP(A; H).

(i) Let A be a von Neumann algebra, a € cp*(A; H) with I,
o-weakly dense in A. Then there exists a G-invariant map a, which is
the upper envelope of ¥,. a, majorises any other G-invariant map v in
cp(A; H) which is majorised by a and such that vy is the upper envelope of
a G-invariant family in CP"(A; H).

Following van Daele’s one dimensional theory [15], we will construct
a unique normal G-invariant projection map ¢ of the ultraweak closure
 of I onto the ultraweak closure %, of %,, and which projects ¥ onto
Ho, and H*H onto H 5, It will then be possible to define a unique
G-invariant projection map ¢’ of & onto %,, which is BW continuous [1]
on bounded sets.

Let a €Ecp(A;H) be G-invariant. We will denote by E, the
projection onto the fixed points in &, Then U, -E,=E, U, =E,
V, € G. Moreover there exists a net of convex combinations
{ZA'(g)U,}sec converging strongly to E,. We can then show that if
S e X,

2 A (@USUY

converges strongly to an operator ¢S in %, The arguments of [15,
Prop. 3.2] lead us to the following conclusions:

PrOPOSITION 6.7. Let a € cp(A; H) be G-invariant. There exists
a unique normal positive G-invariant projection map & of & onto #, (the
o-weak closures). We have ¢(S)E,= E,SE, for any S in ¥. In
particular,

S(H)=KH,,  S(H*H)=HEH,.

COROLLARY 6.8. Let F, F, be the largest projections in % and ¥,
respectively, (the ultraweak closures). Then ¢F = F;,.

REMARK 6.9. It is clear from 4.2 that « belongs to the closure of ¥
(respectively %,) for the topology of simple convergence iff F =1 (F,=1
respectively). If a belongs to the closure of % for the topology of
simple convergence, it does not follow that a always belongs to the
closure of %, for the topology of simple convergence. See [15, 5.2]
where F =1, but F,=0.
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ProrosITION 6.10. Let a € cp(A; H) be G-invariant. Then there
exists a G-invariant projection map ¢' of F into %,, satisfying ¢'(Af) =
AG'(f), and ¢'(f+g)=@'(f)+ ¢'(g) whenever A =0, and f, g Af,
f+ge€ % If moreover M, is norm dense in A, then ¢' is onto %,, BW
continuous on bounded sets and unique.

REMARK 6.11. Note that when I, is dense in A, the formula
(wx*x)n,m)=|IS\Ax @0l  xEN, n€H

gives a bijection w » %S, between ¥ and {S*S:| S| =1, S € %}, the
elements of (X *% )" with norm = 1, and similarly for %, and #,. Then
on any bounded set in %, w, — w in the BW topology iff $%.S., = SS.
in the weak operator topology.

Our next results concern a study of the upper envelope a, con-
structed in 6.6, and the relation of the existence of fixed points in &, to
the existence of fixed points in &.

THEOREM 6.12. Let a € cp(A; H) be G-invariant, and M, norm
dense in A. Let F, be the largest projection in the ultraweak closure ¥, of
oy, and a, the upper envelope of ¥,. Then

(ae(x*x)1, M) =(FoAx @, Aux Q1) for all x in N,, n in H.

COROLLARY 6.13. Leta € cp(A; H) be G-invariant with I, norm
dense in A, and a belonging to the closure of F for the topology of simple
convergence. Then Fy=[m,(A)E8.]|". Moreover « majorises no non-
zero G-invariant element of CP(A ; H) iff & . has no nonzero fixed points.

COROLLARY 6.14. Let a E€cp(A;H) be G-invariant with
I, = A. Then there is an increasing net {w;: i € I} in %, such that

(@) (z)=sup (Wi)a(z) forall zin (M, ). N(A,)"

COROLLARY 6.15. Leta € cp(A; H) be G-invariant with I, = A,
and suppose there is a family {w;: i € 1} in ¥ such thata C Z.c;w. Then
there is a family {wS: i € I} in %, such that

ao(x) =, wix), Vx €I

ier
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Our final observations of this section are concerned with Radon-
Nikodym statements for operator valued weights. If & € cp(A; H), we
have seen the relation between the set {SE X *H:0=S =1} and ¥ =
{we€ CP(A;H): w<a}, (2.8). One may then wonder if for all T in
7. (A),0=T=1, there is a B in ¢cp(A;H), B <a and

Bx* )M =(TAx QmAxR®n) VxeN, n€H

This is the case if A is a von Neumann algebra. In the C*-algebra
situation, the first part of the following theorem, when G is the identity
automorphism, gives a partial converse to 2.5.

THEOREM 6.16. Let a € cp(A;H) be G-invariant  with
M,=A. For any G-invariant T in 7, (A), 0=T=F,, there is a
G-invariant element B of cp(A; H) B < a, with

BE* MM =(TAxQnAxRXn) VxeN, n€EH

For any Bincp(A; H) with B < a, and B |w, belonging to the closure of a
family 4 of G-invariant elements of CP(A ; H) majorised by B |n., there
exists an operator T in m,(A), 0= T=F,, and

BE*x)n, ) =(TAx@n,AxQn), Vx&N, n€EH
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