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A GENERALIZATION OF THE UNIT INTERVAL
WiLLIAM M. CORNETTE

Convex sets are discussed here in linear spaces over scalars
other than the reals. To facilitate this development, the interval
[0,1] is generalized to a unit interval in an arbitrary division
ring. The interval [0, 1] is shown to be the maximum general-
ized unit interval in the real number field, the complex number
field, and the quaternion division ring. Several elementary
theorems on convexity are proved for linear spaces over scalars
having generalized unit intervals of certain types.

For a real vector space 7, a set A CV is convex iff Vx,y € A,
VAE[0,1] (I1-A)x +Ay € A. As might be expected, some of the
vector space axioms are not needed when study is restricted to the convex
subset itself. In fact, instead of the two maps:

D:RXYV->YV
(a,x)— ax

E:VXV->Y
(x,y)—=>x+y

satisfying the usual vector space axioms, all that is required is a map:

T:[0,1]XxAXA—A
Ax,y)=>(1—-A)x+Ay

such that VA, u €[0,1] and Vx,y,z €E A
1) A-A)x+Ay=Ay+(0—-A)x
2 A=A)x+A[(1-p)y+puz]
=(1—/\;L)|:<1—(i_§ﬁ)f)x+(i_ii“y]+/\uz
B) A-A)x+Aix=x
4 (Q-A)x+Ay=(1—-2A)x+ Az implies y = z.

These axioms have been studied in some depth [1,6] and have been
applied to axiomatic quantum theory [1,2,6]. Such a development of
convex structures lacks much of the generality that is possible. For
example, the cardinality of points on a line segment is restricted to the
cardinality of the continuum. Also, the scalars used in axiomatic
quantum theory should be the complex numbers [3], or possibly the
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quaternions [4]; in these cases, it would be more convenient to treat these
scalars without involving any real vector space.

2. Unitintervals. Using the axioms for the map T as motiva-
tion, a definition is presented of a unit interval for an arbitrary division
ring. First a quasi-unit interval $ is a subset of the division ring & such
that

1) A, —AE S implies A =0

2) 0,1e¥

B) A-MNu+travedif Lu,vE S

Lemma 2.1. If 4 is a quasi-unit interval, then
@ 1-rESiIfres

(b) \wES fApES

() MAT'E S implies A = 1.

Proof. Parts (a) and (b) are trivial. For part (c), assume A,A7' €
# Then1-AEF and 1-A"'E H, so that

Al-A)=A-1= —(1-1)EF;

therefore 1—A =0 and A = 1.
In this light it seems natural to define an interval [a, b], to be

{cEF: (1-A)a+Ab=c for some A € $}.

The subscript $ may be omitted if it is understood in the context of the
material.

The development to this point closely parallels the approach of
Green and Gustin to quasi-convex sets in linear spaces
[5]. Unfortunately, to properly develop a convex structure, this is not
quite enough. It is necessary to define the natural ordering of the
quasi-unit interval as A = u iff 3o € $ such that ou = A. The following
lemma is immediate.

LEMMA 2.2,

@ A=pand p=Aiff A = p.
(b) A=p and p =v implies A = v.
) VAe s 0=Ar=1.

d A=spiff ap'E S

From part (d) above, it immediately follows that:

THEOREM 2.3. $ is totally ordered iff either A\u™' € F or uA~' € $
whenever \, u € 4.
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This theorem motivates the definition of a unit interval as a
quasi-unit interval such that Au '€ $ or uA™'€ ¥ whenever A, u € 4.
Henceforth, when [u, v], is written, it will be understood that u = ».

LEMMA 2.4. For a unit interval %,
(@ [Ou]l={res:v=yu}

) [wll={reF:n=yv}

©) [wv]={A€EF:p=r=v]

Proof. Part (a) is immediate.
(b) If vE[u,1], then A € # such that 1—-A)u + A = .

pl-A-)A-p)"'=pu[A-2u+1]"es

implies vZu. But v=pu implies yr'€f andv-p €S asv—pu =
(I-wuv )y, sothat v=1and v—pu =1-pu imply

(v—p)1-pn)y'es

Thus

-@-p)d-p)le+@-w)A-p)' =

(c) If A€[u,v], then Jo €F such that A =(1—-o)u +ov.
Therefore it is sufficient to show

(i) [A-o)p+ovlr'es
and

() pll-o)u+ov]'e s
Part (i) is clear, since (1 - o)ur™'+ o € [ur~',1]. Part (ii) follows from
(1) and (b), which show that ur'=(1-o)ur™'+o.

COROLLARY 2.5. If A = po and p € [po, 4] for any p, = p,, then
A=

COROLLARY 2.6. A=pif A—pu)=(0-A).

Proof. By Lemma 2.4, if A = u, then Jp, 7 € # such that u = pA
and A =(1-7)u + 7. Solving for 7, one obtains

TE@A-p)A-p)t=1-0=-0)A-p)h

therefore (1-A)(1— )" € #.  The converse follows similarly.
In light of Lemma 2.4, it seems reasonable to define (u,A)=
[, A]={m,A}. [m,A) and (u, A] are defined analogously.



316 WILLIAM M. CORNETTE

There are two topologies to be considered on $. The first is the
natural order topology, generated by the closed sets [A, u]o={v: A=v =
w}for A, u €F and A = u. The second topology is the closed interval
topology, generated by the closed sets

ALuls={reF:v=>1-0)A + ou, for some o € F}

for A, u € #. By the use of the above theorems, one immediately
obtains the following:

CoroLLARY 2.7. The closed interval topology is finer than the
natural order topology for a quasi-unit interval.

CoroLLARY 2.8. The closed interval topology coincides with the
natural order topology for a unit interval.

Now consider a unit interval # of an infinite division ring & and the
sequence {A"}, where A € $. Trivially, A" = A", Vn EN (N is the set
of positive integers). If A" converges in the natural order topology,
which is clearly Hausdorff, to a value u € %, then u = A¥, Vk € X, so that
PATT=A™, Vmn€EN. But u=pA™™=A" Vm,n €N implies pu =
uA™". Indeed, if w <uA™™ then Ip EN such that u S AP = puA ™"
Contradiction. Thus w(1—-A")=0, so A=1 or u=0. If A =1,
clearly u = 1. Moreover, where 0 # A# 1, {A"} is a strictly decreasing
sequence with a lower bound, so it does converge. Therefore, the
following has been proved:

LEMMA 2.9. For an element A# 1 of a unit interval in an infinite
division ring, A" —0 as n — « in the natural order topology.

The major scalars of interest in physical theory are the rationals, the
reals, the complex numbers, and the quaternions, denoted by ¥, R, €,
and 2, respectively. The unit intervals as they are normally defined in
the rational and the real fields obviously form maximal generalized unit
intervals under set inclusion in their respective fields. The same is also
true of the complex numbers, as shown below.

Consider = € and let [0,1]C#. Then re””? re”, and re”™” (r # 0)
are not in %, and re®®, r > 1, is not in #. Also, as # is connected in the
sense of € = R’ the second and third quadrants do not contain
elements in 4. Then by the factthat A" € $if A € 4,[0,1]=#. Byan
analogous argument, the same is true of the quaternion division ring 2.

For any division ring there exists a quasi-unit interval, namely the set
{0,1}. This unit interval is the trivial unit interval $,. Some other
examples of unit intervals are given as follows:
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(1) Ia = [0’ 1]
2 F=[0,1]N%K
(3) F.=1[0,1]N % for any subfield £ of R containing ¥.

LemMma 2.10. If % is a finite division ring, then $ = {0, 1}.

Proof. For A € $ —{0, 1}, there exists a prime p such that A? =
1. Then A*'=AT'€ ¥ Thus A =1. Contradiction.

From Lemma 2.10, it immediately follows that Lemma 2.9 is trivial
for a finite division ring.

THEOREM 2.11. If 4 is a nontrivial unit interval, then (1+1)"' € 4.

Proof. First note that (1 + 1) exists, since $ is nontrivial, and Z is
therefore infinite. Next assume A € # —%,. Then

A-2A+A0-A)=0+DHrA1-A1)e ¥
and
1I-2M)A+A0=A(1-r)E L

Total ordering implies either Au"'€F or puA'€F VA uE
#. Therefore (1+1)€F or (1+1)"€ F; but if (1+1)E ¥, then 1-
(1+1)= —1€ 4. Contradiction. Therefore, (1+1)"'€ 4.

LemMma 2.12.  If $ is nontrivial, then $y C 9.
Proof. VA, u €% Au = A, so

I-1)AQ-rp)'e s
Thus
a-1a-rAy)'eys

implies (1+A)'€ % If m' €S for a natural number m, then
(m+1)'ed Since 27'€F by Theorem 2.11, m'€F, Vme
N. Thus nm™ € $ for all natural numbers n = m, by total ordering.

By an argument similar to the above showing that $5 is a maximal
unit interval in €, it is easy to show that € —.# is dense in € — $5 and
# NIJs is dense in F5 for any nontrivial unit interval $. By an
analogous argument, the same is true of the quaternions.

Now if the completion £ of . in the reals, the complex numbers, or
the quaternions is also a unit interval, then $5 is the maximum unit
interval for these fields. Obviously 0,1 € # and if the sequences {A,},
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{u.}, and {0,} in # converge to A, u, and o, respectively, in %, then
obviously

A=A + Ao, = (1 - +Ac € S.

Assume all elements of the sequences {A,} and {u,} are nonzero. If the
sequence {A,u '} is partitioned into the subsequences {A,u;": Au,' € F}
and {Au.':Au.' &€ F}, then one of these subsequences will
converge. Both will converge if and only if A = u. If the first subse-
quence converges then Au '€ 4. If not, then uA '€ $. Finally, as-
sume = —A. Then choose the subsequence  which
converges. Assume that it is the first subsequence. Then

A= A(—A) = —1E 4

Contradiction. Therefore, the following theorem has been proven:

THEOREM 2.13.  If $ is a unit interval in a division ring ¥ with a
norm and $ is the completion of $ in the norm-induced topology, then ¥ is
also a unit interval.

From the denseness arguments given above, it follows that:

COROLLARY 2.14. 94 is the maximum unit interval in the reals, the
complexes, and the quaternions.

3. Convex sets. Using the concept of a unit interval $ de-
veloped above, a set A in a linear space 7" over a division ring & is
convex (with respect to $) iff (1-A)x +AyEA Vx,yE A and VA €
#. It is readily apparent that if % is finite, any subset of 7" is
convex. Similarly if # is trivial for an infinite division ring, any subset of
YV is convex. If the scalars are the rationals and .# is nontrivial, then the
convex sets are the usual ones; subsets of R, 6, and 2 that are convex
with respect to any nontrivial unit interval have closures that are convex
in the usual sense.

To demonstrate the generality of this approach to convexity, a few
standard terms are defined and a few basic theorems are stated below.

THEOREM 3.1. If A and B are nondisjoint sets convex with respect to
the unit interval ¥, then A N B is also convex with respect to $.

The proof of this is trivial. It is assumed that the empty set is not
convex.
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THEOREM 3.2. Let x,, X5, -+, X, € A, where A is convex with respect
to the nontrivial unit interval $. Then for A, Ay, -+, A, € F such that

Sa=1,
i=1

‘S:: Ax; €E A.
1=1

Before this proof is given, it is necessary to show that for any
l=j=n

n—-1 -1 n-1 1
/\]<Z )\,) €4 and (2 )\,) \ES
1=1

i=1

provided the sum in parentheses is nonzero. Assume that A, € ¥ — 4,
(i=1,---,n—1). Recall from the proof of Lemma 2.12 that A € ¥
implies (1+A)"'€ $. Similarly, A(1+A)"'=(1+A7")"'E€ S Now pro-
ceeding by induction, for n =3,

MM+ =0+ AN E S

by the total ordering of %, and similarly for A,(A,+ A;)".  Assuming that
the above holds for m, it suffices to show that

m 1
/\m<2 )\,~> €4
1=1
This follows since
m -1 m-=1 -1
Am(Z /\|> = /\m (Am + 2 /\1)
1=1 i
m—1 ~1\ -1
= (1 + <)\m_1<2 /\,> ) )\m_,)\;‘> €S

=1
The remainder follows similarly. The proof of Theorem 3.2 now

follows:

Proof. If n =2, one simply obtains (1— A,)x;+ A,x, since A, =
1—A,. For arbitrary n, if

n—1
> A#0,
i=1
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then

n

S ax = (1 _"")2 [)\ix,(g )\,)1]+/\,,x,..

=1

The theorem is then proved by induction.

Let the set A be convex with respect to a nontrivial unit interval
#. A point x, is a boundary point of A if there exist two other points x,
and y, such that

{z=0-Mx+Ax: A EF - F}CA
and

If $ is trivial, boundary points are not defined. A boundary point may
or may not be an element of A. The set of all boundary points of A is
the boundary of A and is denoted JA.

Lemma 3.3. If A is a convex set then A + x is also convex. If the
unit interval is nontrivial, then 3(A + x)= dA + x.

This lemma follows immediately from the fact that (1—-A)x + Ay +
z=(1-A)(x+z)+A(y + 2).

Extending the concept of a natural order to all the scalars, an
element a of the scalars is defined to be greater than zero if either a or
a” is in . This is equivalent to requiring the existence of some
A EJ — F, such that \a € . Also define a > iff (« —B)>0.

A sublinear functional is a function p from 7" into & such that

(1) px+y)=px)+py)Vx,yeV

2) p(ax)=ap(x) Va>0 and Vx € 7.

THEOREM 3.4. Let $ be a unit interval that defines the convex sets of
the linear space and an ordering on the scalars. (a) If p is a sublinear
functional, then for arbitrary c € ¥ and a € ¥,

A={x:p(x—a)=c}

is convex with respectto . (b) If c >0, the range of p is totally ordered,
and $ is nontrivial, then
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dA ={x: p(x —a)=c}.

Proof. By Lemma 3.3 it is sufficient to prove the theorem for
a =0. (a) follows from the fact that

p(A-A)x+Ay)=(1-A)p(x)+Ap(y)
=(1-X)c+i=c

To prove (b), assume p(x,)=c and let « € ¥~ %, and B>1. For
AES 1-(1-—a)A €S and [1+(B-DA]'E F, so

p((1 = A)xo+ Aaxp) < ¢

and
p((1—A)xo+ ABxo) > c.

Let ax,= x; and Bx, =y, in the definition of a boundary point. x,is a
boundary point.

Conversely, let x, be a boundary point of A. For x, and y,
satisfying the conditions in the definition of a boundary point

(1= A)p(xo)+ Ap(x)) = ¢ = (1~ A)p(x0) + Ap(yy).

By letting A approach zero, p(x,) = c.
A topology is convex compatible if the convergence of a sequence
{A.} in # to A € F implies

I-A)x+Ay—=>0-A)x+tAy Vx,ye7?.

THEOREM 3.5. Let V' be a linear space with a convex compatible
topology. If A is a closed convex set with respect to a nontrivial unit
interval, then A C A.

Proof. By Lemma 2.9 1-A"—1. Let x, be a boundary point of
A and x, € A such that

{Z = (1 - )l)X()+ Axl} CA.
Then the points z, = (1 — A")x,+ A"x, approach x,. Since A is closed,

X, € A.
It should be noted that the natural order topology on %5 is
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metrizable. Let A be a subset of 7" that is convex with respect to a
complete unit interval $. If there exists a topology on ¥ such that 7" is
a Hausdorff topological linear space and A is bounded, then there exists
a map

p:AXA—>S
such that
p(x,y)=p(y,x)
p(x,z)=p(xy)+p(y,2)
p(x,y)=0 iff x=y [1,2,6].

Furthermore, p(x,z)= p(x,y)+ p(y, z) iff there exists u € $ such that
y=(1-pn)x+uz. If A isnot bounded, then the “only if”’ portion of
the third condition doesn’t necessarily hold. Any map satisfying these
three conditions is called a generalized metric, and for any complete unit
interval, the natural order topology is metrizable.

4. Conclusions. The concept of convexity is quite
general. With this generalization of the unit interval, the assumption
that the set of scalars is  can be dropped from many major theorems on
convexity. In fact, it would be quite interesting to see how the theory of
convexity can be developed using a generalized unit interval. Use of
this generalization would tend to emphasize the actual requirements
(completeness, total ordering, existence of a norm or metric, etc.) on the
scalars and the unit interval needed for each theorem and would lead to
better comprehension of the theory of convexity.
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