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THE GENERALIZED TRANSLATIONAL HULL
OF A SEMIGROUP

JOHN K. LUEDEMAN

For a pair (^, Sf) consisting of a right quotient filter
& and left quotient filter £f on the semigroup S, a transla-
tional hull Ω(S: &, £f) is constructed. The results of Grillet
and Petrich hold for Ω(S: &, Sf).

Specializing «^and Sf one obtains the usual translational
hull Ω(S) of S and the semigroup of quotients Q(S) of S due
to Hinkle and McMorris. These results are applied to a
weakly reductive semigroup S to show that Ω(S) = Ω(Sn) for
any positive integer n.

In recent years two seemingly unconnected developements have
occurred in the theory of semigroups. Grillet and Petrich [4] have
studied ideal extensions of a semigroup S by means of a universal
extension Ω(S) of S, the translational hull of S. On the other hand,
McMorris [7] and Hinkle [5] have developed a theory of one-sided
semigroups of quotients of S using a maximal semigroup Q(S) of
quotients. Under certain conditions Q(S) is essential over S while
under similar conditions Ω(S) is a congruence dense extension of S.
Berthiaume [1] showed that congruence dense extension and essential
extension are the same concept. This similarity, along with many
others, between Q(S) and Ω(S) leads one to suspect the existence of
a theory of semigroup extensions more general than the above
mentioned theories. In this paper we offer a candidate for a general
theory. In section three we show that our concept might reasonably
be called a two-sided semigroup of quotients, having given our
constructions in sections one and two. In section five we show that
our construction yields an essential extension of S maximal in a
certain category. In section four, we follow the lead of Grillet and
Petrich [4] and examine extensions of S which are somewhat weaker
than essential extensions. Along the way we obtain as corollaries
some results of Hinkle [5] and Grillet and Petrich [4].

1* Basic definitions* In this paper, S will be a semigroup with
zero, denoted by 0.

A left S-set SK is a set K, with a distinguished element &,
having a scalar multiplication S x K—>K satisfying for all s,teS
and k e K, (st)k = s(tk), and 0s = & and kέ? = &.

Similarly one can define a right S-set Ks (with έ7).
In this paper we will not distinguish between ^ , the zero of K
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and 0, the zero of S. The meaning of the symbol 0 will be clear
from the context.

An (S, S)-set SKS is a set K with scalar multiplications S x K—*K
and K x S—> K such that 5 ί is a left S-set, Ks is a right S-set,
and for s,teS and keK, s(kt) = (sk)t.

A homomorphism p:sK~+sM of £e/£ S-seέs is a mapping
p: K—>M satisfying (s&)j0 = s(kp) for all s e S and keK.

Similarly one defines "homomorphism of right S-sets" and
"homomorphism of (S, S)-sets". We write left S-homomorphisms on
the right of their argument and right S-homomorphisms on the left.

51Γ is a sub S-set of SM if K £ M and K is an S-set under the
operation S x M —»M.

DEFINITION (Hinkle [5]). A collection & of right ideals of S
is a right quotient filter on S if

(1) if A, B are right ideals of S, A £ 5 and Ae<0£, then

(2) if A, -B e ^? and λ: A —• S is a right S-set homomorphism,
then X-'iB) = {ae A\xae B} e ^.

Hinkle has shown that a right quotient filter is closed under
finite intersections and if A 6 & and seS, then

An extension Ms of if̂  is an ^-extension if for meM,

Dually one can define a left quotient filter Sf on S and "£f-
extension."

An (S, S)-set s Vs is an ( ^ , ^f)-extension of slζs if F^ is an ^p-
extension of iΓs and 5 7 is an ^-extension of SK.

A right quotient filter & is idempotent if whenever i e ^ , J
is a right ideal of S and a~ιIe^ for all αeA, then I e ^ .

This condition is equivalent to the condition: if A e^? and for
each a e A there is Ra e ^ , then

2. The construction* Let ^ be a left quotient filter on Sf

& be a right quotient filter on S, and K be an (S, S)-set. Consider
all pairs (λ, p) where λ: Dλ—>K is a right S-homomorphism with
domain Dλ e & and p: Dp —> iΓ is a left S-homomorphism with domaia

DEFINITION 2.1. The pair (λ, p) is ( ^ , £f)-linked if for all
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y eDλ and x e Dpt x(Xy) = , . . _
Let B(K: &, £?) be the collection of all such ( ^ , ^-l inked

pairs. Notice that for keK, the maps Xk: S—>Kdefined by Xk(s) = ks
and ρk:S-*K defined by (s)ρk = sk given an (^ , .S^-linked pair
(λfc, ρk)eB(K: &, £f). Moreover, B(K: &, £f) is an (S, S)-set under
the operation s(λ, <o) = (sλ, s^) where sλ: J9̂  —> ίΓ is given by sλ(ί) =
s[λ(ί)] and sp: D8P-+K is given by (£)S|O = (ts)ρ where D8ί> = (D^s'1 e &
(sλ, β|θ) is linked since for y eDλ and x e D8P,

x((sX)y) = x[s(Xy)] = (a?s)(λi/) = [(xs)ρ]y

= [χ(sp)]y

since α s e Dp and (λ, /9) is linked. The definition of ps and λs and
the multiplication (λ, p)s — (λs, ps) is similar.

Where K = S, then B(K: &, £f) is a partial transformation
semigroup.

Define a relation (9 on E(JK:: &, &) by (λ, |θ)θ(λ', ρr) iff
(1) there is R e & with RQDλΓ\ Dλ, and λr = λ'r for all

re i? , and
(2) there is L e i ^ with L £ DP Π JD '̂ and έ̂o = tp' for all

ί e L .

LEMMA 2.2. θ is an (S, Sycongruence on B(K: &, ^).

COROLLARY 2.3. Θ is also a semigroup congruence on
B(S: &,

The straightforward proof of the above lemma and its corollary
will be omitted.

The quotient (S, S)-set B(K: &, £f)\θ will be denoted by
Ω(K: &, £f) and is called the (&, £f)-translational hull of K.

We usually denote the class of (λ, p) in Ω(K: &, Sf) by (λ, p),
but when clarification is needed, we denote it by [λ, p].

There is a canonical (S, S) homomorphism π of K into Ω(K: &y £f)
given by π(k) = (λfc, ĵ.). When K = S, π is a semigroup homo-
morphism.

DEFINITION 2.4. If the homomorphism π: K—>Ω(K: &, Sf) is
injective, K is said to be (^ , £f)-reductive.

REMARKS. (1) When =Sf is the collection of all left ideals of
S, then Ω(S: &, £f) is semigroup isomorphic to Q^(S), the semi-
group of right quotients of S developed by Hinkle [5].
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Proof. The map σ: Ω(S: &9 £f) — Q*(S) given by σ[\, p] = [λ]
is the desired isomorphism. Since σ[X, p] = σ[λ', p'] implies [λ] = [λ'],
X and λ' agree on some Re& and so [λ, p] = [λ', ̂ '1 since ^ and p'
agree on (0) e Sf and so <7 is injective. Moreover for [λ] e Q#(S),
σ[X,ls] = [X] where 1S:S—+S is the identity map on S and σ is
surjective.

To see that σ is a homomorphism, let [λ, p]9 [λ\ p'] e Ω(S:
Then<τ([λ, p][X\ p']) = σ([M, pp'\) = [λV] - [λ][V] - σ([
where λλ': Ό\ Π λ'" 1^ -> S and ^ > : Z)^ Π (pT'Dp —> S. Thus cr is a
semigroup isomorphism.

(2) Similarly, if ^ is the collection of all right ideals of S,
the mapping β: Ω(S: &, &) -> Qsλβ) ^ i y en by /3([λ, p]) = [/?] is a
semigroup isomorphism from i2(S: ̂ , Sf) onto the semigroup Q^(S)
of left quotients of S developed by Hinkle [5].

(3) If & = Sf = {S}, then Ω(S: £P, £f) = Ω(S), the transla-
tional hull of S.

(4) Where & is the collection of all right ideals of S and £f
is the collection of all left ideals of S, then Ω(K: &, J?f) is trivial
since (λ, p)θ(\', ρr) for all (V, p'), (λ, p) e 5 ( ^ : ^ , ^f) since λ and λ'
agree on (0) e & and p and p' agree on (0) e Sf.

( 5 ) β(S: ̂ , =^7) always has an identity.

PROPOSITION 2.5. i2(iΓ: ̂ , ^) is an (&, £f)-extension of π{K).

Proof. We will show that Ω(K: &, J*f) is an J^-extension of
π{K). Since the ^-extension part is similar, it will be left to the
reader.

Let [λ, p] e Ω(K: &, £f) with DP e £f. For s e DP, s[X, p] = [sλ, sp].
Now JDS|0 = Dps'1 e jSf and for t e DsP, t(sp) = (ts)p and since sp e K,
sp = pβ P. On the other hand, for t e Dsλ — Dx, sX(t) = s(Xt) = (s/))^ =
λβ,(ί). Since ŝ o 6 K> s[X, p] = [λsP, /^J e

COROLLARY 2.6. When K is (&, ^yreductive, Ω(K: &, £f) is
an (&, £f)-extension of K.

When S is a semigroup, we are interested in the idealizer of
π(S) in Ω(S: ^

PROPOSITION 2.6. 7/ S is (&, ^f)-reductive, then the idealizer
of π(S) in Ω(S: ̂ ?, £f) is

T = {[λ, p]: Dλ = DP = S}.

Proof. Note first that if seDλ9 and (λ, p) are linked, then for
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t β S-'Dz,

Xs(t) = X(st) = (Xs)(t) = λ,.(ί)

and for teDP we have

(t)(ps) = (tp)s = t(Xs) - (t)pλs .

Thus if (λ, ρ)eT, seDλ we have

(λ, p)π(s) = (λ, p)(Xs, p.) = (λs, /os) = (λ,s, ft.) = π(Xs) .

Similarly if (λ, p) are linked and seDP, then (£)s/> = (t)ft, and
sX(t) = XsP(t).

Thus

π(s)(λ, p) - π ^ ) for (λ, p)eT .

Therefore, T is contained in the idealizer of π(S).
Conversely, let (λ, p) belong the idealizer of π(S) in Ω(S: &, £έ>).

Then for all seS, (λ, ρ)π(s) and π(s)(X, p) belong to π(S). We
consider (λ, p)π(s) since the other case is similar. Now (λ, p)π(s) =
π(t) for some ί eS. Define X': S—>S by λ'(β) = t if (λ, ^ ( β ) = π(t).
Note that λ' is well defined since π is injective. Moreover λ' agrees
with X on Dλ since if seDλ, (λ, jθ)ττ(s) = π(λs). It remains to show
that λ' is a right S-homomorphism for then (λ, p)Θ(X\ p). Similarly
define ρ'\S-+S by (s)pf = t iff π(s)(λ', /?) = π(s)(X, p) = π(ί). Then
(λ, |θ)θ(λ', |θ') and (V, ^') 6 Γ.

Suppose X'(s) = ί and λ'(βa?) = α. We consider two cases. First,
if s eDx, then λ'(s) = λs = ί and α = λ'(sίc) = X(sx) = (Xs)x = ίίc and
so λ'(s)# = Xf(sx). Next, if s $ Dλ, then for z e x"1^"1^ = (sx)"1!);,

= X[s(xz)] = λs[x^] = £[x#] = (to)« .

Moreover, for yeDp

ya = y(ρsx) = [(2//>)s]a? = [2/̂ sJx = (yt)x = y(ta )

thus 7r(α) = ττ(ta) or α = tx or λ'(sx) — λ'(s)α?.

COROLLARY 2.8. When £? = & = {S}, and S is
reductive then π(S) is an ideal of Ω(S: &

3* Two sided semigroup of quotients* In the last section we
show that Ω(S: &, £f) can be the translational hull or a semigroup
of quotients of S. In this section we show that Ω(S: &, Sf) can
naturally be considered as a two-sided semigroup of quotients of S.

DEFINITION 3.1. Let F b e an (^?, ^f) extension of K. For each
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aeV, define λα, ρa, τa = [λα, pa] where λα: a^K-^K is given by
λα(d) = ad and ^ i Za"1 —> K is given by (d)pa = da.

THEOREM 3.2. // V is an (&, ^f) extension of K, the mapping
τ:a—>τa is a canonical (S, S)-homomorphism of V into Ω(K: έ%, £f)
which extends the canonical homomorphism π of K into Ω(K: &, Jtf).

The proof of the above theorem is straight forward and will be
omitted. When there is any danger of confusion, we will denote
τ: V— Ω(K: &ί, &>) by τ(V: K).

DEFINITION 3.3. The (^?, £f)-congruence on an (S, S)-set M is
denoted by rjM and defined by

7]M = {(m, n)\tm — tn for all t in some LeJίf and mr = wr for

all r in some R e

When the filters & and = ^ are to be stressed, we write

LEMMA 3.4. Γfoβ ( ^ , ^f) congruence on K is πo π~ι where π is
the canonical homomorphism of K into Ω(K: &

COROLLARY 3.5. K is (&, ^f)-reductive iff rjκ is identity
congruence.

In order to determine when τ is the unique homomorphism,
extending π we use the following item.

LEMMA 3.6. If K is (&, £f)-reductive or both & and £? are
idempotent, then the (&, Jif)-congruence on K is the identity.

Proof. Suppose ω, ω' e Ω(K: &, £f) and (ω, ω') e y}aικ:&,*) where
ω = [λ, p] and ω' = [λ', ρf\. Then for all xeDλf)Dλ,Γ\D and s e S,
(where ωx = ω'x for all xeDe

X(xs) = λλβ(s) = λ'λx(s) = λ'(ίcs)

and for all y e D^ Π Ό9, Π D' and s 6 S, (where cZω = dω' for deDf e

If «5f and & are idempotent, there is BPeSf, A2e& with
A2 S A Π A ' Π D and ΰ 2 £ DP n JD^ Π D ; and so λ and λ' agree on
A2 while jO and pf agree on β2, thus (λ, p)Θ(X', ρf) and ω = ω' in
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On the other hand if xeDλΓiDλ>Γ[D and yeDPf)DP,f) D', then

y(Xx) = (yp)x = (y)ρρx = (y)ρ'ρx = {yρ')x = y(\'x)

and similarly (yp)x = (yp')x. Consequently if K is (^?, i^)-reductive,
VP = Vp' and λx = λ'α? for all y eDp f] DP> and α? e Z)̂  n A ' and so
(λ, ρ)Θ(X', ρr) and ω = ω'.

PROPOSITION 3.7. If K is (&, £f) reductive or both & and £f
are idempotent, then τ(V: K) is the unique (S, S)-homomorphism of
V into Ω(K: &, J*f) extending π.

The proof of this proposition is a simple modification of the
proof of Proposition 1.3 of [4] and so will be omitted.

PROPOSITION 3.8. // V and V are {&, £f)-extensions of K and
φ is an (S, Syhomomorphism of V into V which is the identity on
K, then

Proof. Let veV, xe v~ιK and y 6 Kv~\ then φ{v)x — φ(vx) ~ vx
and yφ(v) = φ(yv) = yv. Thus pφ{υ) and pυ agree on Kv~ι e Sf and
XPM and Xυ agree on v^Ke^ and so the conclusion follows.

For a right S-set M and rqf &, Hinkle [5] defined the ^S*-
singular congruence rj(&) on M by

= {(m, n)\mr = nr for all r in some R e &} = η(M: R)

Similarly for a left S-set N and Iqf J*f9 there is an ^"-singular
congruence >7(=Ŝ ) on N. η(&) is a right S-congruence and
is a left S-congruence.

LEMMA 3.9. For an (S, S) seέ Λf, rg/ & and Iqf

7]{M: &, &>) = gy(^) n

The proof is straightforward as is the proof of the next lemma
and hence both proofs are omitted.

LEMMA 3.10. // one of η{&) or r](Jzf) is the identity congruence,
then M is (&, Jίf)-reductive.

Given a right S-set K and a rqf <%, Hinkle [5] constructed a
maximal right S-set of quotients Q(K: &) of K as the S-set of all
right S-homomorphisms with domain a member of & and codomain
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K factored by the congruence Xθxr iff Xs = X's for all s in some
BQDλf)Dλ, where Re&. An S-homomorphism λ: K —>Q(K: &)
can be defined by X(k) — [Xk] where Xk: S —•> K is given by s —> ks.
Then λoλ"1 = 7)(K: &) and X is an injection of K into Q(K: &)
when Ύ]{K: &) is the identity. Analogous results hold for a left
S-set M and Iqf £f. The maximal left S-set of quotients of M is
denoted by Q(M: ^f).

Now let S be a semigroup with zero, ^ b e a Zg/ on S, ^ be
a rς/ on S and both η(S: Sif) and η(S: &) be the identity. Note
that S is a right S-set, left S-set and (S, S)-set with respect to the
semigroup multiplication. Since both 7](S: «5f) and η(S: &) are the
identity, S is (^?, £f) reductive, and so we identify S with π(S) £
β(S: ^P, =^), MS) £ Q(S: ̂ ) and p(S) £ Q(S: ̂ ) .

Now Q(S: &) is a semigroup under the multiplication [λj[λ2] =
IX o λ2] where λx o λ2; λΓXD )̂ —* S is the composition map. Moreover
the canonical map λ: S —> Q(S: ̂ ) is a semigroup monomorphism.
Let 7={g6Q(S:^r) | iSg- 1 e^ ! ? }. Then V is the maximal subsemi-
group of Q(S: &) which is an ( ^ , .Sf) extension of S. Define
^: V-+Q{S: £f) by ^(g) = qf = f^^]. Thus ^ is a semigroup homo-
morphism which is the identity on S since pqiQ2 agrees with pQlopq2
on Sq^qϊ1 6 ̂  Since ^ is the identity on S, ^(sg) = s^(g) = sg' and
so 0(F) = {q'eQ(S: £?)\(q'YιS£&}. Since ^ is a monomorphism,
we identify V with ^(F) and so 7 = Q(S: &) Π Q(S: .Sf).

Now τ(F: S) = τ(F': S)o^ by Proposition 3.8. Moreover, τ(F: S)
is injective for if τg i = τ% then (λffl, pqi)θ(Xq*, pqή so there is 12 6 &
with gxr = g2^ for all r eR, thus g,. = g2. Recall τ( F: S) is the
identity on S.

Finally we show that r(F: S) is surjective. Let [λ, p] e
Ω(S: &, £f), then g = [λ] e Q(S: &) and g' = [p] e Q(S: £f). It suffices
to show that g e F. To this end let teDP, and seDλ, then

(tp)s = ί(λs) = ί(gs) = (tq)s e S .

Thus X{tq) = λ { ί, } on Z), e ^ , and since tp e S ίor te DP, [XtP] = [X{tq)] =

ίgeS for all t eDP. Thus ^ G 7 . Clearly τq = [λ9, ^^ = [λ, <o] and
so τ(V: S) is surjective.

We have proven the following result.

THEOREM 3.11. When both rj(S: &) and η(S: £?) are the identity
congruence, Ω(S: &, JZ?) is a semigroup isomorphic over S to
V = {qe Q(S: £f) \ q~ιS 6 ̂ } and {q e Q(S: &) \ Sg"1 e £f} = V.

If we identify F with F' and Ω(S: &, .Sf), the above result
shows that Ω(S: &, £f) = Q(S: &) n Q(S:
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4* Strict and pure extensions* In the remaining sections es-
sential extensions will play a large role. However, we would like
information on ( ^ , =S^)-extensions V of K which fail to be essential.
We can classify such extensions by their image under τ(V:K).

DEFINITION 4.1. The type of an (^?, .^-extension V of K is
the image T(V: K) of V under τ(V: K).

When K is (^?, =5f)-reductive, it is easily seen that the types
of extensions correspond to the subsets T of Ω{K\ &, Sf) which are
(S, S)-sets containing K. We first discuss the ( ^ , i^)-extensions V
of K which are, in some sense, as bad as possible—that is, for v e F,
there is k e K for which xk = xv for all x in some member L of <£?
and ky = vy for all y in some R e &.

DEFINITION 4.2. An (̂ f5, ^)-extension V of K is strict if it has
type π(K).

When K is (^?, =5^)-reductive, we will characterize the strict
?, i^)-extensions of K by means of (partial) homomorphisms.

REMARK. In this and the following actions we pretty much
follow the approach of Grillet and Petrich [4]. The proofs of many
of the results are easy modifications of the proofs in [4] and so will
be omitted.

DEFINITION 4.3. An (S, S)-set T is (^?, ^ - t r i v i a l if for each
t e T, Or16 & and r x 0 e ^?.

An (^, .^-extension V of K is called an ( ^ , =5^)-extension of
K by T if T is (S, S) isomorphic to the factor (S, S)-set V\K.
Notice that in this case T is (^?, ^)-trivial.

Strict (^, =^7)-extensions of ( ^ , ^)-reductive S-sets by T may
be characterized in terms of partial homomorphisms of T in the
following sense:

DEFINITION 4.3. Let V be an (^?, .Sf )-extension of K by T.
The extension V is said to be determined by a partial homomorphism
TΓ: T\{0} 7 if for nonzero a e T and all seS,

[as if α δ ^ O
a o s = ]

( ) if <zs = 0

while

sa if sa Φ 0

sπ(a) if sa == 0
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where o is the scalar multiplication in V.

PROPOSITION 4.4. An (&, £f)-extension V of K by T is deter-
mined by a partial homomorphism iff K is an (S, S)-retract of V.

The proof of Petrich ([9], Proposition 2, p. 51) carries over
verbati to this case.

PROPOSITION 4.5. Each (&9 J2f)-extensίon determined by a par-
tial homomorphism is strict.

There is a converse to this proposition when K is (^?, βSf )-
reductive.

THEOREM 4.6. Let K be (&, J^)-reductive. Then each strict
, Jΐf)-extension of K is determined by a partial homomorphism.

Proof. Let τ = τ( V: K) where V is a strict extension of K.
Then τ: V—>π(K) and since π is an isomorphism, r 1 © : : V—*K is
an (S, S)-homomorphism whose restriction to K is the identity.

COROLLARY 4.7. Let S be an (&, Jϊf)-redv,ctive semigroup and
Q be an (&, J5?)-trivial semigroup. Then there is a strict (&, Jzf)-
extension of S by Q iff there is a partial homomorphism of Q\{0}
into S.

Strict (^?, <=g
=?)-extensions of K can be characterized as follows

PROPOSITION 4.8. Let V be an (&, £f)-extension of K. If any
(S, Syhomomorphism of K into another (S, S)-set can be extended to
V, then V is a strict extension of K. The converse holds if K is

, Sf)-reductive.

Proof. The identity map id: K—+K is an (S, S)-homomorphism
and so has an extension /: V —»K. Thus K is a retract of V and
so 7 is a strict extension of K.

Conversely, let K be (^?, ̂ )-reductive and K be a retract of
V. Let a: K-> T be an (S, S)-homomorphism. Then if r: V->K is
the retraction, r ° a: V—+ T is the desired extension.

Finally, strict extensions shed some light on the structure of S.

PROPOSITION 4.9. If every (&, Jzf)-extension of S is strict, then
S has an identity.
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Proof. The extension S1 obtained by adjoining an identity to S
is an (^?, =5^)-extension since Se& f] £? and so is strict. Thus
for some ceS, τ1 = πc. Thus for x e S,

lx ~ ex = x = xc — xe

since Dλl = A>1 = S. Thus c is an identity for S.
At the opposite end of the spectrum from the strict extensions,

we have the pure extensions.

DEFINITION 4.10. An (^, ^-extension V of K is pure if the
canonical homomorphism v:V/K—> T(V: K)/π(K) satisfies v~\0) = {0}
where v is induced by τ(V: K).

LEMMA 4.11. An {&, £f)-extension V of K is pure iff for any
aeV, τae π(K) implies aeK.

Lemma 4.11 says that pure extensions are "best" in the sense
that no element of V agrees with some element of K on a member
of Sf and on a member of &.

We have the following result which determines all pure ( ^ , £?)-
extensions of S.

DEFINITION 4.12. An (S, S) homomorphism between (S, S)-sets
with zero f:K->Q is pure if /^(O) = {0}.

THEOREM 4.13. Let K be (&9 ^f)-reductive and Q be an
trivial (S, S)-set with zero. Every pure homomorphism of Q onto
the (S, S)-set T/π(K), where T is a type of (&, ^)-extension of K,
determines a pure (&, ^f)-extension of K by Q of type T, whose
scalar multiplication * is given by the following formula {where
Q* = Q\{0} and Θ(a) = Θa = [λα, pa] e T\π(K) for a e Q*):

ab aeK, beSorbeK,aeS

θ(ab) = θab α e Q * , beSa*b= \θ(ab) =

\θ{άb) = aθb α e S , beQ

Conversely, every pure extension of K can be constructed in this
fashion.

COROLLARY 4.14. When Q* is a semigroup, Θ is a semigroup
homomorphism and K — S, then the above result shows that each
pure (&, Sf)-extension can be given a semigroup multiplication by
defining for a, be Q*, α*6 = ab if ab Φ 0 and α*& = seS if ab = 0
and Θaθh = πse π(S).
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The proof of the above results is an easy modification of the
proof of Theorem 2.11 of [4].

The reason for considering strict and pure extensions is evident
by the next theorem.

THEOREM 4.15. Let V be an (&, Jίf)-extensίon of K. The
complete inverse image U of π(K) under r( V: K) is the greatest strict
(&, £?)-extension of K in V and V is a pure (&, Jtf)-extension
of U.

Proof. Since τ{ V: K) is a homomorphism and T{ V: K) contains
π{K), U is an (S, S)-subset of V and so is an (^p, ^-subset of V.
Since τ(V: K) maps K into π(K), we must have K £ U. And since
U Q V, U is an (^?, .Sf )-extension of K. Clearly U is a strict ex-
tension of K. Moreover if U' is an (^g, =^7)-extension of K in F,
then τ(U':K) is the restriction of τ(V: K) to U\ Hence if Uf is
strict, then Uf £ U and so U is the greatest strict ( ^ , .S^-extension
of K in V.

Now let veV, and suppose that τv(V: U)eπ(U). Then for some
u 6 U, vs ~ us for all s e R e & and tv = to for all teL' e£f. But
w 6 ?7 implies that for some keK, kx = ux for all x in some lϋ" 6 &
and #ft = #tt for y e some L" 6 £f. Let R = R' f]R"e& and
L = L ' f l I / " e ^ then for all a e L and all yeJB, αw = ^ and
2̂/ = ky and so v e U.

5. Congruence dense extensions* In this section we will show
for (&, .S^-reductive K, that Ω(K: &, Sf) is the maximal essential
(^P, cS;p)-extension of K and so is unique up to isomorphism.

In the remainder of this section, V will be an ( ^ , ^J-extension
of K.

An (S, S)-congruence on V whose restriction to K is the identity
is called a K-congruence.

7 is a congruence dense extension of K if the identity is the
only iΓ-congruence on V.

V is an essential extension of K if each (S, S)-homomorphism
/: V —* Γ, T any (S, S)-set, whose restriction to K is injective is an
injection.

Berthiaume [1] has shown that congruence dense extensions
coincide with essential extensions.

LEMMA 5.1. η(V: &, £f) = r o r 1 where r = τ(V: K).

Proof. (x,y)eη(V:&,£f) iff there is 22e^?, Le^f with
α;r = τ/r for r e ^ and ta = ty for £eL. Let V = ίΓ^"1 Π ϋΓΐΓ1 Π
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L e ^ a n d R = x~ιKn y~ιKΓ)Re&. T h e n tx = ty fo r teV a n d
xr = yr for r e i?', thus τx = [λx, ̂ x] = [λ#, ÔT/] = r*.

Conversely if τ" = τv, then [λ*, jθβ] = [λy, p*] so there is L e ^
and Re& with #r = yr for r e ^ and to = ty for ί e L. Thus

THEOREM 5.2. Every K-congruence on V is contained in
η{V: &, £f)m Moreover if K is (&, £f)-reductive, η(V: &, £f) is
the largest K-congruence on V. In any case, Y]{K) = {v e V\vηk for
some keK} is the largest strict subextension of V.

Proof. Let ^ be a if-congruence on V. Then a^b implies
as = 6s for all s e a~λK Π b~ιK e &. Likewise ta = tb for all
t 6 Ka'1 n Kb'1 e £f. Thus (α, b) e y(V: &

If K is (JST, ,^)-reductive, then ^( F:
which is the identity thus η{ V: &, Jϊf) is a if-congruence.

If α e^(i^), then τa = τb for some keK and so )?(1O is the largest
strict subextension of V.

COROLLARY 5.3. If K is (&, «SP)-reductive, then V is a pure
extension iff ^{K) = K for every K-congruence on V.

When K is (^ , =^)-reductive, the following theorem charac-
terizes strict (,^, ώ^)-extensions by means of extensions of (S, S)-
congruences on K. The proof is modelled after that of [4, Prop-
osition 3.3].

THEOREM 5.4. Let V be an {&, ̂ f)-extension of K. If each
(S, S)-congruence on K is the restriction of some (S, S)-congruence
^ on V such that W{K) = V, then V is a strict extension of K.
The converse holds if K is (&, ^f)-reductive.

Proof. Let ̂  be the identity congruence on K, then ^(K) — V
and so for veV, there is a unique keK with v^k. Now if s eKv~\
sv^sk and so sv = sk on Kv~γ and similarly, if tev~γK, vt^kt and
so vt = ftί on v"1^. These equations imply that τv = τfc and thus
the extension is strict.

If K is {&, ̂ )-reductive, then if is a retract of V iff V is a
strict extension of if. Then given an (S, S)-congruence ^ on if,
extend ^ to ^ on 7 by ωiF'y iff r(ω)^r(v) where r:V->K is
the retraction. Then since ω^r(ω), r^(K) = F.

REMARK. This result may be used to give a different proof of
Proposition 4.8.
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Theorem 5.2 characterizes congruence dense extensions of
, =2^)-reductive (S, S)-sets as follows:

THEOREM 5.5. Let K be (&, S^Yreductive, then V is congruence
dense (essential) over K iff V is (&, £f)-reductive. Thus congruence
dense extensions are pure.

When Jίf is the lattice of left ideals of S, we have the following
corollary due to Hinkle [5, Corollary 4.13].

COROLLARY 5.6. When S is ^-torsion free, then an ^-extension
V of S is essential iff V is ^-torsion free.

When & = £f = {S}, we have the following corollary due to
Petrich and Grillet [4, Theorem 3.7].

COROLLARY 5.7. Let S be weakly reductive. Then V is a
congruence dense extension of S iff τ( V: S) is injective.

Returning to the general case we have the

COROLLARY 5.8. When K is (&, £?)-reductive, V is a con-
gruence dense (essential) extension of K iff there is a monomorphism
of V over K into Ω(K: &

Since τ(Ω: K) is the identity on Ω(K: &, £?) where K is (^P,
reductive, then Ω(K: &, Sf) is congruence dense over K. Hence
when Sf is the lattice of left ideals of S and S is ^-torsion free,
then [5, Corollary 5.6] Q#(S) is essential over S.

Finally, we characterize pure ( ^ , =S^)-extensions of (^, SfY
reductive (S, S)-sets by means of congruence dense extensions as
follows:

COROLLARY 5.9. Let K be {&, S^Yreductive. Then V is a pure
extension iff there is an (S, SYhomomorphism ό over K of V into
a congruence dense extension D of K with φ~ι{K) — K.

Proof. Let T = Γ( V: K). Then by Corollaries 5.7 and 5.8, there
is a dense extension D of K of type T. Then φ = τ(D: K)~ι°τ(V: K)
is an (S, S)-homomorphism over K of V into D. Since V is pure
over K, φ~\K) - τ(V: K)'\π(K)) = K.

Conversely, let φ be the given homomorphism, then r(V: K) —
τ(D: K)oφ by 3.8 and τ(F: K)~\π{K)) = φ~\K) = K since τ(D: K) is
injective. Thus V is pure.
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We now prove the main result of this section.

THEOREM 5.10. When K is (&, ̂ -reductive, Ω(K: &, ^f) is
the maximal essential (&, Jzf)-extension of K.

Proof. By the remark after Corollary 5.8, Ω = Ω(K: &, £f) is
essential over K. Now suppose F 2 i 3 is an essential (^?, £?Y
extension of K. Thus τ(V:K) is injective and τ(V: K)\Q = τ(Ω:K) is
the identity. Moreover if v$Ω, then τ(V: K)(v) = x e Ω, and τ(V: K)
is injective. For s e Ωv"1 e £f and t e v~ιΩ e ̂ ?, we have xs =
τ(V: K){vs) = vs and tx = τ(V\ K)(tv) = tv. Thus (α?, v) e η(V:
which is the identity. Thus x = v and V = Ω(K: &

THEOREM 5.11. Ω(K: &, ^f) is unique up to isomorphism over
K, when K is (&

Proof. Let V be any other maximal essential ( ^ , =^)-extension
of K. Then τ(V: K) is injective by Theorem 5.5. If T(V: K) =
T C Ω(K: &, j ^ ) , then τ(V: K) can be extended to an (S, S)-isomor-
phism of an (^, ^-extension 7 ' 2 F onto β(E:: ̂ , £f). Conse-
quently, 7' is congruence dense over K by Theorem 5.5. Thus
V = V and so τ(V: K) is an isomorphism.

When & = .5^ = {S}, then we have as a corollary the following
theorem of Gluskin [3]:

THEOREM 5.12. Let S be weakly reductive, then S is a densely
embedded ideal of V iff there is an isomorphism over S of V onto
Ω(S).

Notice also that Theorem 5.10 says that Ω(S: &, £?) is not only
the maximal congruence dense (^?, ̂ )-semigroup extension but is
also maximal among congruence dense ( ^ , .S^-extensions as an
(S, S)-set.

6. The injectivity of Ω(K: &, J2^). In this section we show
that Ω(K: &, £?) is the (^ , =g;7)-injective hull of K. First we prove
that an (,^, j2^)-injective hull of K exists.

DEFINITION 6.1. A bi-S-set SKS is ( ^ , ^Yinjective iff each
(S, S)-homomorphism /: sT^—> SKS has for any ( ^ , =Sί?)-extension SNS

of T an {S, S)-extension f\N~^K. In particular, SKS is injective
when & consists of all right ideals of S and J*f consists of all left
ideals.

Let K be any bi-S-set and let Ksl denote the set of all mappings
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from Sι to K. Ksl is a bi-S-set under the mutiplication (sf)(x) =
s(f(x)) and {ft)(x) = f(tx) for all α e S1. Consider if as a subset of
Ksl by ifc: S1 -> if by ft(a) = to for all α e S1. That if*1 is an injective
(S, S)-set follows by noting in Theorem 6 of [1] that the constructed
extension is an (S, S)-homomorphism.

PROPOSITION 6.2. For each (S9 S)-set if, there is an injective
(S, S)-set Is containing if.

We require the following lemma from [1].

LEMMA 6.3. Let A, B and C be (S, S)-sets with AQ B £ C.
Then A is essential in C iff A is essential in B and B is essential
in C.

Now let SKS be given. Following Berthiaume, we see that K
has a maximal essential extension K which is also the minimal
injective extension of K. Moreover K is unique up to isomorphism
over K. For any injective extension I of K, K is the maximal
essential extension of K in /. Let E be a maximal (,<̂ ?, i^)~extension
of K in K which exists by Zorn's lemma.

LEMMA 6.4. E is (&, j^f)-injective when both & and & are
idempotent.

Proof. Let SMS be an (.^, J2^)-extension of SNS and φ:N—*E
be an (S, S)-homomorphism. Let φ: M—+ K be an extension of φ to
M. Consider W = ψ(M) U E £ K. It suffice to show that W is an
( ^ .5^)-extension of E, for then W is an (.^, ̂ ^)-extension of if
since & and .2rp are idempotent; thus W = E and we are done.

Therefore, let φ{t)$E. Then there is ί e j 5 and LeSf with
tBQ N and L£ £ JV. Thus 0(ί)i2 = φ(tB) £ £/ and likewise Lφ(t) £ J&.
Hence TΓ is an (..̂ , ,^)-extension of I? and we are done.

THEOREM 6.5. E(K) — E is the maximal (&, J*f)-essβntίal ex-
tension of K.

Proof. Let T 2 E be an ( ^ , =^))-essential extension of K. Then
without loss of generality, T £ if, the maximal essential extension
of if. Thus T = E.

THEOREM 6.6. E(K) = E is the minimal (&, £^)-injective ex-
tension of K, when both & and J^ are idempotent.
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Proof. Let K Q T £ E and T be an (̂ f5, =Sf )-injective extension
of K. Then there is an extension φ:E—*T of the identity map
1: T—>T. By Lemma 6.3, T is essential in E and so φ is one-to-
one. Hence T — E.

By Theorem 5.10 when K is (.̂ ?, ^-reductive, Ω(K: &, J2P) is
the maximal essential (.̂ ?, =2^)-extension of K. By Theorem 6.5 and
Theorem 5.11, Ω(K: &, ^f) is isomorphic over K to E. Consequent-
ly, when & and £f are idempotent, β(iΓ: &, ^ ) is the injective
hull of K by Theorem 6.6. Thus we have proved the following
theorem.

THEOREM 6.7. When K is (&, ^f)-reductive and both & and
J^ are idempotent, the Ω(K: &, £?} is the (&, ^f)-injeσtive hull
of K.

COROLLARY 6.8. When S is idempotent and weakly reductive,
Ω(S) is ({S}9 {S})-injective.

Proof. Since gg = ^ = {S} and S2 = S, & and ^ are
idempotent. The weak reductivity of S implies that y]Q{S:{s\,{s}) is the
identity and so S is (.̂ ?, =^7)-reductive. The result now follows from
Theorem 6.7.

7* An application. In this section, we apply our theory to
show that when S is weakly reductive, then Ω(S) = Ω(Sn) for all n
positive.

Let .$? = £? = {S}, and write ώ(^: &, £f) = flίίΓ: S, S).

LEMMA 7.1. 1/ ^(S: S, S) - id, ίfeβ7i τ?(S%: SΛ, SΛ) - i for all n.

Proof. Let x Φ y in S%. Then α ^ ?/ in S so there is sx, t,eS

with s ^ ^ s ^ and xt1 Φ ytx. Now suppose we have sL, , sΛ_!,

î> •> £»-i e S with sΛ_x sλx Φ sn_λ Syy and xtι £„_! ^

2/ίi ίm-!. Then there is sn, tneS with snsn_, - - sλx Φ snsn^ sLy

and ίcίj, ίn_! Φ ytλ - - tn^tn. Since ίx ίw, sΛ Sj. e S%, the result

follows.

COROLLARY 7.2. / / ^(S: S, S) = id, ίAen 37(SW: S, S) = id.

DEFINITION 7.3. 5JfiΓ5 is strictly essential in SNS if for all m Φ n

in iV, there are s e m~ιK(λn~ιK and t e Zm" 1 Π Kn~ι with ms ^ ws and

tm Φ tn.

LEMMA 7.4. [1]. // SKS is strictly essential in SNS, then K is
essential in N.
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LEMMA 7.5. For all positive n, sSs is strictly essential in SSS

when η(S: S, S) = id.

The proof of this lemma is contained in the proof of Lemma 7.1.
Now if η(S: S, S) = id, i.e., if S is weakly reductive, then 8SS is

essential over sSs and so τ(S, Sn) is injective. Thus without loss of
generality Sn £ S S Ω(Sn: S, S). Since Ω(Sn: S, S) is congruence dense
over S, S Q Ω(Sn: S, S) £ Ω(S: S, S) without loss of generality. By
Lemma 6.3, Sn is congruence dense in Ω(S: S, S) but since Ω(Sn: S, S)
is the maximal congruence dense extension of Sn, Ω(Sn: S, S) =
Ω(S: S, S).

THEOREM 7.6. Let S be weakly reductive, then for n > 0,
Ω(Sn: S, S) = Ω(S: S, S).

Next notice that Ω(Sn: Sn, Sn) is strictly (Sn, S%)-essential over Sn

since rj(Sn: Sn, Sn) = id. Thus Ω(Sn: Sn, Sn) is strictly (S, S)-essential
over Sn since Sn C S. Thus we may suppose Sn £ Ω(Sn: Sn, Sn) C
Ω(Sn: S, S). However for q1 Φ q2 in Ω(Sn: S, S), there are s, t e S with
sqtφsq2, qxtφq2t and squ sq2, qxt, q2t e Sn. Since η(Sn: Sn, Sn) = id, there
is s\ t1 6 S" with s1^, ^ s1sg2 and qxtt

ιφq2tt\ Since ίί1, s's 6 S +1 £ S%,
we see that Ω(Sn: S, S) is strictly (Sn, Sw)-essential over S\ Hence
it is (Sn, S^-essential and so (Sn, Sw)-congruence dense over S\ Thus

Ω(Sn: Sn, Sn) = Ω(S\ S, S) .

THEOREM 7.7. Let S be weakly reductive. Then for all n > 0,
Ω(Sn) = Ω(S).

Proof. The result follows from the above discussion upon noting
that Ω(Sn) = Ω(Sn: Sn, Sn) = Ω(Sn: S, S) = Ω(S: S, S) = Ω(S).

REMARK. When S is not weakly reductive, the above result is
false. To see this let S be a semigroup with zero satisfying Sn = 0,
S*-1 Φ 0. Then for x e Sn~\ Xx: S ~-> S*"1 and ρx: S -> S^1 are the zero
maps. Thus ^(S^ 1 : S, S) = 0, but Ω(S) Φ 0 for there is x e S%~2 with
xS= 0.
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