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THE GENERALIZED TRANSLATIONAL HULL
OF A SEMIGROUP

JoHN K. LUEDEMAN

For a pair (&2, <%°) consisting of a right quotient filter
2 and left quotient filter - on the semigroup S, a transla-
tional hull 2(S: &2, %) is constructed. The results of Grillet
and Petrich hold for 2(S: £, &).

Specializing <2 and -<° one obtains the usual translational
hull 2(S) of S and the semigroup of quotients Q(S) of S due
to Hinkle and McMorris. These results are applied to a
weakly reductive semigroup S to show that 2(S) = 2(S*) for
any positive integer n.

In recent years two seemingly unconnected developements have
occurred in the theory of semigroups. Grillet and Petrich [4] have
studied ideal extensions of a semigroup S by means of a universal
extension 2(S) of S, the translational hull of S. On the other hand,
McMorris [7] and Hinkle [5] have developed a theory of one-sided
semigroups of quotients of S using a maximal semigroup Q(S) of
quotients. Under certain conditions Q(S) is essential over S while
under similar conditions 2(S) is a congruence dense extension of S.
Berthiaume [1] showed that congruence dense extension and essential
extension are the same concept. This similarity, along with many
others, between Q(S) and 2(S) leads one to suspect the existence of
a theory of semigroup extensions more general than the above
mentioned theories. In this paper we offer a candidate for a general
theory. In section three we show that our concept might reasonably
be called a two-sided semigroup of quotients, having given our
constructions in sections one and two. In section five we show that
our construction yields an essential extension of S maximal in a
certain category. In section four, we follow the lead of Grillet and
Petrich [4] and examine extensions of S which are somewhat weaker
than essential extensions. Along the way we obtain as corollaries
some results of Hinkle [5] and Grillet and Petrich [4].

1. Basic definitions. In this paper, S will be a semigroup with
zero, denoted by 0.

A left S-set (K is a set K, with a distinguished element ¢,
having a scalar multiplication S x K — K satisfying for all s,teS
and ke K, (st)k = s(tk), and 0s = & and k& = 2.

Similarly one can define a right S-set K (with 22).

In this paper we will not distinguish between 7, the zero of K
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and 0, the zero of S. The meaning of the symbol 0 will be clear
from the context.

An (S, S)-set (K is a set K with scalar multiplications S x K — K
and K X S— K such that (K is a left S-set, K; is a right S-set,
and for s, te S and ke K, s(kt) = (sk)t.

A homomorphism p:sK— (M of left S-sets is a mapping
0: K— M satisfying (sk)o = s(ko) for all s€ S and ke K.

Similarly one defines “homomorphism of right S-sets” and
“homomorphism of (S, S)-sets”. We write left S-homomorphisms on
the right of their argument and right S-homomorphisms on the left.

sKis a sub S-set of (M if K< M and K is an S-set under the
operation S x M — M.

DerFiNiTION (Hinkle [5]). A collection <Z of right ideals of S
is a right quotient filter on S if

(1) if A, B are right ideals of S, A< B and Aec .2, then
Bexm

(2) if A, Be<Z and »: A— S is a right S-set homomorphism,
then »(B) = {ac A|na € B}e .

Hinkle has shown that a right quotient filter is closed under
finite intersections and if A<¢.<Z and se S, then

s'A={teS|stec Ale .=Z.
An extension My of K is an F-extension if for me M,
mTK ={seS|msecK}e 2.

Dually one can define a left quotient filter & on S and “<~-
extension.”

An (S, S)-set sV, is an (&, &L )-extension of Ky if Vg is an 2~
extension of K and V is an & -extension of K.

A right quotient filter .<Z is idempotent if whenever Aec .=z, I
is a right ideal of S and a'Ie.# for all ac A, then I<c 2.

This condition is equivalent to the condition: if A€ < and for
each a € A there is R, € <%, then

UA aR,e 2.

2. The construction. Let & be a left quotient filter on S,
% be a right quotient filter on S, and K be an (S, S)-set. Consider
all pairs (A, p) where A:D,— K is a right S-homomorphism with
domain D, e.<# and p: D, — K is a left S-homomorphism with domain
D,e &

DEFINITION 2.1. The pair (A, p) is (&, &)-linked if for all
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yeD; and x€D,, 2(\y) = ()

Let B(K: 2, %) be the collection of all such (<&, #)-linked
pairs. Notice that for k¢ K, the maps \: S — K defined by M(s) = ks
and p,:S— K defined by (s)o, = sk given an (%, ¥)-linked pair
(i 01) € B(K: 2, &¥). Moreover, B(K: &2, <) is an (S, S)-set under
the operation s(\, ) = (s\, sp) where s\: D, — K is given by s\(t) =
s[\(¢)] and sp: D,,— K is given by (t)sp = (ts)po where D,, = (D,)s™' € &
(s\, sp) is linked since for ye D, and x < D,,,

2((sn)y) = a[s0vy)] = (28)0w) = [(xs)oly
= [a(s0)]y

since zse€ D, and (A, o) is linked. The definition of s and As and
the multiplication (A, p)s = (\s, ps) is similar.

Where K =S, then B(K: &%, &) is a partial transformation
semigroup.

Define a relation © on B(K: &%, %) by (A, p)O(\, o) iff

(1) there is Re<® with RS D,N D, and A =\r for all
re R, and

(2) there is Le ¥ with LS D, N D, and tp =tp’ for all
te L.

LEMMA 2.2. 6 1s an (S, S)-congruence on B(K: %, F).

COROLLARY 2.3. O 1s also a semigroup congruence on
B(S: &2, &).

The straightforward proof of the above lemma and its corollary
will be omitted.

The quotient (S, S)-set B(K: .2, &¥)/0® will be denoted by
QAK: #, ) and is called the (&, &)-translational hull of K.

We usually denote the class of (A, 0) in AK: .=, &) by (\, 0),
but when clarification is needed, we denote it by [\, p].

There is a canonical (S, S) homomorphism 7 of K into 2(K: %, &)
given by m(k) =\, 0,). When K =8, © is a semigroup homo-
morphism,

DerFINITION 2.4. If the homomorphism 7: K — 2(K: &, &) is
injective, K is said to be (& &¥)-reductive.

REMARKS. (1) When & is the collection of all left ideals of
S, then 2(S: &, &) is semigroup isomorphic to @Q.(S), the semi-
group of right quotients of S developed by Hinkle [5].



492 JOHN K. LUEDEMAN

Proof. The map o: 2(S: &, &) — Q4(S) given by o[\, p] = [A]
is the desired isomorphism. Since o[\, p] = o[\, 0’] implies [\] = [\'],
» and A agree on some Re <2 and so [\, o] = [\, o] since o and o’
agree on (0)e & and so o is injective. Moreover for [\] e Q(S),
o[\, 1] = [A] where 15: S— S is the identity map on S and o is
surjective.

To see that ¢ is a homomorphism, let [\, o], [V, 0’1 € 2(S: &, ¥).
Then a([\, PIIN, 0']) = a(WV, p0']) = W] = IMINT = o([n, pDo([V, 0])
where M\: DN N "'D;, — S and 0'0: D,. N (0')'D,— S. Thus o is a
semigroup isomorphism.

(2) Similarly, if <2 is the collection of all right ideals of S,
the mapping B: 2(S: &, ¥)— Q(S) given by B(\, p]) =[p] is a
semigroup isomorphism from 2(S: &2 &) onto the semigroup Q.(S)
of left quotients of S developed by Hinkle [5].

(3) If &= ={S}, then 2(S: &, &) = 2S), the transla-
tional hull of S.

(4) Where &2 is the collection of all right ideals of S and &¥
is the collection of all left ideals of S, then 2(K: .=, &) is trivial
since (A, )OO\, ) for all (\, p’), (A, p) € B(K: <&, &) since \ and )\
agree on (0)e.<Z and p and p’ agree on (0) e &

(5) 2(S: & &) always has an identity.

PropPoOSITION 2.5. Q2(K: B ) is an (B, ¥ )-extension of n(K).

Proof. We will show that 2(K: &2 &) is an .~ -extension of
7(K). Since the .#-extension part is similar, it will be left to the
reader.

Let [\, p] € (K: &, ¥) with D, e . For se D,, s[n, p] =[s\, sp].
Now D,, = D,s'e ¥ and for te D,,, t(sp) = (¢s)p and since sp € K,
80 = P,. On the other hand, for teD,;, = D,, s\Mt) = s(\t) = (sp)t =
No(t).  Since sp € K, s[\, 0] = [Ny 0.0] € T(K).

COROLLARY 2.6. When K is (B, & )-reductive, QAK: #, &) is
an (F, L)-extension of K.

When S is a semigroup, we are interested in the idealizer of
n(S) in AS: &, &¥).

PROPOSITION 2.6. If S is (B, & )-reductive, then the idealizer
of ©(S) in AS: &, ¥) is

T = {[n, p): D, = D, = 5} .

Proof. Note first that if se D,, and (A, o) are linked, then for
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tes™D,,
As(t) = Mst) = (Ms)(t) = Nal?)
and for te D, we have

(®)0s) = (tp)s = t(rs) = (£)0s -
Thus if (A, p)eT, s€ D, we have

O 0)7(s) = (N O)(Ny 0) = (NS, 08) = (\aay 022) = T(Ns)

Similarly if (», p) are linked and se<D,, then (t)sp = (t)p,, and
SA(E) = N,o(B).
Thus

z(s)(n, o) = w(sp) for (, p)eT.

Therefore, T is contained in the idealizer of #(S).

Conversely, let (A, o) belong the idealizer of #(S) in 2(S: &%, &¥).
Then for all seS, (A, p)n(s) and 7w(s)(n, o) belong to =(S). We
consider (\, 0)7(s) since the other case is similar. Now (A, p)r(s) =
7(t) for some teS. Define \: S— S by N(s) =t if (A, p)x(s) = w(t).
Note that )\ is well defined since 7 is injective. Moreover N\ agrees
with & on D, since if se D,, (A, p)n(s) = w(As). It remains to show
that )\’ is a right S-homomorphism for then (\, 0)O(\, 0). Similarly
define 0:S— 8 by (s)o’ =t iff n(s)(\, p) = w(s)(\, o) = w(t). Then
O, 060N, 0') and (\, 0)eT.

Suppose M (s) = t and N(sx) = a. We consider two cases. First,
if seD,, then M(s) =As =¢ and a = N (sx) = Msx) = (As)x = tx and
80 N (s)x = NM(sx). Next, if s¢ D,, then for zea's'D, = (sx)™'D,,

az = (Asx)[z] = Ms(xz)] = rs[zz] = tlez] = (tx)z .
Moreover, for ye D,
ya = y(osx) = [(yp)slz = [ypslz = (yt)r = y(tx)

thus 7(a) = 7(tx) or a = tx or N(sx) = N(s)x.

COROLLARY 2.8. When ¥ =2 ={S}, and S is (% ¥)
reductive then w(S) is an tdeal of Q(S: &, &).

3. Two sided semigroup of quotients. In the last section we
show that 2(S: &2, &) can be the translational hull or a semigroup
of quotients of S. In this section we show that Q(S: &2, &) can
naturally be considered as a two-sided semigroup of quotients of S.

DEFINITION 3.1. Let V be an (& &) extension of K. For each



494 JOHN K. LUEDEMAN

acV, define A\, p% 7* = [\ 0°] where \N:a'K— K is given by
A(d) = ad and po*: Ka™'— K is given by (d)p® = da.

THEOREM 3.2. If V is an (ZZ, &) extension of K, the mapping
Tia— 7% 18 a canonical (S, S)-homomorphism of V into 2AK: %, &)
which extends the canonical homomorphism w of K into QK: &, ).

The proof of the above theorem is straight forward and will be
omitted. When there is any danger of confusion, we will denote
7. V— QK: &, &) by «(V: K).

DEFINITION 3.3. The (&, &)-congruence on an (S, S)-set M is
denoted by 7, and defined by

Ny = {(m, n)|tm = tn for all t in some Le.& and mr = nr for
all 7 in some Rec <} .

When the filters <Z and <& are to be stressed, we write
Ny = NM: Z, &) .

LEMMA 3.4. The (&, &) congruence on K 1s wom™ where w is
the canonical homomorphism of K into AK: F, ).

COROLLARY 3.5. K s (&, ¥)reductive iff nx 1is identity
congruence.

In order to determine when ¢ is the unique homomorphism,
extending 7w we use the following item.

LEMMA 3.6. If K is (F, & )-reductive or both # and & are
idempotent, then the (B, ¥ )-congruence on K is the identity.

Proof. Suppose w, @' € AK: &, &) and (0, ®') € yx..»,., Where
=[x p] and @ =[N, 0’]. Then for all xeD,ND,, N D and s S,
(where wx = @'z for all xe D e . &Z),

Mes) = M,(8) = M (8) = N (ws)
and for all ye D,N D, N D" and s S, (where dw = do’ for de D' ¢ &¥)
(sy)o = (s)o,0 = (s)0,0" = (sy)o’ .

If ¥ and <#Z are idempotent, there is B’c &, A*c <p with
AASD,nND,ND and B D, ND,,ND" and so N\ and \ agree on
A* while p and o' agree on B?, thus (A, 0)O(\, 0') and @ = @’ in
AK: &, ¥).
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On the other hand if xeD,N D, ND and ye D, N D,, N D, then
y(\x) = (¥o)x = (1)op. = W)0'P. = (Yo' = y(\'z)
and similarly (yo)x = (yo')x. Consequently if K is (&, &°)-reductive,

yo = yp' and zx =Nz for all yeD, N D, and €D, N D, and so
n, OV, 0') and w = @'.

PropoSITION 3.7. If K is (2, ¥) reductive or both # and &
are idempotent, then ©(V: K) is the unique (S, S)-homomorphism of
V into 2K: &, &) extending .

The proof of this proposition is a simple modification of the
proof of Proposition 1.3 of [4] and so will be omitted.

ProprosITION 3.8. If Vand V' are (&, &)-extensions of K and
6 18 an (S, S)-homomorphism of V into V' which is the identity on
K, then

(V:K)=7(V':K)ogp.

Proof. Let veV, xev 'K and y € Kv, then ¢(v)x = ¢(ve) = vz
and y¢(v) = ¢(yv) = yv. Thus p,, and p, agree on Kv'e & and
Mo and A, agree on v 'K e .22 and so the conclusion follows.

For a right S-set M and rqf <2, Hinkle [5] defined the .#-
singular congruence 7(<#) on M by

W) = {(m, n)|mr = nr for all r in some Re 2} = n(M: R)

Similarly for a left S-set N and lgf <& there is an “-singular
congruence (%) on N. n(<#) is a right S-congruence and 7(¥)
is a left S-congruence.

LEMMA 3.9. For an (S, S) set M, rqf <& and lgf &
WM: &, &) =)R2)NYZL) .

The proof is straightforward as is the proof of the next lemma
and hence both proofs are omitted.

LemMmA 3.10. If one of (2) or () is the identity congruence,
then M is (F, £ )-reductive.

Given a right S-set K and a rqf .2, Hinkle [5] constructed a
maximal right S-set of quotients Q(K: .<Z) of K as the S-set of all
right S-homomorphisms with domain a member of <2 and codomain
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K factored by the congruence AOMN iff As = \'s for all s in some
R < D,ND, where Re &2 An S-homomorphism \: K — Q(K: .#Z)
can be defined by k) = [»,] where \.: S— K is given by s— ks.
Then MoA™' = P(K: &) and N is an injection of K into Q(K: .Z)
when 7(K: ) is the identity. Analogous results hold for a left
S-set M and lgf . The maximal left S-set of quotients of M is
denoted by Q(M: &¥).

Now let S be a semigroup with zero, & be a lqf on S, <& be
a r¢f on S and both 7(S: &) and 7(S: &#) be the identity. Note
that S is a right S-set, left S-set and (S, S)-set with respect to the
semigroup multiplication. Since both 7(S: &) and 7(S: <Z) are the
identity, S is (&Z &) reductive, and so we identify S with #(S) <
2S: 2, ), MS) < Q(S: ) and p(S) < Q(S: ).

Now Q(S: &2) is a semigroup under the multiplication [A][N.] =
[MioN,] where \;oN,: A7Y(D;,)— S is the composition map. Moreover
the canonical map M S— Q(S: &) is a semigroup monomorphism.
Let V={ge@Q(S: #Z)|Sqg e <}. Then V is the maximal subsemi-
group of @Q(S: <#) which is an (<2, &) extension of S. Define
6: V—Q(S: &) by 4(q) = ¢ =[p]. Thus ¢ is a semigroup homo-
morphism which is the identity on S since 0%% agrees with %0 p%
on S¢;i'¢ite &~ Since ¢ is the identity on S, ¢(sq) = sg¢(q) = sq’ and
so #(V) ={¢' € Q(S: &¥):(¢')'Se . «#}. Since ¢ is a monomorphism,
we identify V with ¢(V) and so V = Q(S: &) N Q(S: ).

Now 7(V: S) = z(V’: S)o¢ by Proposition 3.8. Moreover, 7(V: S)
is injective for if 7% = 7%, then (A%, p")O(\%, 0%) so there is Re .2
with ¢,» = ¢,» for all reR, thus ¢, = ¢,. Recall 7(V:S) is the
identity on S.

Finally we show that 7(V:S) is surjective. Let [\, ple
2S: &, &), then ¢ = [N] € Q(S: &#) and ¢’ = [p] € Q(S: &¥). It suffices
to show that ¢qe V. To this end let teD,, and se D;, then

(tp)s = t(ns) = t(gs) = (tg)se S.

Thus M9 = N\, on D, € &2, and since tp € S for t € D,, [\o] = [M*?] =
tge S for all teD,. Thus ge V. Clearly ¢ =[\7 p?] =), 0] and
so 7(V: S) is surjective.

We have proven the following result.

THEOREM 3.11. When both 7(S: Z) and 17(S: ) are the identity
congruence, 2AS: B, ¥) is a semigroup isomorphic over S to
V' ={qecQS: &¥)|q'Se A} and {qcQ(S: #)|Sq e ¥} = V.

If we identify V with V' and 2(S: &2 <), the above result
shows that 2(S: &2 &) = Q(S: ) N Q(S: &¥).
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4, Strict and pure extensions. In the remaining sections es-
sential extensions will play a large role. However, we would like
information on (<&, ¥ )-extensions V of K which fail to be essential.
We can classify such extensions by their image under 7(V: K).

DEFINITION 4.1. The type of an (&, &)-extension V of K is
the image T(V: K) of V under =(V: K).

When K is (&2 &)-reductive, it is easily seen that the types
of extensions correspond to the subsets T of Q2(K: &2, &) which are
(S, S)-sets containing K. We first discuss the (<& )-extensions V
of K which are, in some sense, as bad as possible—that is, for ve V,
there is k€ K for which xk = xv for all  in some member L of &
and ky = vy for all ¥ in some Re A

DEFINITION 4.2. An (&2, &)-extension V of K is strict if it has
type w(K).

When K is (&%, &)-reductive, we will characterize the strict
(2, ¥ )-extensions of K by means of (partial) homomorphisms.

REMARK. In this and the following actions we pretty much
follow the approach of Grillet and Petrich [4]. The proofs of many
of the results are easy modifications of the proofs in [4] and so will
be omitted.

DEFINITION 4.3. An (S, S)-set T is (&, ¥)-trivial if for each
teT, 0t™'e.& and t7'0e A

An (&, &)-extension V of K is called an (<, &)-extension of
K by T if T is (S, S) isomorphic to the factor (S, S)-set V/K.
Notice that in this case T is (&2, &°)-trivial.

Strict (&£, &¥)-extensions of (#, & )-reductive S-sets by T may
be characterized in terms of partial homomorphisms of T in the
following sense:

DEFINITION 4.3. Let V Dbe an (& &)-extension of K by T.
The extension V is said to be determined by a partial homomorphism
m: T\{0}V if for nonzero a€ T and all s€ S,

{ as if as+#0
Gos =
w(a)s if as=0

while

sa if sa #0

sea = isn'(a,) if sa =0
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where o is the scalar multiplication in V.

PROPOSITION 4.4. An (B, & )-extension V of K by T is deter-
mined by a partial homomorphism iff K is an (S, S)-retract of V.

The proof of Petrich ([9], Proposition 2, p. 51) carries over
verbati to this case.

PRrROPOSITION 4.5. FEach (Z, & )-extension determined by a par-
tial homomorphism 1is strict.

There is a converse to this proposition when K is (& &°)-
reductive.

THEOREM 4.6. Let K be (2 ¥ )-reductive. Then each strict
(F#, &)-extension of K is determined by a partial homomorphism.

Proof. Let 7 =17(V:K) where V is a strict extension of K.
Then 7: V—7n(K) and since 7 is an isomorphism, z7'e7: V— K is
an (S, S)-homomorphism whose restriction to K is the identity.

COROLLARY 4.7. Let S be an (B &£ )-reductive semigroup and
Q be an (B, Z)-trivial semigroup. Then there is a strict (P, F)-
extenston of S by Q iff there 1s a partial homomorphism of Q\{0}
into S.

Strict (2, &)-extensions of K can be characterized as follows

PRrROPOSITION 4.8. Let V be an (B ¥ )-extension of K. If any
(S, S)-homomorphism of K into another (S, S)-set can be extended to
V, then V is a strict extemsion of K. The converse holds if K is
(A#, Z)-reductive.

Proof. The identity map id: K — K is an (S, S)-homomorphism
and so has an extension f: V— K. Thus K is a retract of V and
so V is a strict extension of K.

Conversely, let K be (&2, &)-reductive and K be a retract of
V. Let a: K— T be an (S, S)-homomorphism. Then if : V— K is
the retraction, roca: V— T is the desired extension.

Finally, strict extensions shed some light on the structure of S.

PRrROPOSITION 4.9. If every (2, & )-extension of S is strict, then
S has an identity.
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Proof. The extension S* obtained by adjoining an identity to S
is an (&%, &¥)-extension since Se¢ . Z N % and so is strict. Thus
for some ce S, t* = we. Thus for z¢ S,

lx = ¢cx = = x¢c = xe

since D;1 = D,1 = S. Thus ¢ is an identity for S.
At the opposite end of the spectrum from the strict extensions,
we have the pure extensions.

DEFINITION 4.10. An (<2, ¥)-extension V of K is pure if the
canonical homomorphism »: V/K — T(V: K)/z(K) satisfies v7'(0) = {0}
where v is induced by 7(V: K).

LEMMA 4.11. An (2, & )-extension V of K is pure iff for any
acV, t°en(K) implies a € K.

Lemma 4.11 says that pure extensions are “best” in the sense
that no element of V agrees with some element of K on a member
of & and on a member of Z.

We have the following result which determines all pure (<&, &)-
extensions of S.

DEFINITION 4.12. An (S, S) homomorphism between (S, S)-sets
with zero f: K — Q is pure if f*(0) = {0}.

THEOREM 4.13. Let K be (2, ¥ )-reductive and Q be an (&, ¥ )-
trivial (S, S)-set with zero. Ewery pure homomorphism of Q onto
the (S, S)-set T/n(K), where T is a type of (B, F)-extension of K,
determines a pure (&, £ )-extension of K by Q of type T, whose
scalar multiplication * is given by the following formula (where
Q* = Q\{0} and O(a) = 6° = [\*, p°]l € T\n(K) for ac@*):

j ab acK,beSorbek, acS
a*b = {6(ab) = 6D ac@Q* beS
'\@(ab) =ab0® acS, be@*.

Conversely, every pure extension of K can be constructed in this
fashion.

COROLLARY 4.14. When Q* is a semigroup, O is a semigroup
homomorphism and K = S, then the above result shows that each
pure (&, F)-extension can be given a semigroup multiplication by
defining for a,beQ*, a*b=ab if ab # 0 and a*b =scS if ab=0
and 0°0° = ws e x(S).
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The proof of the above results is an easy modification of the
proof of Theorem 2.11 of [4].

The reason for considering strict and pure extensions is evident
by the next theorem.

THEOREM 4.15. Let V be an (P, &£ )-extension of K. The
complete inverse image U of w(K) under ©(V: K) is the greatest strict
(B, L)-extension of K in V and V is a pure (B, £ )-extension
of U.

Proof. Since 7(V: K) is a homomorphism and 7(V: K) contains
n(K), U is an (S, S)-subset of V and so is an (& &°)-subset of V.
Since 7(V: K) maps K into n(K), we must have K < U. And since
UcCV, U is an (&, & )-extension of K. Clearly U is a strict ex-
tension of K. Moreover if U’ is an (&%, &)-extension of K in V,
then 7(U': K) is the restriction of z(V:K) to U’. Hence if U’ is
strict, then U’ C U and so U is the greatest strict (< &)-extension
of Kin V.

Now let v e V, and suppose that z°(V: U)ex(U). Then for some
ue U, vs =us for all seR'e.<Z and tv = tu forallte L'e & But
u € U implies that for some ke K, kx = ux for all x in some R" ¢ &
and yk =yu for ycsome L"'e<” Let R=R NR'es? and
L=L'NL"e<%, then for all xeL and all yeR, xv =2k and
vy = ky and so ve U.

5. Congruence dense extensions. In this section we will show
for (£ &¥)reductive K, that 2(K: & &) is the maximal essential
(#, &£ )-extension of K and so is unique up to isomorphism.

In the remainder of this section, V will be an (<%, &)-extension
of K.

An (S, S)-congruence on V whose restriction to K is the identity
is called a K-congruence.

V is a congruence dense extension of K if the identity is the
only K-congruence on V.

V is an essential extension of K if each (S, S)-homomorphism
f: V—T, T any (S, S)-set, whose restriction to K is injective is an
injection.

Berthiaume [1] has shown that congruence dense extensions
coincide with essential extensions.

LEMMA 5.1. YV: P, &) =Tt where © = o(V: K).

Proof. (x,y)en(V: R &) iff there is Re <, Le ¥ with
ar =yr for re.#Z and te =ty for teL. Let L' = Kae'NKv™n
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Le and R =¢*KNy*KNRec.” Then tx =ty for tecL’ and
xr = yr for re R’, thus ° = [\z, ox] = [My, oy] = 7"

Conversely if 7% = 77, then [\%, p*] = [\, 0*] so there is Le.&¥
and Re < with xr = yr for re <2 and tx =ty for teL. Thus
(z, y) en(V: 2, ).

THEOREM 5.2. Every K-congruence on V 1s contained 1in
WV: # ¥). Moreover if K is (B &L )-reductive, n(V: B ¥) is
the largest K-congruence on V. In any case, N(K) = {ve V|vnk for
some ke K} is the largest strict subextension of V.

Proof. Let & be a K-congruence on V. Then a%&’b implies
as =bs for all seca'KNb'Ke A Likewise ta = tb for all
teKa'NKb'e Thus (a,b)en(V:Z £).

If K is (& &)reductive, then Y(V: F, ¥)|x = N(K: B ¥)
which is the identity thus 7(V: <2, &) is a K-congruence.

If @ e P(K), then ¢ = z* for some k€ K and so n(K) is the largest
strict subextension of V.

COROLLARY 5.3. If K 1is (&2, & )-reductive, then V is a pure
extension iff & (K) = K for every K-congruence on V.

When K is (22, <&“)-reductive, the following theorem charac-
terizes strict (<%, <7)-extensions by means of extensions of (S, S)-
congruences on K. The proof is modelled after that of [4, Prop-
osition 3.3].

THEOREM 5.4. Let V be an (B ¥ )-extension of K. If each
(S, S)-congruence on K s the restriction of some (S, S)-congruence
& on V such that Z(K) =V, then V is a strict extension of K.
The converse holds if K is (2, )-reductive.

Proof. Let % be the identity congruence on K, then Z(K) =V
and so for ve V, there is a unique k € K with v&k. Now if se Kv™,
svZ sk and so sv = sk on Kv™' and similarly, if ¢tev 'K, vtZkt and
so vt = kt on v ‘K. These equations imply that z* = z* and thus
the extension is strict.

If K is (&%, &)-reductive, then K is a retract of V iff V is a
strict extension of K. Then given an (S, S)-congruence % on K,
extend @ to & on V by wzv iff r(w)&r(v) where r: V—K is
the retraction. Then since wZr(w), Z(K) = V.

REMARK. This result may be used to give a different proof of
Proposition 4.8.
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Theorem 5.2 characterizes congruence dense extensions of
(Z, ¥)-reductive (S, S)-sets as follows:

THEOREM 5.5. Let K be (2, ¥ )-reductive, then V is congruence
dense (essential) over K iff V is (B, &)-reductive. Thus congruence
dense extensions are pure.

When &7 is the lattice of left ideals of S, we have the following
corollary due to Hinkle [5, Corollary 4.13].

COROLLARY 5.6. When S is Z-torsion free, then an F-extension
V of S is essential iff V is B-torsion free.

When &2 = & = {S}, we have the following corollary due to
Petrich and Grillet [4, Theorem 3.7].

COROLLARY 5.7. Let S be weakly reductive. Then V is «
congruence dense extension of S if ©(V:S) is injective.

Returning to the general case we have the

COROLLARY 5.8. When K is (&, &)-reductive, V is a con-
gruence dense (essential) extension of K iff there is a monomorphism
of V over K into 2K: % F).

Since 7(2: K) is the identity on 2(K: .&Z, &) where K is (%, &¥)-
reductive, then Q(K: &2, ) is congruence dense over K. Hence
when &~ is the lattice of left ideals of S and S is .Z#-torsion free,
then [5, Corollary 5.6] Q.(S) is essential over S.

Finally, we characterize pure (<2 <°)-extensions of (&, &¥)-
reductive (S, S)-sets by means of congruence dense extensions as
follows:

COROLLARY 5.9. Let K be (%, & )-reductive. Then V is a pure
extension ioff there is an (S, S)-homomorphism ¢ over K of V into
a congruence dense extension D of K with ¢ '(K) = K.

Proof. Let T = T(V:K). Then by Corollaries 5.7 and 5.8, there
is a dense extension D of K of type T. Then ¢ = t(D: K)o7(V: K)
is an (S, S)-homomorphism over K of V into D. Since V is pure
over K, ¢ (K) = o(V: K)(n(K)) = K.

Conversely, let ¢ be the given homomorphism, then 7(V: K) =
7(D: K)og by 8.8 and (V: K) '(n(K)) = ¢"(K) = K since 7(D: K) is
injective. Thus V is pure.
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We now prove the main result of this section.

THEOREM 5.10. When K is (B, &)-reductive, AK: %, ) 1is
the maximal essential (F, & )-extension of K.

Proof. By the remark after Corollary 5.8, 2 = Q(K: & &) is
essential over K. Now suppose V 22 is an essential (<&, &)-
extension of K. Thus 7(V: K) is injective and 7(V: K)|, = ©(2: K) is
the identity. Moreover if v ¢ 2, then 7(V: K)(v) = 2 € 2, and 7(V: K)
is injective. For scQv'e & and tevRe.”, we have xs=
7(V: K)(vs) = vs and tx = ©(V: K)(tv) = tv. Thus (x, v) e n(V: %, &)
which is the identity. Thus z = v and V = Q(K: .22, .&°).

THEOREM 5.11. 2(K: &, ¥) is unique up to isomorphism over
K, when K is (<, <£)-reductive.

Proof. Let V be any other maximal essential (<2, &)-extension
of K. Then 7(V:K) is injective by Theorem 5.5. If T(V:K) =
T < 2K: % <), then t(V: K) can be extended to an (S, S)-isomor-
phism of an (& ¥ )-extension V' 2 V onto 2(K:.&Z ). Conse-
quently, V' is congruence dense over K by Theorem 5.5. Thus
V' =V and so z(V: K) is an isomorphism.

When & = & = {S}, then we have as a corollary the following
theorem of Gluskin [3]:

THEOREM 5.12. Let S be weakly reductive, then S is a densely
embedded ideal of V iff there is an isomorphism over S of V onto
2(S).

Notice also that Theorem 5.10 says that 2(S: .<Z, &) is not only
the maximal congruence dense (<2 <°)-semigroup extension but is
also maximal among congruence dense (<2 &)-extensions as an
(S, S)-set.

6. The injectivity of 2(K: ., ). In this section we show
that Q(K: &, &) is the (2, & )-injective hull of K. First we prove
that an (&2 .&)-injective hull of K exists.

DEFINITION 6.1. A bi-S-set (K, is (#, L )injective iff each
(S, S)-homomorphism f: Ty — (K has for any (<2, &~)-extension ¢Nj
of T an (S, S)-extension f: N— K. In particular, (K is injective
when &2 consists of all right ideals of S and & consists of all left
ideals.

Let K be any bi-S-set and let K*' denote the set of all mappings
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from S' to K. K* is a bi-S-set under the mutiplication (sf)(z) =
s(f(x)) and (ft)(x) = f(tx) for all xeS'. Consider K as a subset of
K by k:S'— K by k(x) = kx for all xeS'. That K is an injective
(S, S)-set follows by noting in Theorem 6 of [1] that the constructed
extension is an (S, S)-homomorphism.

PROPOSITION 6.2. For each (S, S)-set K, there is an injective
(S, S)-set I; containing K.

We require the following lemma from [1].

LEMMA 6.3. Let A, B and C be (S, S)-sets with A< B< C.

Then A is essential in C iff A is essential in B and B is essential
in C.

Now let (K be given. Following Berthiaume, we see that K
has a maximal essential extension K which is also the minimal
injective extension of K. Moreover K is unique up to isomorphism
over K. For any injective extension I of K, K is the maximal
essential extension of K in I. Let E be a maximal (&2, .&)-extension
of K in K which exists by Zorn’s lemma.

LEMMA 6.4. E is (&, £ )injective when both & and & are
idempotent.

Proof. Let (Mg be an (2, -~ )-extension of Ny and ¢: N— E
be an (S, S)-homomorphism. Let ¢: M — K be an extension of ¢ to
M. Consider W = ¢(M)U E < K. It suffice to show that W is an
(A, .~ )-extension of E, for then W is an (&%, &)-extension of K
since .Z and & are idempotent; thus W = K and we are done.

Therefore, let ¢(t)¢ E. Then there is Re.2Z and Le. ¥ with
tR < Nand Lt = N. Thus ¢(t)R = ¢(tR) < E and likewise Lg(t) < E.
Hence W is an (<%, .&)-extension of E and we are done.

THEOREM 6.5. E(K) = E ts the maximal (B & )-essential ex-
tension of K.

Proof. Let T 2 E be an (&2, ¥)-essential extension of K. Then
without loss of generality, T < K, the maximal essential extension
of K. Thus T = E.

THEOREM 6.6. FE(K) = E is the minimal (%, Z)-injective ex-
tenston of K, when both # and & are idempotent.
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Proof. Let KS T C Eand T be an (<2, &)-injective extension
of K. Then there is an extension ¢: E— T of the identity map
1: T—T. By Lemma 6.3, T is essential in £ and so ¢ is one-to-
one. Hence T = E.

By Theorem 5.10 when K is (&2, &)-reductive, Q(K: . %, ) is
the maximal essential (<2, #)-extension of K. By Theorem 6.5 and
Theorem 5.11, 2(K: .42, &) is isomorphic over K to E. Consequent-
ly, when .2 and <& are idempotent, Q(K: .22, &) is the injective
hull of K by Theorem 6.6. Thus we have proved the following
theorem.

THEOREM 6.7. When K is (%, ¥ )-reductive and both % and
7 are idempotent, the QK. .2, ) is the (FZ, £ )-injective hull
of K.

COROLLARY 6.8. When S s tdempotent and weakly reductive,
2(S) s ({S}, {S})-ingective.

Proof. Since & =¥ ={S} and $*=S8, & and ¥ are
idempotent. The weak reductivity of S implies that 7, s.s).(s)) iS the
identity and so S is (&2, )-reductive. The result now follows from
Theorem 6.7.

7. An application. In this section, we apply our theory to
show that when S is weakly reduactive, then 2(S) = 2(S") for all »
positive.

Let . &# = & = {S}, and write Q(K: .27, ) = QK: S, S).

LemmA 7.1. If 7n(S:S, S) = id, then np(S™: S, S*) = 1 for all n.

Proof. Let x =y in S*. Then x +# y in S so there is s, ¢, €S

with s # s,y and «t, # yt,. Now suppose we have s, ---,s,_,
ty, <+, t,.,€S with s, ,---sx#*s,,---8y and b -+, , F*
yt, +++t,,. Then there is s,, t, €S with s,5,, -+ 8,8 # 8,8, *** $,¥

and «t, -+ ¢, , * yt, -+- t,_,t,. Sincet,---t,, s, -+ €S the result
follows.

COROLLARY 7.2. If 7%(S: S, S) =id, then 7(S™: S, S) = id.

DEFINITION 7.3. (K is strictly essential in (N if for all m #=n
in N, there are sem'KNn'K and t € Km™' N Kn™' with ms # ns and
tm #* tn.

LEMMA 7.4. [1]. If Ky 1s strictly essential in Ny, then K is
essential in N.
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LEMMA 7.5. For all positive n, St is strictly essential in ¢Sg
when 7(S: S, S) = id.

The proof of this lemma is contained in the proof of Lemma 7.1.

Now if »(S: S, S) =id, i.e., if S is weakly reductive, then (S is
essential over  S» and so 7(S, S*) is injective. Thus without loss of
generality S = S < 2(S*: S, S). Since 2(S™: S, S) is congruence dense
over S,SZ 2(S": S, S) € 2(S: S, S) without loss of generality. By
Lemma 6.3, S” is congruence dense in 2(S: S, S) but since 2(S*: S, S)
is the maximal congruence dense extension of S*, 2(S™: S, S) =

28S: S, S).

THEOREM 7.6. Let S be weakly reductive, then for mn >0,
2(S™: S, S) = 2(S: S, S).

Next notice that 2(S*: S*, S*) is strictly (S*, S")-essential over S*
since 7(S™: S, S*) =id. Thus 2(S": S*, S*) is strictly (S, S)-essential
over S since S" = S. Thus we may suppose S* < 2(S": S*, S*) =
2(8": S,S). However for q, # q, in 2(S™: S, S), there are s, t¢S with
8¢, 7 8¢, ¢,t#q,t and sq,, sq,, ¢,t, ¢;t € S*. Since n(S": S*, S*) =id, there
is s', t'e S* with s'sq, # s'sq, and q,tt'==q,tt'. Since tt!, s'se S*"' < S,
we see that 2(S™: S, S) is strietly (S", S")-essential over S”. Hence
it is (S, S*)-essential and so (S, S")-congruence dense over S*. Thus

2(8™: 8", S) = 2(S™: S, S) .

THEOREM 7.7. Let S be weakly reductive. Then for all n > 0,
2(S™) = 2(S).

Proof. The result follows from the above discussion upon noting
that 2(S™) = 2(S™: S*, S") = 2(S™: S, S) = 2(S: S, S) = 2(S).

REMARK. When S is not weakly reductive, the above result is
false. To see this let S be a semigroup with zero satisfying S* = 0,
S* == 0. Then for xeS**, \,: S— S"*and p,: S— S" ! are the zero
maps. Thus 2(S" " S, S) =0, but 2(S) = 0 for there is x € S** with
xS = 0.
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