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ON CERTAIN ALGEBRAIC INTEGERS AND
APPROXIMATION BY RATIONAL

FUNCTIONS WITH INTEGRAL
COEFFICIENTS

DAVID G. CANTOR

Let A be a finite set of integers {alf α2, ••, α*} and
(possibly) oo. Let Xbe a nonempty closed subset of Cu{°°},
the field of complex numbers together with oo, under the
topology of the Riemann sphere. Suppose that X is sym-
metric with respect to the field of real numbers R(i.e. if z e X
then zeX) and disjoint from A. We are interested in the fol-
lowing two problems:

I. Under what conditions do there exist, for each neigh-
borhood N of X, infinitely many algebraic numbers Θ such
that 1/(0—αi), l/(θ—a2), , 1/(0—αz) are algebraic integers and,
if oo G A, θ is itself an algebraic integer, such that all of the
(algebraic) conjugates of 0 lie in NΊ

II. If X has empty interior and connected complement,
then the polynomials are dense in the ring of continuous
functions of X. What is the uniform closure of the poly-
nomials with integral coefficients in ll(x—a,χ), l/(o5—α2), ,
ll(x—at), and if oo e A, x itself?

Problem I was investigated by Raphael Robinson [10]; however
instead of requiring the 1/(0 — at) to be algebraic integers, he
required that the bj(θ — a%) be algebraic integers, where the bt are
integers satisfying (α< — aά) \ bt for each j Φ i. Our methods are similar
to those of Robinson; there are, however, significant differences.

Throughout the remainder of this paper, A will denote a non-
empty finite set consisting of real numbers alf a2, , at and
(possibly) oo. We assume that \at — as\ ^ 1 if iΦ j . In §§ 2, 3, 4,
we shall assume that the at are integers. If °o e A, we shall some-
times denote it by a0. By a symmetric closed (SC) A-set X, we
shall mean a nonempty closed subset of the Riemann sphere, sym-
metric with respect to the £-axis, satisfying Ad X = 0 .

If P(z) is a polynomial, we shall denote the leading coefficient
of P(z) by P(oo).

1. Classification of SC A-sets* A rational function with real
coefficients φ{z) is said to be an A-function if it is regular except
possibly for poles at α€ e A. Such a function can be written uniquely
in the form P(z)/D(z) where P(z) is a polynomial, D(z) = JH=ι(z—ai)

ri

where the rt ^ 0 and P{a,) Φ 0 when r, > 0, for 1 ^ i ^ I. If
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oo g A put r = Σ L ^ > while if co e A, put r = max(deg P(z), Σί=i r

ô = ̂ — Σ<=î < Thus, in either case, r is the number of poles (counting
multiplicity) of φ(z). We call {rlf r2, , r j (or if o o e i , {r0, rt, r2,
•• ,rj) the degree sequence of 9K2) (with respect to A). We shall
say that the A-function φ(z) is an upper A-function if all r, are
positive and |P(α)| ^ 1 for each ae A. (Recall that by our conven-
tion P(°°) is the leading coefficient of P(z).) We shall say that the
A-function φ(z) is a lower A-function if all r* are positive and
0 < \P(a)\ ̂  1 for all ae A. We shall say that the A-function ?>(s)
is a normal A-function if it is both upper and lower; i.e. if all r*
are positive and \P(a)\ = 1 for all aeA. We say that the A-func-
tion φ{z) is an integral A-function if P(z) has integral coefficients.

An SC A-set X is said to be Asmall if there exists an upper
A-function φ(z) with | | ^ | | x < 1. (Here and throughout || ||^ denotes
the sup norm over X.) The set X is said to be A-large if for each
neighborhood N of X there exists a lower A-function φ(z) satisfying
{z:\φ(z)\ = l}dN and Xcz{z: \φ(z)\ < 1}. Note that if A - {co}
then an A-small set is simply a set with transfinite diameter < 1
and an A-large set is one with transfinite diameter ^ 1 [3, Theorem I].

THEOREM 1.1. Suppose A! is a non-empty subset of A. No SC
A-set X is both A-large and A'-small.

Proof. Suppose X is both A-large and A'-small. Let f(z) be
an upper A'-function with p = \\f(z)\\z < 1. Choose σ satisfying
p•< σ < 1. The set Nσ = {z: \f(z)\ < σ} is an open neighborhood of
X. Since X is A-large there exists a lower A-function g(z) such
that {z: \g(z)\ = l}czNσ. Then, for any z, \g(z)\ = 1 implies |/(z)| <
σ < 1. Now suppose that 00 e A; the proof is similar and simpler
if 00 g A. Let {r0, n, , r j be the degree sequence of / (with
respect to A) and let {sOf slf •••,«*} be the degree sequence of g.
Clearly all s, are > 0. Choose h so that rh/sh — maxy (r, /s, ); rA is
>0. Put gι(z) = g(z)rh and f^z) — f{z)s*. The degree sequence of
/1 is ^(componentwise) the degree sequence of gx, with equality at
the hth component. Put u(z) = f^/g^z); u(z) is regular for all z
for which ^(z) ^ 0; in particular u(z) is regular in D = {z: Ig^lyi}.
On Isφ)! == 1, the boundary of D, \f(z)\ < σsh< 1, hence | φ ) | <1;
by the maximum principal this holds for all zeD. But at z=aheD,
\u(z)\ ̂  1, since f(z) is an upper A'-f unction and g^z) is a lower
A-function. This contradiction completes the proof.

(The author would like to thank the referee for providing this
elegant short proof; the original was much longer and more com-
plicated.) We shall need the following.
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LEMMA 1.2. Suppose B = (βid) is a matrix with real entries
whose off-diagonal elements are nonnegative. Then either (a) there
exists a nonzero vector x ^ 0 such that Bx >̂ 0, or else (b) B is
invertible and B~ι is ^ 0.

Proof. Choose μ so that B + μl is ^ 0 and let λ be the largest
eigenvalue of B + μl. By an extension of the Perron-Frobenius
Theorem [4, Chapter XIII, Theorem 3, p. 66], -B-^iμl-iBΛ-μl))'1

exists if μ > λ and when that is so is ^0, while if μ <̂  λ, then
B + μl has a nonnegative eigenvector x satisfying (B + μl)x = Xx
or Bx = (λ - μ)a? ̂  0.

The following is closely related to the main result of § 4 of [11].

THEOREM 1.3. Let X be an SC A-set. Then either X is A-
large or there exists a nonempty subset A' of A such that X is
A'-small. If X is A-large then for every neighborhood N of X
there exists a normal A-function φ(z) and R>1 such that {{z: \φ(z)\ =
R}czN} and Xa{z:\φ(z)\} < R. Finally, if all finite ateA are
rational, we may choose φ(z) so that its numerator has rational
coefficients.

Proof. We shall prove this when oo e A. The case when oo ̂  A
is simpler. The complement of X in the Riemann sphere is a union
of components. Let Co, Cl9 C2, , Cs be those components which
have a nonempty intersection with A, and suppose they are num-
bered so that oo 6 Co. Put Ak = A Π Ck and put Ik = {i: at e Ck).
Denote by Xk the complement of Ck (in the Riemann sphere). Let
Nk be a neighborhood of Xk disjoint from A. Suppose that a3- e Ak.
By Theorem G of [3], there exist polynomials fj(z) with real coeffi-
cients such that

1 iXt c {z: IΛ(l/(* ~ a,)) \< 1} if j > 0

!XC{z: | /(z) |<l}

\{z: \MH(z - a,)) I ̂  1} c Nk if j > 0

\{z:\fo(z)\^l}c:NQ

Since each Nk Π A is empty, |/0(α,-)| > 1 and \fk(l/(aj — ak))\ > 1 for
all k > 0 and j1 ̂  k. By replacing each /,- by a positive integral
power of itself, if necessary, we may assume that the f5 all have
the same degree, say d, and that d > I. We are going to construct
a function φ{z) of the form
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Ψ{z) = /„(*)«• Π Λ(l/(« - as)V

+ Σ Π Λ(
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( 3 )

where here, and throughout this proof, I[ ~ Io — {0}. We can write
φ(z) in the form

<p(z) = -r-
Π (2 - α,)"'

where P(z) is a polynomial of degree d(tQ + tt + + tz), and is
explicitly given by

(4 ) P(z) = MzY* Π [(* -

- ^ )r fΛ(i/(^ - α i ))] ί i π (« - ^i)d <^

Then

P(oo)=/0(oo)Ό Π/i

oία,)'0 Π [(a< -

Λ ( - ) f ί Π (<*«

Π [(α4 - a

'• if ί e J J ,

^ if * e J » , kΦQ

Put

log|/3(0)| if jelΌ

0 if i ί /o

log I Ma,) I if ieΓ,

0 if i<£l0

if i, j > 0 then put

l o g I ( « i - djYfjiXHfli - dj)) I i f i ~ j , i Φ J )

βu= -log|/y(«>)| if i = 3
.log I (α, - ai)d I if i Φ j
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Here i ~ j means i and j are in the same Ik and i rh j means that
this is not so. Since | at — a3- | ^ 1 if ί Φ j , i, j > 0, we see that
if i Φ j then βi5 ^ 0 moreover if A lies in the one component Co

and i Φ j , βi5 > 0. We have that

( 5 ) log IP(α,)| =
i=o

We now apply Lemma 1.2 to the matrix B = (&,-). If case (a)
holds, then there exist real t09 t19 , tι ^ 0, not all 0, such that all
of the sums Σ i βutj are ^ 0. Let A! be the union of those Ak for
which there exist j e Ifc such that £, > 0. Put / ' = {i: at e A'}. By
replacing each ft by λ/ o where λ > 1 is small enough that (1) and
(2) are still satisfied, we increase βtj when i ~ j . Hence if i e Γ,
we increase at least one coefficient of a positive t5 in the linear
form Σ i βijtj Thus we may assume that the linear forms Σ * Ai^
are positive when ίeΓ. By modifying the positive tά for which
j e Γ slightly to make them positive rationale and then multiplying
through by a common denominator, we may assume the tό are posi-
tive integers, and Σ i Pah > 0 when i e Γ. We can multiply the t5

by such a large positive integer that if i e Ik, iΦO, then l/Xl/ίs —α*))'*
is < l/(s + 1) for all ^ I f c and is > 1 for all z outside of Nk.
Similarly we will have \fo(z)to\ < l/(β + 1) for zeX0 and |/o(z) ί o | > 1
for z ί ΛΓ0. Now, construct <ρ as in (3) substituting Ar for A and
using the same Nk and /,. Then φ is an upper A'-function and it
is easy to see that Xa{z: \φ(z)\ < 1} so that X is A'-small.

Next suppose that case (b) of Lemma 1.2 holds. Then B~ι <S 0.
Put

( 6 ) « = (ίo,ίi, •• , ί I ) * = B- 1 (- l , - 1 , •••, - 1 ) * .

Then Σ i /^ϋ^ = — 1 and each component ts of ί is > 0, for clearly
tj ^ 0 and if ts = 0, then the j t h row of JB"1 would be 0, which is
not possible. There is a unique polynomial gQ(z) of degree ^ I — 1
such that zrf + gro(̂ ) = 0 f or z = αx, α2, , az. Since d > I the poly-
nomial /0(z) + δo(^rf + go(z)) has leading coefficient /0(°°) + δ0 and takes
the same values at z = α1? α2, , αz as /0(2). Thus replacing/0(«) by
fQ(z) + <50(̂

d + ^o(^)) would change /Soo but none of the other βiQ. If
δ0 is small enough then (1) and (2) would remain satisfied. Similar
comments apply to fl9f29 * ,/i. Thus there exists ε > 0 such that
each fj can be modified in such a way that βiS is unchanged if
i Φ j , while βjΊ varies over an interval of length 2ε, and at the
same time (1) and (2) remain valid. Choose positive rational t] so
close to tjf 0 ^ j ^ l9 that | Σ<=o β^Ah ~ fy/t't \ < ε ΐor 0 ^ i ^ ί.

Now put /S;, = /9,-y if iΦ j and choose /?;< so that Σi=o A y^ = — 1
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f or 0 ̂  i ^ I. Then | β'ti - β«\ = \ Σ U βdh - *ί)/t'< | < e f or 0 ̂  i £ I.
Now modify the ft slightly so that the βi3- are replaced by the β't3-
and the ίt by the t'if still preserving (1) and (2). Thus, after this
replacement we may assume that the tt are all positive rational
numbers. Now multiply the t, by such a large positive integer n
that they become integers and such that if i e Ik9 i Φ 0, then
|/,(l/(s - α,))*'! is <l/(s + 1) for zeXk and >2 for z$Nk. Similarly
|/o(z)|ίo is <l/(s + 1) for zeX0 and >2 for z$N0. Then <? as
defined in (3) is a lower A-function and all of the |P(αy)| are equal
to l/en. By replacing φ by φ\ we obtain a lower A-function φ
with P(αy) = lle2n for 0 ̂  i ^ i. For 2 $ Nk all but one of the terms
in (3) have absolute value <l/(s + 1) while the remaining term has
value >2. Thus \φ(z)\ is >1 outside of each Nk. If zeX,
however, then each term in (3) has absolute value <l/(s + 1) and
\φ(z)\ < 1. Let Y be the union of X and those components of the
complement of X which are disjoint from A; i.e., F i s obtained from
X by filling in those holes which contain no at. If N is any neigh-
borhood of X, then there exist neighborhoods Nk of Xk such that
f[kNk(zN{J Y. The φ, as modified above and corresponding to this
choice of the Nk is lower, Xd{z: \φ(z)\ < 1}, and {z: \φ(z)\ = l}cN.
Thus X is A-large. Then φλ(z) = ^(^)e2w is A-normal and Xcz
{z: \φXz)\ < e2n} and {z: \φAz)\ = β2-}ciSΓ.

Finally, suppose the at are rational, and ^(2;) = Pjfjή/Diz); then
= 1, 0 <L i <* I. We can choose a polynomial C(z) of degree

I and with arbitrarily small coefficients such that
P2(z) — Pγ(z) + C(z) ΠUi (s — «ι) has all coefficients of terms of degree
^ I rational. Since P2(at) = 1, 0 <Ξ i ^ ϊ, the remaining coefficients
are rational. If C(^) is small enough then φ2(z) — P2(z)/D(z) meets
the requirements of the theorem.

REMARK 1.4. The A! in the above theorem is a union of some
of the Ak. In particular if all at lie in one component of the com-
plement of X, then either X is A-large or X is A-small.

We shall need the following theorem in § 4.

THEOREM 1.5. A finite SG A-set X is A-small.

Proof. By standard interpolation theory results, there exists a
monic polynomial P which vanishes at each element of X and is 1
at each finite element of A. We may choose P to have degree
^ϊ + 1, and then φ{z) — P(z)/JJ\=ι (z — α,) is a normal A-function
which has absolute value <1 on I
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THEOREM 1.6. // X is an A-small set, then there exists a
normal A-f unction φ(z) such that \\φ(z)\\x < 1.

Proof. We shall prove this in the case when oo e A. The case
when oo 0 A is simpler. By definition there exists an upper A-ίunc-
tion Q(z)/D(z) such that 11 Q(z)/D(z) \\X<1. Suppose D(z) = J[)=1 (s-a^K
Since z and each of the functions l/(z — as) is bounded on X, there
exists an integer n ^ 1 so large that \\Q(z)n/D(z)n~ι\\x < 1/(1 + 1)
and \\Q(zYI((z - a5γω(zγ-ι)\\x < 1/(1 + 1) for 1 £ j ^ I. Now put

P(z) = (a0D(z) + Σ ajD(z)/(z - adYήQ{z)*

where the at will be chosen later. Then P(cπ)^a0Q(ooy and P(az) =
ailίj*i(ai — aj)rjQ(ai)n. Thus there exist unique choices for the at

so that P(oo) = l and all P(az) = 1, and the at will have absolute
value <Ξ1. Put φ(z) — P(z)/D(z)n; φ(z) is a normal A-f unction and

\\ψ(z)\\x ^

Σ
< 1.

If N(z) is a nonconstant polynomial, then any power series u(z)
can be written uniquely in the form

u(z) = Σ Φ)N(zy

where the ct(z) are polynomials of degree < deg (N(z)). This is the
special case, A = {oo}, of the next lemma. To extend to general
sets A, we must replace N(z) by a rational function which has poles
at each at e A, and allow the cz(z) to be rational functions with
poles of bounded order at each at 6 A. In the following lemma,
N(z) is replaced by N(z)/D(z) and the c^z) by the cί(z)/D(z).

LEMMA 1.7. Suppose o o e i and D(z) — ΠLi(^ — cbiY
i where the

rt are >0. Suppose N(z) is a polynomial, relatively prime to D(z),
of degree r = Σ L=o f« where rQ is >0. 7/ ^(2) is α?i A-f unction
satisfying u(aτ) ^ 0 , 0 ^ i ^ r, we cα^ wriίe uniquely

u(z) = Σ

where n is the least integer ^0

u(z) ^ (^ + l)r0 — 1
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and

— ordα. u(z) <; (n + \)rt for 1 ^ i ^ i;

polynomials of degree <r and cn(z) is not 0.
Suppose 00 g A and D(z) — ΠLiO? — α*)r% where the rt are >0.

Suppose N(z) is a polynomial, relatively prime to D(z) and of
degree <Jr = Σί=i r i i f ^(^) ^s a^ A-function satisfying u{a%) Φ 0,
1 <£ i ^ r απώ vanishing at ^, we can write, uniquely,

Φ) = Σ Φ

where n is the least integer 2:0

~ordα. %(«) ̂  (w- + l)n /or 1 ^ i ^ ϊ;

where the c^z) are polynomials of degree < r, and cn(z) is not 0.

Proof. We give the proof for the case 00 e A, and it is by
induction on n. The result is clear when n = 0, for then D(z)u(z)
is a polynomial of degree < r . If w ^ l , choose the polynomial
cQ(z) of degree < r and =u(z)D(z) (mod N(z)); then the polynomial
D(z)n(u(z)D(z) - φ)) is divisible by JV(s). Note that this is the
unique choice for co(z). Then

(u(z)D(z) - φ))/N(z) ^ nrQ - 1

and

-ordα.(ΐφ)jD(z) - φ))IN{z) S nr,

for 1 ^ ΐ ^ Z. Thus, inductively, we have, uniquely,

and then

LEMMA 1.8. Suppose 00 e A α?icί X is an SC A-seί Suppose
g(z) — P(z)/D(z) is a normal A-f unction where D(z) = ΠΪ=I(^ — ^iY1

and P(z) has degree r = Σ U rt. Put λ = | | ^ ) | | ^ r . Then there
exists M > 0 α-̂ d for each integer n ^ 0 an A-f unction θn(z) such
that when θn(z) is expanded according to Lemma 1.7, with N(z) =
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then n — rs + t, where 0 5g t < r, ds(z) is a monic polynomial of
degree t, \\θn(z)\\x < Mxn, and \θn(z)\ < M\g(z)\ί+n/r when \g(z)\ > 1.

Suppose oo g A and X is an SC A-set. Suppose g(z) = P(z)/D(z)
is a normal A-function where D(z) = ΐ[ι

i=ι(z — a^^ and P(z) has
degree < r = Σ = i n . Pw£ λ = | |#(z)| |χ r. T7&ew £/&βre βxisέs ikf > 0
and for each integer n ^ 0 an A-function θn(z) such that when
θn(z) is expanded according to Lemma 1.7, using N(z) = 1,

then n — rs -{- t where 0 ^ t < r and ds(z) is a monic polynomial
of degree t, \\θn(z)\\x < M\n, and \θn(z)\ < M\g(z)\ι+n/r when \g(z)\>l.

Proof. Suppose first that oo e A. Expand g(z)m by Lemma 1.7:

It is easy to verify that cm(z) = D(z), hence is monic of degree
Σ U i Ti Then g(z)m will serve for θίm+1)r_ro. The functions

will serve for 0(w+1)r_ ro+1, ^ ( w + 1 ) r_ r o + 2, , θln+1)r_19 respectively. The
functions θ{m+1)r_rJ(z - α4), θ{m+1)r_rJ(z - a%)\ , Θ{m+1)r_ro(z)/(z - α,)^
will serve for θ{n+1)r_ro_ί9 θ{m+ι)r_ro_2? , ^ ( m + 1 ) r _ r o _ r i , respectively. Con-
tinuing in this way, dividing next by (z — atf^z — α2), then
(z — atfι(z — α2)

2, , and so forth will give the remaining functions.
Since all of the functions z, l/(z — αx), , l/(z — ai) are bounded on X
and zr°/g(z), l/((z — a^rιg{z)), , l/((z — aι)rιg(z)) are bounded when
\g(z)\>l9 there exists ikf>0 as required for the Lemma. If oo gA,
use the above procedure with r0 = 0, omitting z and zr°/g(z) when
defining M.

2. Classification of A-sets—Integral A. In this and succeeding
sections we assume that the aτe A are integers and strengthen the
results of § 1.

THEOREM 2.1. If X is A-small there exists an integral, normal
A-function φ{z) such that \\φ{z)\\x < 1.

Proof. We give the proof in the case that oo e A. There exists
an A-normal function P(z)/D(z), where D(z) — Πί=i (z — &ϊ)ri a n d
\\P(z)/D(z)\\x < 1. Suppose P(z) has degree r = ΣLo n and put



332 DAVID G. CANTOR

N(z) = zr°D(z) + 1. Choose m > 0. For any n > m, the function
(P(z)/D(z))n(l + l/((z - ax)(z - α2) -(z - α,))) is A-normal and by

Lemma 1.7 can be written in the form Σ?=o cίn)(z)N(zY/D(z)i+1. It is
easy to verify that c(

n

n}(z) = D(z)(l + l/((z - a,)(z - α2) \z - α,)))
We can successively add eAr-i(4 ^ M ( 4 , V X ( 4 where
the θi(z) are the functions defined in Lemma 1.8 and the e< are real
numbers in the interval [ — 1/2, 1/2), so as to obtain a function

( 7) M«) - Σ dl*)(z)N(z)t/D(zγ+1

where d™(z) = c™(z) and cẐ Os), diΓ-Uz), , dΆ(z) have integral
coefficients. Furthermore, with M and λ as defined in Lemma 1.8,

\\K(z)\\x < M* \\P(z)ID{z)\\l

where Jlf' = ||(1 + l/((z - α ^ - α2) •(« —α,)))||x and M" = max (Λf, ilί')
/(I — λ). We can choose m so large that M"Xmr < 1/3. For each
n > m, we obtain such a function hn(z) and in the expansion (7), all
of the d[n)(z), except those with i < m, have integral coefficients.
We can find n2 > wx > m so that all of the coefficients of the d^ι\z) —
d^l}(z), for 0 ^ i ^ m — 1, are extremely small modulo 1.

When this is the case put φ{z) = ΣSo ei(z)N(zY/D(zY+ί where
et(z) is the polynomial with integral coefficients nearest to d[^{z) —
d^iz); here we put d[nι\z) = 0 when i > nγ. If nx and n2 were
chosen appropriately, φ(z) will satisfy ||φ(^)||χ < 1 and since e%2(z) =
(1 + l/((z — aJiz — a2)- "(z — αz)))D(^), φ(z) is normal.

THEOREM 2.2. Suppose X is A-large. Then for each neighbor-
hood N of X there exists an integral normal A-function φ(z) and
an integer S > 1 such that {z: \φ(z)\ — S}aN and Xa{z: |

Proof. We give the proof for the case that 00 e A. By Theorem
1.3, there exists a normal A-function g(z) with rational coefficients
and R > 1 such that {z: \ g(z) \ = R} c N and X c {z: \ g(z) \ < R}. We
can write g(z) = N(z)/D(z) + c(z)/(hD(z)) where, as usual, D(z) =
ΠU (« — ̂ i)r% JV(») = ^r°D(2;) + 1, r = Σί=o n» (̂̂ ) is a polynomial
of degree < r with integral coefficients satisfying c{az) = 0 for i ^
i ^ ϊ, and fc is a positive integer. We can write

+ c(z)/ky/D(zy
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where m < n will be chosen later in this proof.

When the first sum is written as a rational function in z with
denominator D(z)n, each coefficient of a power of z in the numerator
will be a polynomial in n with rational coefficients. Since the poly-
nomial ( j in n is divisible by n for each i > 0, the numerator

polynomial will have integral coefficients when n is divisible by a
certain fixed integer n0.

Since c(z) has degree < r, the second sum has a pole at °° of
order ^ (n — m)r + m(r — 1) — w(r — r0) = nro — m. Since c(z) vanishes
at each aif the second sum has a pole at at of order ^ wr* — m.
By Lemma 1.7, the second sum can be written in the form

k

2 = 0

where k is the least integer ^ 0 satisfying

k + l^n-(m- l)/r0

k -\- 1 ^ n — m/r^ 1 ^ i ^ Z .

Put j = (k + ϊ)r — 1. Let θo(z), θ^z), Θ2(z), be the functions con-
structed in Lemma 1.8 using P(z)/D(z) = g(z). By adding succes-
sively Sjθjiz), Sj-βj^iz), where the ε< are chosen appropriately
from the interval [ — 1/2, 1/2), to g(z)n we obtain an integral normal
A-function fn(z). Choose Rλ and R2 close to R with 1<R1<R<R2

such that Xd{z:\ g{z) \ < R,} and {z: R, ^ | g(z) | ^ R2) c N. Then
/„(#) differs from g(z)n in the set {z:Rι<\g(z)\} by less than
M\g(z)\ (\g(z)\j/r + | ^ ) | ( i ~ 1 ) / r + • + 1) or by less than M' | ^ ) | 2 + i / r

where Mf = ikf/(i2}/r — 1). Hence if n/j is large enough, fn(z) does
not vanish when | gn(z) \ ̂  R2. Similarly, if | g(z) \ ̂  R19 then /%(2;)
differs from g(z)n by <^M"R{lr. Thus by the maximal principal, if
\g{z)\ ^ i22, |/n(«)| ^ (1 — δ)i2^ and if \g(z)\ ̂  i2x, |/Λ(a;)| ^ (1 + δ)i?Γ,
where 3 > 0 can be made arbitrarily close to 0 by choosing m large.
If n is large enough and divisible by n0 there will be an integer S
in the interval ((1 + δ)R?, (1 — δ)R%); putting φ(z) = /„(£) completes
the proof.

3. ^-integers* An algebraic number θ is said to be an A-inte-
ger if l/(# — aτ) is an algebraic integer for each αέ e A and θ is an
algebraic integer if co e A.

LEMMA 3.1. // φ(z) — P(z)/D(z) is an integral normal A-func-
tion and θ is a complex number such that φ(β) = a is an algebraic
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integer, then θ is an A-integer.

Proof. The polynomial P(z) — aD{z) has algebraic integer coeffi-
cients and is satisfied by θ. If ©o e A, then this polynomial is monic
of degree r and hence θ is an algebraic integer. Since P{a%) —
aD{a%) = P{a%) — 1, the polynomial with algebraic integer coefficients
satisfied by l/(β — a%) is monic and l/(θ — a%) is an algebraic integer.

LEMMA 3.2. If φ(z) is an integral A-function and θ is an
A-integer then φ{θ) is an algebraic integer.

Proof. We first show that the ring generated by the functions
1, l/(z — αj, l/(z — α2), , l/(z — αz), and if ©o e A, the function z,
contains all integral A-ίunctions. This is clear if °o e A, so suppose
°° ίA. Suppose P(z)jD(z) is an integral A-function, D(z) = X =i
(z — α,)r% and r = Σί = 1 rt. We proceed by induction on r. If r = 0,
the result is clear. Otherwise some rif say rlf is >0. Then
P(z)lD(z) = (P(z) - Piaβ/Diz) + PiaJfDiz). Clearly Piad/Diz) is in
the ring and since (z - αj | (P(z) - P(α,)), (P(^) - P{fl$)ID{z) is in
the ring by induction. Since each l/(θ — αj is an algebraic integer
and if oo e A, ^ is an algebraic integer, φ(θ) is an algebraic integer.

We now give the basic results of this section.

THEOREM 3.3. Let X be a set which is not A-large. Then there
exists a neighborhood of X which contains only finitely many com-
plete conjugate sets of A-integers.

Proof. By Theorems 1.3 and 2.1, A contains a nonempty subset
A! for which there exists an integral A'-function φ(z) such that
\\φ(z)\\x < 1. Pnt N - {z: \φ(z)\ < 1}. If {θl9 θ2, , ΘJ is a complete
conjugate set of A-integers contained in N, then {φiθO, φ(θ2), ,
φ(θm)} is a sequence of algebraic integers, consisting of repetitions
of a complete conjugate set. Since each φ(θϊ) has absolute value
<1, the norm of each is <1, hence 0. Thus each φ(θi) = 0 and so
the total number of θt is ^ r , the degree of the numerator of φ(z).

THEOREM 3.4. Let X be an A-large set. Then every neighbor-
hood N of X contains infinitely many complete sets of conjugate
A-integers.

Proof. Let N be a neighborhood of X. By Theorem 2.2 there
exists an integral normal A-function φ(z) and an integer S > 1 such
that {z: \φ(z)\ = S}aN. The solutions to φ(z)n = Sn lie in N and
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by Lemma 3.1 are A-integers.

It is probable that if X is an A-large subset of R then every
real neighborhood of X contains infinitely many complete sets of
conjugate A-integers. In the case A = {00} and X is a finite union
of closed intervals in R this was shown by Robinson in [7] and [8],
and in the case Xis a closed interval and A — {°o, 0} this was shown
by Robinson in [9].

4* Approximation* Let X be an SC set with empty interior
and such that each component of the complement of X in C contains
an element of A. A complex valued function / on X is called sym-
metric if f(x) — f(x) for all xeX. We shall denote the ring of
continuous symmetric functions on X by CS(X). A theorem of
Mergelyan [6, Theorem 2.3] asserts that the A-functions are dense,
in the uniform norm, in CS(X). We are interested in investigating
the uniform closure of the integral A-functions in CS(X). For the
case A = {00} see [1] and [5]. If Y is an SC subset of X, we shall
say that the symmetric function / is matchable on Y if there exists
an integral A-function p such that p(y) = f(y) for all y e Y and we
shall say that / is approximable on Y if for each ε > 0 there
exists an integral A-f unction p such that \\p — f\\γ < ε.

THEOREM 4.1. If X is A-large then the integral A-functions
form a closed discrete subset of CS(X).

Proof. Suppose ψγ and φ2 are integral A-functions with
ll<Pi — ΨzWx < l If Ψi^ψi then φι — φ2 is an upper A'-function
for some nonempty A' c A. But this implies that X is A'-small,
contradicting Theorem 1.1.

Now define J(X, A) to be the union of the complete sets of
conjugate A-integers contained in X. Note that if X is not A-large
then, by Theorem 3.3, J(X, A) is finite.

THEOREM 4.2. If X is Ar-small for some non-empty A' a A and
each component of the complement of X contains an element of A!
then feC8(X) is approximable on X if and only if it is matchable
on J(X, A).

Proof. First observe that if ψ is an integral A-function which
satisfies \φ(x)\ < 1 for each xeJ(X, A), then φ(x) = 0 for each
x G J(X, A). Indeed J(X, A) is the disjoint union of complete sets
of conjugate A-integers. Let x19 x2j , xr be one such complete set.



336 DAVID G. CANTOR

Then Π ί=i φ(Xi) is a rational integer with absolute value < 1 . Hence
the product is 0, and so at least one of the φ{x%) = 0, and since they
are conjugate they are all 0, and φ vanishes on J(X, A). Now
suppose / is approximable on X and that \\p1 — f\\z < 1/2 and
11 #2 ~ f\\χ < l/ 2 Then H^ — p2\\z < 1. By what we proved above
Pι(%) — vAx) for all xeJ(X, A). Since \\p2 — f\\x can be chosen
arbitrarily small, it follows that f(x) = px(x) for all x J(X, A); hence
that / is matchable on J(X, A).

Assume °° 6 A'. The proof is similar when °° g A'. Since X is
A'-small, there exists a normal integral A'-function φ with | | φ | | x < l .
Let K be the (finite) set of those zeros of φ contained in X. Since
\\φ\\x<l, \φ(x)\<l for all xeJ(X, A) and hence φ vanishes on
J(X, A). Thus J(X, A) c K.

Let m be a positive integer. By a standard extension of the
Stone-Weierstrass theorem, the closed ideal generated by φm in
C8(X) consists of all functions g e CS(X) vanishing on K. By our
assumption about X, the A'-functions are dense in CS(X). Thus if
ε > 0 and g e CS(X) vanishes on ϋΓ, there exists an A'-f unction h(x)
such that || 9>(α;)wλ(a?) — g(x)\\x < ε. By Lemma 1.7, we can write

φ{xYh{x) - ±

where D(x) — Πί=i (^ ~ α * ) r ί i s ^ e denominator of <p(#) with A' =
{α0, αw •••, αΓ}, and where the h^x) are polynomials of degree < τf—

Σ ί U ^ Put Λf =ΣΓlόΊI»V-D(»)IU. I f ^ ( » ) i s t h e polynomial
obtained from fe^α;) by replacing each coefficient of h^x) with its
integral part, it is immediate that Wih^x) — Hi(x))ID(x)\\x < M. Put
p(x) = Σi=m {Hi{x)jD{x))φ{x)5) p(x) is an integral A-function and

\\P(X) - φ{xTh{x)\\x ^M

and hence

\\g(x) - p(x)\\z ^ε + M ||^(α?)||5/(l - \\φ(x)\\z)

Thus if m is sufficiently large, \\g(x) — p(x)\\x < 2e and hence g is
approximable on X. We have just shown that if g vanishes on K
then g is approximable on X. If ε > 0 and # e CS(S) satisfies
l l0lU< e > then it is easy to find gx£Cs{X) vanishing on K and
satisfying \\g — g j | x < 2e. It is immediate that if # is approxi-
mable on K then it is approximable on X. Thus we must show
that if g is matchable on J(X, A) it is approximable on K. By
replacing g bγ g — p where p is an appropriate integral A-function,
we may assume that g vanishes on J(X, A). Now we must show
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that if g vanishes on J{X, A), then it is approximable on K. Choose
ΘeK - J(X, A). Let θ = θlf β2, , θm be the conjugates of θ which
are contained in K. Since θφJ(X, A), either θ is not an A-integer
or θ has a conjugate outside of X. Suppose first that θ is not an
A-integer. By Theorem 1.5, the set {θίf θ2, •• ,^w} is A-small and
hence there exists a normal, integral A-function p such that
\p(θi)\ < 1 for 1 5̂  i ^ m. Since θ is not an A-integer, none of the
p(θt) are 0. Next suppose that at least one conjugate is outside of
X. Since m is less than the degree d of θ, there exist, by
Minkowski's Theorem on linear forms, integers b0, bu •• , bd^ not
all 0 such that | Σ 5 = ! M ί l < 1 f o r 1 ^ i ^ m. If p(αθ = Σ5-5 M '
then p{θ%) Φ 0, for the degree of p(x) is less than the degree of θ.
Thus in either case p(x) is an integral A-f unction with 0 < | p(θτ) \ < 1
for 1 ^ i ^ m.

By replacing p by p%fe where ^ is a large enough integer and
h is an appropriate integral A-function, we may assume in addition
that p vanishes on all elements of K not conjugate to θ. Let
Pit Vz, t Ps be the functions obtained for each set of conjugate A-
integers in K~J(X, A). If n is large enough, φ — pl + plλ VpΊ
will satisfy 0 < | φ(x) | < 1 for xeK - J(X, A) and φ(x) = 0 for
x e J(X, A). By the earlier part of the proof applied to K instead
of X, any function in CS(K) which vanishes on J{X, A) is approxi-
mable on K. By the earlier comments, the proof is complete.

We now give a characterization of J(X, A).

THEOREM 4.3. Suppose X is Af-small for some nonempty
Ar a A and that each component of the complement of X contains
an element of A'. There exists an integral A-function φ such that
\\ψ{x)\\ < 1 and the zeros of φ in X form the set J(X, A).

Proof. Let q(x) be an integral A-function whose zeros are the
elements of J(X, A). Choose heCs(X) satisfying, for all xeX: (1)
| | λ | | x - 1; (2) h(x) = 1 if q(x) = 0; (3) \h(x)\ < 1/(2 \q(x)\) if \q(x)\ >
1/2; (4) h(x) Φ 0. Such an h is matchable by 1 on J(X, A), hence
is approximable on X. Any sufficiently good approximation, say,
the integral A-function g, satisfies, for all x e X, (1) \\g\\ <; 3/2; (2)
lίKaOl < 2/(3 \q{x)\) if \q{x)\ > 1/2; (3) g(x) Φ 0. Put ψ = gq to com-
plete the proof.
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