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REGULAR LATTICE MEASURES: MAPPINGS
AND SPACES

GEORGE BACHMAN AND ALAN SULTAN

We prove in this paper a very general measure extension
theorem which has as corollaries many recent, significant
extension theorems in the literature. We apply these results
to the question of when there is a well behaved map from
the s-smooth lattice regular measures on one set to the o-
smooth lattice regular measures on a second set. After
developing these general theorems we specialize consideration
to two valued latitce regular measures and obtain in a new
and consistent manner many important mapping and subspace
theorems on the preservation of different types of replete-
ness including results of Dykes, Hager, Isiwata, Moran,
Varadarajan, Gillman, Jerrison and others.

Introduction. In earlier papers [6], [7], [49], we have developed
for an abstract set X and a given lattice .&© of subsets, the concept
of “repleteness. This concept, as well as others such as -
compact, .#~countably compact, etc., considered by Alexandroff [1-3],
Meyer [41], Marczewski [39], Topsse [50], Frolik [19], and others,
we have expressed measure theoretically in terms of two valued
F-regular measures. This is advantageous; for besides being
analytically simpler to work with than with filters, many theorems
in this form can be generalized naturally to arbitrary ¢ -regular
measures, and the topological settings extended from Wallman
topologies to vague topologies.

The notion of <“replete includes as special cases: real compact,
Borel complete [24], a-complete [15], etc., and in [6], we developed
measure-theoretic results to show systematically how to obtain
repleteness interrelations. Here, we are concerned with mapping and
subspace problems. The mapping questions are of the type: Given
T: X— Y which is well-behaved (see §5 for details) with respect to
two lattices &£, & of subsets of X and Y respectively, when does
T induce a well-behaved mapping T**: MR(o, &) — MR(o, &),
where, in general, MR(o, &) designates the o-smooth &“-regular
measures on a set X with respect to a lattice, &% of subsets? We
develop the major results of this type in §5, and when applied to
the special case of two-valued measures, we get as corollaries im-
portant subspace and mapping results of Frolik [21], Ishiwata [31],
Dykes [15, 16], Moran [42], Hager [24], Mrowka [43], Varadarajan
[51], Gordon [23], as well as classical results in realcompactness as
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can be found in Gillman-Jerrison [22]. Further subspace generalities
pertaining to repleteness and applications are obtained systematically
in §§6 and 7.

In §§2 and 3, we give the relevant notation and background
material. We prove in §4, a very general extension theorem for
measures which has among its corollaries the important extension
theorems of Hardy and Lacey [27] and Marik [40]. We also show
how some of Frolik’s work on almost realcompactness fits into this
setting; although, we don’t appeal to this for our development. In
§§5 and 6, a number of general mapping theorems are proved, and
applications are given to preservation of repleteness. In §§6 and 7,
we give general subspace results pertaining to repleteness, and apply
these. We also show how the work of Harris [28] on extending
maps to Wallman compactifications can be generalized and fits easily
into this framework.

The general results developed here lead also to many new
theorems and improvements of old ones concerning preservation of
specific types of repleteness under mappings, inverse images, and
with respect to subspaces, and unions; these further applications
appear also in §§5, 6 and 7.

Topological terms used are consistent with those of [33].

2. Background and notations. We introduce certain lattice
definitions in this section and certain preliminary and background
material which will be useful for the topological applications of our
principle measure-theoretic results. The terminology in the literature
is by no means standard: & will designate throughout a lattice of
subsets of an abstract set X. We will always assume that ¢ and X
belong to 0 This in no way limits the generality of the results.
For many purposes, it suffices just to assume that & is a semi-
lattice. This will be indicated below. Finally, we note that the
initial definitions and results could all be given for an abstract lattice
embedded in a complete Boolean algebra; indeed, some of this has
been done in the even more general setting of frames (see [14]).
Even some of our general results could be formulated for certain
abstract nonatomic lattices by utilizing Wallman type representations
in place of the Stone-Loomis type representation as used by Sikorski
[48] in defining a lattice-integral of the Olmstead, Carathéodory,
Kappos type (see, e.g., [45], [10], [32]). Since this generalization
is not at all difficult and since the major thrust of this paper is
towards measure-theoretic constructs and a systematic application to
certain categories of topological problems, we will give all of the
definitions and results in a point set framework, for consistency and
ease of expression.
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DEFINITION. (1) ¥ is a delta lattice if & is closed under
countable intersections.

(2) ¥ is a complemented if Aec & implies A’ € &5, where A’
designates the complement of A. <& is complement generated if
Aec & implies A = Nz A,, where each A4, € &

(8) If fis a real valued function defined on X, f is F-continu-
ous if f(C)e ¥ for every closed set CC R. If <& is a od-lattice,
then clearly f is <“-continuous if and only if f™(—cc, a] and f~[b, =)
belong to & for each a,be R. We designate by C,(.&"), all bounded
F-countinuous functions, and by C(°) all &-continuous functions.

(4) &~ isa separating or T, lattice if z, ye X. x # y, implies
there exists an A€ ¢ such that € 4 and y ¢ A.

(5) ¥ isdisjunctive if for any A€ & and x¢ A, there exists
a Be & such that xe B and BN A= &.

(6) &~ is normal if A, Be &¥ with AN B = @ implies there
exist C, De & such that AcC’, Bc D', and CND = @.

Our definitions, so far, are to a large extent consistent with those
of Alexandroff [1] and Frolik [19]. We emphasize that X is simply
an abstract set and & a lattice of subsets. If X should be a
topological space, the lattice of closed sets is, for example, normal
if the space is normal, the lattice of open sets is normal if and only
if the space is extremally disconnected; the lattice of zero sets in
any Tychonoff space is always normal; while the lattice of compact
sets is in general not normal.

(7) The lattice of zero sets of functions in C(%”) is denoted
by Z().

(8) 7(&°) designates the lattice of arbitrary intersections of
elements of & and §(°) designates the lattice of countable inter-
sections of elements of <~

(9) ¥Y(¥), (&), p(&), and s(°) designate respectively,
the algebra generated by & c-algebra generated by & the smallest
class containing & together with countable unions and intersections,
and the Souslin sets obtained from &%

(10) A real valued measure p defined on an algebra of sets will
only be assume finitely additive. Those that are countably additive
will be called o-smooth. Those that are additive for arbitrary
cardinal are called z-smooth.

We will not be concerned to any extent with r-smooth measures
in this paper, mainly because we wish to apply our results to certain
classes of topological problems; we will consider the 7-smooth type
applications as well as tight measures elsewhere. However, it should
be pointed out that all our abstract extension and mapping theorems
remain valid, as do the proofs, for the 7-smooth measures; the only
changes that are necessary, for example, is replacement in the
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definitions and relevant statements of theorems of countability by
arbitrary cardinal.

(11) A measure ¢ defined on . () is F-regular if for each
Ee v (¥) there exists an Ac¢ < with ACE, and such that
[((E) — 1(A)] < e. Clearly, if ¢ is nonnegative, then g is “regular
if and only if p((E) = sup (A), ACE, Aec &~ If p is an arbitrary
Z-regular measure then it can be written as the difference of two
nonnegative _~-regular measures. We refer the reader to
Alexandroff [2] for further elementary properties of “regular
measures, which will be utilized throughout, sometimes without
explicit reference.

(12) M(<) designates the set of all real valued measures on
F(F). MR() is the subset of M(<) consisting of all the o~
regular measures. M(o, &) is the subset of M(<”) consisting of
all the o-smooth measures. MR(g, &) is the subset of M(o, &)
consisting of all the o-smooth $“-regular measures. Similarly we
introduce MR(r, &¥). (<), IR(<¥), Io, &), IR(o, &), are the
subsets of the corresponding M’s consisting of the nontrivial zero-
one valued measures.

Finally, we denote by I(c*, ) the subset of (&) consisting
of just those zero-one valued measures which are g-smooth on &
but not necessarily on all of &7 (%°). We note that it does not
follow that given a content on & which is o-smooth that it can
necessarily be extended to o(~”). This question is related to tight-
ness, details can be found in [46], [50], [34]. We do note that if
&7 is a d-lattice then any o-smooth & regular measure on .57 (%)
can be extended to (%) and will be & -regular on all of 6(.&);
use of this fact will be made in many proofs.

(13) & is called compact if X = |J A,, where A4,¢.% implies
that a finite number of the A} cover X. Similarily we define <&¥
is countably compact, or ¥ is Lindelof.

We note that the lattice of compact sets together with the entire
space in a Hausdorff topological space is a compact lattice; the lattice
of zero sets in a Tychonoff space is countably compact if and only
if the space is pseudocompact. This follows by the well known
Alexandroff-Glicksherg theorem (see, e.q. ([51], p. 170)). General
properties and representation theorems for countably compact lattices
can be found in [6].

(14) &~ is called regular if for Aec <% and x¢ A, there exist
B,Ce&” such that xeB', Ac(C’, and BNC = @.

It is clear that we could pursue these matters, and define further
analogous topological-type properties in terms of lattices and check
various interrelations. This has been done in [19], in [35] in an
abstract lattice theoretic setting, and in [14] for frames. We will
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make use of a few of the obvious simple relationships following:

THEOREM 2.1. If & 4s countably compact, then MR(Z) =
MR(o, &¥).

THEOREM 2.2. If ¥ s Lindelof, then MR(c, &) = MR(r, &).

The first theorem appears in ([2], p. 590), while the second
theorem is a straightforward generalization of a result of
Varadarajan ([51] p. 175) for Tychonoff spaces; see also ([41] p. 50).
In this connection we also note:

THEOREM 2.3. If & is a o-lattice and if () = p(&) or if
0(L) C s(&); then M(o, &) = MR(o, &¥).

This theorem generalizes many specific topological type regularity
theorems in the literature. For the details of the proof and applica-
tions see [6]. For the specific case of zero-one measures see [7].

(15) &~ is countably paracompect if A, € &4 n=1,2,--+, and
A, | @ imply there exist B, e & such that A, B, and B, | @.

This is indeed equivalent to the usual topological characterization
when & is the lattice of closed sets (see [5]). It is easy to see
that if < is complement generated, then & is countably para-
compact.

(16) If X is a topological space we denote:

¢ = lattice of open sets

& = lattice of closed sets

2 = lattice of zero sets of continuous functions

%" = lattice of compact sets, with X adjoined.

Note: .27 is trivially still a compact lattice in the case of a
Hausdorff space.

Our final set of definitions concern relationships between two
lattices £, &5 of subsets of X. We assume throughout that
&, C &; although this demand could be relaxed in a few of the
subsequent results. This however is not important for our purposes.

(17) & semiseparates &4 if Ae<ss, Be &, and ANB=Q
implies there exists a Ce & such that BcC and ANC = @&.

&, separates & if A, Be &4 and AN B = @, then there exists
C, De < such that AcC, Bc D and CND = @.

&, coseparates & if A, Be &5 and AN B = @ implies there
exists C, De &4 such that AcC, BcD and C'ND = @.

It is easy to prove: & coseparates .&; implies & separates
% implies &~ semiseparates <. For further details in abstract
lattices see [13] and [35].
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(18) Let &©,Cc 5. &4 is H-countably paracompact if given
A, e, n=1238, ... with 4, | @, there exists B, € &, such that
A,CB, and B, | @. It is easy to prove that if &3 is countably
paracompact and if &4 separates &4, then &4 is <5-countably para-
compact. We note that if X is a normal countably paracompact
topological space then .&# is clearly Z-countably paracompact.

(19) Let &£ c %4 be lattices of subsets of X. If B,e.5,
n=123,---and B, | @ implies there exists 4,¢ &, n=1,2,3, -+
with B,C 4, and A, ] @ then &5 is called a c¢.b & lattice.

If Xis a c.b space then & is a c.b 2 lattice (see [5]). If &
is a ¢.b & lattice and <4 is countably paracompact then & is &4
countably paracompact. Thus in a c.b topological space & is 2~
countably paracompact.

We next state for convenience, the fundamental representation
theorem of Alexandroff.

THEOREM 2.4. Let & be a delta normal lattice. Then the
conjugate space of C(F) is MR(Z); i.e., to every bounded linear
Sunctional ¢ on Cy(F) there exists a unique p€ MR() such that
#(f) = Sfdﬂ, and ||| = ||, the total variation of p. Moreover the
positive and negative parts of ¢ correspond to the positive and
negative parts of p. If ¢=0 and Aec ¥ then p(A) = inf ¢(f),

where K, < f <1, feCy() K, denotes the characteristic function
of A.

MR(#) can be topologized with the vague topology: a basic set
of neighborhoods consisting of all

V(ﬂo; fly ttty fm 8)
= {re MR(),

|rae — \r:az,

<e, i=1,2,-~,n}

where pg,e MR(<) and the f,cCy(°). Using the Portmanteau
Theorem in the case of a d-normal lattice &% [3, p. 180] it is easy
to show that the restriction of this topology to IR(.%°) yields the
Wallman-Frink topology on IR(.%°), having a base for the closed
sets, all W(A4) = {¢ e IR(<)|(A) = 1} where Ae . (see [18], [52]).
Its association with the filter approach will be indicated in the next
section; it, of course, reduces in the case of abstract complemented
lattices to the Stone representation space.

3. Topological lattices and zero-one measures. In this section,
we will first summarize some simple measure and filter cor-
respondences. The various zero-one measure characterizations of
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some of the earlier lattice topological notions will then be given, and
finally some simple mappings between spaces of zero-one measures
will be given. Some of the results of this section are known, and
we collect them for the convenience of the reader.

We first summarize some results from [7].

THEOREM 3.1. There exists a 1-1 correspondence between all
zero ome F-regular measures i.e., all elements of IR(<) and all
L-ultrafilters. There exists a 1-1 correspondence between IR(c, &)
and all FL-ultrafilters with the countable intersection property. In
each case the correspondence is given by the following: With each
Lultrafilter T we associate the zero one measure M, defined on
(L) as follows: p(E)=14f E contains some AcT and p,(E)=0
if E is contained in the complement of some AcT.

It is easy to see that there is also a 1-1 correspondence between
prime A-filters and all elements of I(<). This correspondence is
achieved by associating with each pe (%) the prime filter given
by {Ae & n(A) = 1}. This correspondence induces a 1-1 correspon-
dence between prime filters with the countable intersection property
and I(c*, &¥). The details are easy.

If _# is just a multiplicative system of subsets of X (i.e. closed
under finite intersections) then since . (.#Z) = ¥ (<) where & is
the generated lattice, and since ¢t € IR(%”) if and only if £ is regular
with respect to _#Z (obvious definition) we get that there is a 1-1
correspondence between prime (ultra) filters of .#Z and prime (ultra)
filters of &~

Let pel(¥). p is called fized if MN{Ae < (A) =1} + Q.
The following results are known. They appear in [19] in a filter
form and in [13] and [35] in an abstract lattice form.

(8.1) &~ is compact if and only if every peIR(%) is fixed.
(3.2) If &# is countably compact, then IR(<°) = IR(g, ).

(8.3) &~ is normal if and only if for each f e I(.~") there is a unique
ve IR(%) such that ¢ < v on &£

(8.4) &~ isregular if and only if whenever z, ¢, € I(.%°) and g, <,
on &% then

N{de #|n(d) =1 = N{Ae X |u(4) =1} .

DEFINITION 3.1. X or &7 is called .&-replete if every (e IR(o, &)
is fixed.

If & is a disjunctive separating lattice this is equivalent to
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demanding that each ¢ e IR(%") is concentrated at a point; i.e., that
IR(0, ¥) is the set of all degenerate measures. Frolik [19] uses
maximally complete, while some authors just use the word complete
(see [4], [24]). In the case & is a separating, disjunctive delta
lattice, IR(0, &) with Wallman topology is called the “repletion
of X. In this case, the mapping «— g, (the two valued measure
concentrated at x) is a dense embedding of X in IR(c, &°). In the
case when &“ is a strongly normal delta lattice i.e., & is a normal
separating disjunctive delta lattice then every feC(<&”) can be ex-

tended to an 7e C(IR(g, &) by defining f(z) = Sfd;z. The details

can be found in [49]. If X is a topological space and & is a
separating disjunctive lattice which is a base for the closed sets
(&) i.e., (& is a basic, separating disjunctive lattice), then the
map « — f, also gives a homeomorphic mapping of X into a dense
subset of IR(<). For X a Tychonoff space and .&¥ = 2, IR(g, &)
reduces to the ordinary realcompactification of Hewitt; and Z replete
becomes realcompact (i.e., a Q-space) [30]). Further special cases
and interrelations will be given in the next section.

Following Frolik [19], we define:

DErFINITION 3.2. X or & is _F-almost replete is every
relIR(Z) N I(o*, &) is fixed, where &’ is the complementary
lattice.

Frolik uses the expression comaximally complete. If X is a
topological space and if & = .&#, then ¢“-almost replete reduces to
Frolik’s original definition of almost real compact [see 21]. The
following are extremely easy to prove:

(8.5) If <&~ is regular then every g e I(c*, &) is fixed if and only
if & is F-almost replete.

(8.6) If & is countably paracompact and normal and if every
relIR(o, &) is fixed then every pe l(o*, &) is fixed.

The proof of (3.6) depends on the following simple fact:

(8.7 If & is normal and countably paracompact and if g, ¢, € I(&)
and g, < n#, on & then p, e I(o*, &) implies y, € I(o*, &¥).

The following is a simple generalization of the well known rela-
tion between realcompact and almost realcompact.

THEOREM 3.2. (a) If LK CcHct(F) and & is countably
paracompact and normal, then F-replete implies F5-almost replete.
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(b) If &K,CA, and & is regular, and & is F-countably
paracompact, then £ almost replete implies A-replete.

Proof. (a) Let pelIR(<¥:) N I(c*, <;). By (3.3), there exists
a velIR(%¥) such that £ < v on &;velR(os, &) by (3.7). Now if
Be &5 and i(B) = 1, then B = ). 4, A.€.& and ¥(4,) =1, all a.
As v is fixed, the result is clear.

(b) Let pelR(s,.%,). Then there exists a velIR(<%;) such
that £ =v on <. If B,e<;, n=12,8,---, and B, | @, then
there exist 4,6 <, n=1,2,8, ---, such that B,C 4, and A, ] @.
Now ¥(B,) < v(A4,) < ¢(4,) | 0. Therefore veIR(g, &). Since &
is regular we are done by (3.5).

COROLLARY 8.1 (Frolik [21]). If X is a Tychonoff space, then
X realcompact implies X almost realcompact, and +f X 1is also
normal and countably paracompact, the converse holds.

Proof. Take &4 =.7 and &= 2. Asis well known [22] 2 is
normal, complement generated, and therefore countably paracompact.
Thus almost realcompactness is immediate from the theorem.

For the converse use the fact noted earlier that if X is normal
and countably paracompact then .& is Z-countably paracompact.

REMARK 3.1. We note both parts of Theorem 3.2 can be
strengthened; for example, part (a) shows that any pe I(c*, &) is
fixed i.e., X is prime complete, in the sense of Frolik.

The development here was strictly meant to show how some of
Frolik’s work fits into this framework, it is not critical for our
development or for the subsequent applications.

Before continuing with the theoretical development of zero-one
measures, we note some particular cases (for more details and ex-
amples see [6], [8]).

(a) For X a Tychnonoff space, and &~ = 2, IR(%°), (with
Wallman topology as usual) is of course BX, the Stone-Cech com-
pactification; and IR(¢, &) = vX, the Hewitt realcompactification.

(b) For X a zero dimensional Hausdorff space and & = the
lattice of clopen sets IR(%°) = £,X, the Banaschewski compactifica-
tion [9]; IR(0, &¥) = v, X is related to the N-compact spaces (see in
particular [29], [12]).

(¢) For X a topological space, IR(F, ) where IR(F, ”) =
{t e IR(2): it is not fixed} having the basic open sets: 0 U W(0) where
0 ¢~ we get Katetov’s absolute X (see e.g., [17], [37], [38]) and with
IR(o, ) in place of IR(<”) the a-closure of Liu [38].

It is clear that (c) could be abstracted to a considerable degree,
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akin to Frolik’s almost realcompactness. We do not pursue this
here since it is somewhat removed from the major thrust of our
applications.

We conclude this section with a consideration of extensions and
restrictions of zero-one regular measures, and in the next section,
we will consider the more difficult problem of arbitrary regular
measures.

We assume throughout that X is an abstract set and &4, <3
are, as usual, two lattices of subsets with & c <&4. It is clear, by
Theorem 3.1, that any pe€ IR(<)) can be extended to a veIR(%).
More precisely define for any Be &4, v(B) =1 if there exists an
Aec & such that Ac B and p(A) =1 and 0 otherwise. By Theorem
3.1, v may be extended, and consequently viewed, as an element of
IR(%;). We must just show that v extends g, If Ae &, and
v(4) =1, and #(A) = 0, then p(A’) = 1, and, since € IR(<7), there
exists a BC &4, BC A’ and p(B) = 1; whence, ¥(B) = 1; but v(4) = 1,
a contradiction, so v extends ge.

Next we have

LEMMA 3.1. If & C & and & semiseparates & then for any
v e IR(), the restriction, t, of v to . () belongs to IR(F).

Proof. We must just show that g is &7-regular. Thus suppose
Ac & and p(A) =v(4) =0. Then y(4’) =1, and there exists a
Be &4 such that BC A, and v(B) = 1. By the semiseparation, there
exists a Ce & with BcCcA’, so ¢(C) = 1. Thus pis regular with
respect to all A’ with Ae ¢4, and consequently regular on all of
A (A).

We thus have that if < semiseparates &, then the map
é: IR(A) — IR(%)) given by restriction to .87 (%) is a surjection.

LEMMA 3.2. If £ C &5 and iof &£ separates & then the
restriction map ¢: IR() — IR(Z) given by ¢(V) is the restriction
of v to 7 (), is a bijection.

Proof. Lety,v,cIR(%), and v, #v,. Then there exist A, Be &
such that v,(4) = 1, v,(4) = 0, and y(B) = 0, v,(B) = land AN B = Q.
By the separation, there exists C,De <, with AcC, BcD and
CND= @ whence, v,(C) =1, v(D) =0, and y,(D) = 1, v,(C) = 0, and
we are done.

LEMMA 8.3. If &£ C & and if &£ semiseparates 5, then the
restriction map ¢: IR(F) — IR(F) given by ¢(V) is the restriction
of v to .7 (), 18 a bijection if and only if & separates .
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Proof. We must just prove the necessity of the condition. Thus,
suppose the restriction is a bijection, but there are A, Be _&; which
cannot be separated by disjoint elements of 3. Then the set
S={CecF|AcCClU{De &F|Bc D}, has the finite intersection pro-
perty, and is contained in an _F-ultrafilter, with associated
prelR(). Let Fe <, and w(E) =1. Then EN A # @; for if
EnN A= @, then, by semiseparation, there exists an F'e & such
that ACF,and ENF = @, so (F') = 0. But since ACF, p(F) = 1.
This contradiction shows that EN A+ @. Similarly, EN B+ @,
and clearly by Theorem 3.1 we can find v, v, € IR(.%5) both extending
¢ and with v,(4) = 1 = y(B), so v, # v,, a contradiction.

At this point we could already give a limited number of topologi-
cal applications of these results but we will enlarge the framework
considerably before giving applications. Further details along these
lines and in an abstract lattice setting can be found in [13]. We
summarize, for convenience of reference, the preceding results.

THEOREM 3.3. Let £ C &4 be two lattices of subsets of the
abstract set X such that <& semiseparates <. The restriction
map ¢: IR(F) — IR(F) given by ¢(v) is the restriction of v to
S (F) is a surjection, and is a bijection if and only if & se-
parates <.

We now consider related matters pertaining to the regular o-
smooth measures. If, as before, &£, C &% and ¢ € IR(o, &). We know
that there exist <£-regular measures extending ¢. If, ve IR(<5) and
v extends #, v need not be o-smooth. If however, & is & countably
paracompact then for any sequence B, € &5, » =1, 2, --- with B, | @,
there exists 4,5, n=1,2, --- such that B,C A,, and A4, ] @.
Then v(B,) =< 1(4,) ] 0, since pre IR(o, ). Similarly if <4 is a e.b
&, lattice we have ve IR(g, &5). Combining this with the previous
work, we have

THEOREM 3.4. If &£ C & are two lattices of subsets of X, then

(a) Any pelIR(S7) can be extended to a ve IR(<) and if &
18 & countably paracompact or & is countably compact, or a c.b
& lattice, then any F-regular extension of a p € IR(o, <£) belongs
to IR(o, &).

(b) If <& semiseparates & and &£ 18 &, countably para-
compact or a e.b F lattice the restriction map ¢*: IR(c, &) —
IR(0, &¥) is a surjection.

(¢) If & separates & and & is &, countably paracompact,
or a c.b & lattice, then the restriction map ¢*: IR(o, &) — IR(c, &)
18 a bijection.
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COROLLARY 3.2. If &£ c . & are two lattices of subsets of X,
and & separates &, and if & is countably paracompact, then
the restriction map: ¢*: IR(o, &%) — IR(0, &) is a bijection.

Proof. The hypotheses imply that &5 is & countably para-
compact, as noted earlier.

In [6], we have systematically applied these results to topologi-
cal repletion matters, and will give several applications in the next
section; we will just give those which are particularly relevant to
the mapping and subspace problems that we are concerned with in
this paper. In addition to the statements in the above theorems, we
can make statements pertaining to the continuity of the maps with
respect to the Wallman topologies, however, we will not need this
here (see, e.g., [6], [13], [35]).

4. General extensions and applications. Again, we consider the
case of two lattices of sets &£, &5 with &£, C ¢4, and both contained
in the abstract set X. We now generalize the considerations of the
previous section to the more difficult problem of extending a
reMR(Z) or MR(o, &%) to one in MR(.%;) or MRE(o, %), as well
as the restriction matters. Problems of this type appear in many
specific topological frameworks throughout the literature (see [27],
[40], [36], [47]). We will develop briefly here a general extension
theorem which covers many special cases in the literature. We will
show the relationship of this to our previous considerations, and then
we will give a few applications. In the remaining sections we will
develop mapping properties in the general setting, and apply these
results systematically, in the topological case to get many separate
and diverse mapping and subspace results.

We first consider restriction question:

THEOREM 4.1. Let & C & be two lattices of subsets of X. If

(a) & semiseparates 4 thenm the restriction of pe MR(5)
(MR(c, &#)) to 7 (F) belongs to MR(<~) (MR(o, &£)).

(b) If &4 is a o-lattice and if 0(F) = (&) or if 0(&L)C
(&) then the restriction of any pe MR(g, &) to 7 (F) belongs to
MR(o, ).

Proof. Since the proof of (b) is a direct consequence of Theorem
2.3, we need only prove (a):

Proof of (a). We may assume g = 0. Call the restriction of
p to ¥(F), v. Suppose Ee .7 (). Then E may be written as
E =U?r A, — B, where the union is disjoint and B, C A,. Since v is
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% regular there exist B¥ e &5,1 =1, 2, ---, n, such that B¥ C A, — B,
and Y(4; — B,) < ¥(B}) + ¢/2'. By semiseparation, we may find
C,e < such that B¥cC, and C;N B, = @ for each 1 =1,2, ---, n.
Clearly A, — B,D A, NC,D> B} for each 7 and Ur4,NC,e &. We
then have

y(U (4: N C)) = S v(4: N C) = v(E) = 2.4, — B)
<(EUBY)) +e=2XUANC) + e

Thus v is & regular.
Now we turn to the extension problem, we consider this in two
parts.

THEOREM 4.2. Let &£ C &5 be two delta normal lattices of sub-
sets of X such that £ semiseparates 4. Then any pe€ MR()
can be extended to a ve MR(<5). Moreover, the extension is always
a unique extension if and only if &£ separates .

Proof. Again we may assume # = 0. Form the linear functional
® defined on C,(<2) as follows: &(f) = gfd;z for each feCy(.Z).

By Krein’s theorem, ® may be extended to a positive linear func-
tional @* on C,(<4). Since @* is bounded, we may find by Theorem

2.4 a vy € MR(<4) such that 0*(g) = S gdy for each geCy (). Clearly

v(4) < p(A) for Ae &7 since we are taking an infimum over a larger
set. To show the inequality the other way we have since v € MR(.%5),
a Be & such that Ac B, v(B') — v(4) < . By semiseparation we
can find a Ce &£ with BcC and ANC = @. Since & is normal
there exists an feC,(<) such that f(4A) =1 and f(C) =1 (see [1],
p. 317). We have

) s \ap = \fav = { sav+ | fav+ | v <aa)+c.

Since ¢ was arbitrary we have p(A4) < v(A4) and therefore g =v on
%,. By Theorem 4.1, vy restricted to (%)) is & regular and
since £ =v on &, p=v on ¥ (%). Thus v is an extension of p.

To complete the proof we must only show that there is a unique
extension if and only if &4 separates .&5. The necessity of the
condition follows from Lemma 3.3.

To show the sufficiency, suppose ¢ € MR(<,) has 2 distinct ex-
tensions v, and v, to MR(<%5). Then there is an A€ & such that
v,(4) # v,(A). We may suppose v,(4) — v,(4) = > 0. Choose ¢ < 9.
By &4 regularity there is a Be 4 such that v(B') — v,(4) <e. By
separation there exists C,De < such that AcC, BcD and
CND=@. It follows that
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0 = v(4) — v,(4) = v(0) — v(4) = v (D) — v(4) = v(B) — v(4)
< e, a contradiction.

Thus each pe MR(<3) has a unique extension if & separates &
and we are done.

THEOREM 4.3. Let £, C & be two delta normal lattices of sub-
sets of X such that £ semiseparates & and such that (a) & is
Z countably paracompact or (b) & is a c¢.b & lattice or (¢) & ts
countably compact. Then every e MR(c, &) can be extended to a
ye MR(o, &4). The extension is always unique if &, separates 4.

Proof. We need only show that the extension of a ¢ e MR(o, &4)
is o-smooth. If &5 is <4 countably paracompact, or & is a c.b &
lattice, then the proof is similar to the proof of Theorem 3.4. If &4
is countably compact the result follows from Theorem 2.1.

We will give a few applications of these results. The first
application is a slight strengthening of the main result of Hardy
and Lacey [27].

COROLLARY 4.1. Let &, and &7, be topologies on X with closed
sets F, and F, respectively. If &, is a compact Hausdorff topology
and &, a regular topology with &, C &%, then every <€ MR(o, &)
(=MRE(Z,)) can be extended to a ye MR(c, #,) (=MR(%,)). The
extension s unique if and only if &, = .

Proof. #, C .#, and both are delta normal, compact lattices.
Moreover, &, semiseparates .&#, since in a regular space a compact
set and a closed set disjoint from it can be separated by disjoint
open sets. The desired extension follows from Theorem 3.1. The
remainder is simple.

As a further generalization of Corollary 4.1 we have

COROLLARY 4.2. If &, C & are two mormal topologies for X
with closed sets &, and F, respectively such that F, semiseparates
Z, then if

(a) (X, &%) is countably compact, or if

(b) (X, 2, is countably paracompact and ., separates .7,
or if

(¢) & is F, countably paracompact, or a e¢.b F, lattice then
any pre MR(o, ) can be extended to a ve MR(c, . #;) and in case
(b) the extension is unique.
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The following corollary is a strengthened version of the difficult
portion of the extension theorem of Marik ([40]).

COROLLARY 4.3. Let X be a topological space which is countably
paracompact and normal, then every pte M(o, 2°) extends uniquely
to a ve MR(o, ).

Proof. 2 <. and both are delta normal lattices. Since 2~
is complement generated ¢(2") = p(2°) and therefore M(o, ) =
MR(o, 27). Moreover, £ coseparates & since X is normal. It
follows that & is 2  countably paracompact and we are done by
Theorem 4.3.

As a further simple application we have:

COROLLARY 4.4. &, C &, are two Tychonoff topologies for X
with zero sets 2, and 2, respectively such that =, semiseparates
25, then if

(a) (X, &%) is pseudocompact, or if

(b) 27 separates %5, or if

(¢) 2% 1s 2, countadbly paracompact, or a c¢.b 2, lattice then
any peM(o, %) (=MR(o, 27)) can be extended to a ve Mo, %)
(=MR(0, 27)) and in (b) the extension is unique.

Proof. We need only note that in (a), (X, ¢5) pseudocompact is
equivalent to being 2;-countably compact and in (b), 2; is 2]
countably paracompact. (c) is clear.

We now give some general repleteness applications.

(4.1) 0(&) replete implies <“-replete. In particular in a topological
space o(% ) replete (i.e., Borel replete) implies .Z#-replete.

Proof. Clear.
(4.2) If X is a Tychonoff space, then Z-repletes implies .# replete.

Proof. Let pteIR(o, ). Then the restriction v of ¢ to d(2)
is o-smooth and since ¢(%) = p(2") we have by Theorem 2.3 that
veIR(o, 7). Therefore v and hence p is concentrated at a point.

(4.3) If X is a Tychonoff space, then Z-replete is equivalent to
o(Z)-replete.

Proof. Since 6(2") = p(2°) we again have by Theorem 2.3 that
IR(0, ) = I(0, 2°) and the proof is immediate.

(4.4) If X is a Tychonoff space and if X is normal and countably
paracompact, then .#-replete implies Z-replete.
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Proof. According to Theorem 3.4 there is a 1-1 correspondence
between IR(c, &) and IR(g, 2°). The proof is now immediate.

This result was first proved by Dykes ([15], Corollary 1.10). If
X is a Tychonoff c.b space, &# is Z-countably paracompact and as
in (4.4) “-replete implies Z-replete.

(4.5) If ¥ is a delta lattice and if 0(<)C (&) then “-replete
is equivalent to o(&°)-replete.

Proof. The proof is analogous to (4.3).

REMARK 4.1. For X an analytic space (the continuous image of
a Polish space) o(F ) s(#). Thus is an analytic space o(F)-
replete is equivalent to .&# replete. Moreover in such spaces, o(F)
separates s(% ) so we can make further implications pertaining to
s(F )-replete and o(# )-replete.

Further applications in this manner are easy to give. We have
just presented a few in order to give the flavor of one type of ap-
plication that the general theorems are useful in handling.

5. Mappings. In this section we will present several general
mapping theorems between spaces of regular lattice measures and
then will show here and in the next section, how these results can
be applied in a systematic fashion to a large number of topological
mapping questions pertaining to preservation of various specific types
of repleteness.

Throughout this section, X and Y will denote two abstract sets.
% will denote a lattice of subsets of X and &4 a lattice of subsets
of Y.

DEFINITION 5.1. A mapping T: X — Y is <4 — &4 continuous if
T-(%5) is contained in &7, It is & — &4 closed if T() C &4
where 1(<5) = {T(L,): L, € &~}.

THEOREM 5.1. Let T: X— Y be & — &, continuous and let T
be a surjection. If T N3) semiseparates &, and if & and &
are both delta mormal lattices, then,

(a) The mapping T*: MR(,) — MR(<4) given by T*p = pT™*
1s a surjection and is a bijection if T (<) separates .

(b) If T** 4s the restriction of T* to MR(o, &%) and if &, s
T (&) countably paracompact or & is countably compact, then
T** maps MR(c, &%) onto MR(o, %5).

(¢) T* is a continuous map with respect to the vague topologies.

Proof. (a) Using Theorem 4.1 (a) and the surjectivity of T
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we see that T* is a mapping of MR(<4) into MR(<4). Suppose
ve MR(<%;). Define v* on 7 (T7Y(5) by v*(T'(B)) = v(B) where
Be o7 (). v¥e MR(TY(<5)). By Theorem 4.2, v* extends uniquely
to a e MR(<). Clearly vy = T on .&7(%5), and we are done.
(b) follows immediately from (a) and Theorem 4.3.
(e¢) Suppose

V(vo, i >y s 5)
= {v € MR(%5): H g.dy — S g:av,

<z~:,’i:1,2,---,n}

is a basic open set in MR(<%3) with the vague topology. Suppose
T(tt) = v, Then f, = .Te (%) and Sgidv: Sfidy for each
1=1,2, .-+, m, and any ve MR(%;) such that T(¢) =v. It follows
that the basic open set

V(/"Oyfu i ',fm 8)

= { e MR(Z): ) S fdp — S fidt,

<e,i:1,2,---,n}

I

is mapped into V(v, 9., -+, g., €) and thus T is continuous.

COROLLARY 5.1. Let the surjection T: X — Y be & — & con-
tinuous and £, — & closed where &, and & are delta mormal
lattices, then the corresponding conclusions of Theorem 5.1 remain
valid.

Proof. It is easy to see in this case that T () semiseparates
Z.

REMARK 5.1. When T* of Theorem 5.1 is restricted to IR(.%)
a simple direct argument shows that T* is continuous with respect
to the Wallman topologies. In this case the delta normality of &
and & are not necessary. Furthermore the extension arguments
are achieved through the more elementary use of filters than through
representation theorems. Thus we have the following:

THEOREM 5.2. Let T: X — Y be a surjection which s & — &,
continuous and &, — 4 closed. Then

(a) The map T:IR(Z)— IR(S5) given by T(y) = pT™ is a
surjection continuous with respect to the Wallman topologies.

(b) The mapping T*: IR(c, &5)— IR(c, &) given by T*(y) =
pT™ is a surjection continuous with respect to the Wallman
topologies if &£ is T () countably paracompact or vf & 1is
countadbly compact.
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(¢) The mappings in (a) and (b) are bijections if T ()
separates F.

Another general mapping theorem of considerable interest is the
following.

THEOREM 5.8. Let T: X— Y be & — & continuous.

(a) If &5 is a delta lattice and 1f 0(H) = p(&) or o(F)C
s(=), or,

(b) If T is a bijection and £ semiseparates T(F);
then p € MR(o, #) implies pT™' € MR(o, &5) and the map T** taking
¢ oanto pT7* 4s continuous with respect to the vague topologies.

Proof. The continuity in each case follows as in Theorem 5.1.
That #7T7'e€ MR(o, <) in part (a) follows immediately from Theorem
2.3. To show the same in (b) define y,(T(4A)) = #(4) for T(4)e
& (T(F)). Then vy, = T on 7 (T()) and v, € MR(o, T(¥)). 1If
<%, semiseparates T(<%;) then pT™ restricted to .&(%5) is in
MR(0, &4) by Theorem 4.1.

In what follows we present a very significant general mapping
theorem and some of its many corollaries. The general theorems
which follow from it are extremely useful in a variety of contexts
and have far reaching consequences. We need the following defini-
tions.

DEFINITION 5.2. If A is a subset of X and & is a lattice of
subsets of X, then A is called relatively F-replete if A is & NA
replete where & N A ={L N A: Le &¥}. A is called F~compact (or
just compact if the lattice is clear) if the lattice & N A is compact.

DEFINITION 5.3. Let T: X — Y be a surjection which is & — &4
continuous and & — &4 closed and such that T '{y} is &-compact
for any ye€ Y. Then under these conditions 7' is called & — &
perfect or simply perfect if the lattices involved are clear.

LEmmA 5.1. If T: X— Y has the property that T '{y} is rela-
tively <& replete for each ye'Y where 7, 1s a delta lattice then if
telR(o, &) and if 2% ={Ae Z: (A =1}, T(N4A)=NT(4)
where the A, run through 57

Proof. We need only show that (M T(4.,) < T(N 4,) where
A,c 27 Suppose y € T(A,); then T '{y} N A, + @ for each A, € 2
Indeed, if not then A,e(TYy}) = T'({y}) for each A,e % and
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thus applying T to both sides, T(A.) <{y} for each A,e 5# con-
tradicting y € T(A,) for each A,€ 54 Thus the collection

F ={Ty}N A, A, e 577}

is an £ N T7'y} filter with the countable intersection property.
Moreover <Z is maximal since if (T '{y} N C) N (T"Yy} N A,) # @ for
each A, 57, where Ce &; then CN A, # @ for each A,€ 27 and
since 57 is maximal Ce 5 It follows that T'{y} N Ce<# and
thus <7 is a Ty} N &4 ultrafilter with the countable intersection
property. Since T {y} is relatively &-replete <& has nonempty
intersection. If zis in this intersection then T(x) = y and the proof
is complete since z € ) A, where {4,} runs through 5#

REMARK 5.2. By using Theorem 2.1 in conjunction with Lemma
5.1 one easily gets as corollary the following useful lemma of Meyer
[41, p. 33, Theorem 6].

LeEmMMmA 5.2, If T: X— Y s such that T 'y} is Ty} N &-
countably compact for each ye€Y then if A, € and A,]| D,
T4, ] @.

THEOREM 5.4. Let T:X—Y be £ — & continuous and
F — t0() closed where Z, is a delta lattice and & is a separat-
ing disjunctive delta lattice with 0(<5) Cs(5). Let 5D & be a
lattice of subsets of X such that £ C 4 C () and such that any
relR(o, &) when restricted to ¥ (F) is in IR(o, &) (e.g., if
o0(F) Cs(&) or if &£ semiseparates <5). Then if Ty} is rela-
tively & replete for each ye'Y, &5 replete implies & replete.

Proof. Suppose p e IR(g, <4); by hypothesis, the restriction g,
of ¢t to () is in IR(0, ¥). We may assume that g, is defined
on (). Definey, = p, T on (). v, €lR(o, &) since 0(F) C
s(&5) and y, is fixed at a single point p. Its unique -regular
extension to 0(.%5) also denoted by v, is also concentrated at p. Let
={Aec A (A =1}. Since T(4A)ero() for each Aec & we
may write for any Ae 5#, T(A) = N C, where C,c0(%3). For any
such C, we have y(C,) = #,T(C,) = 1.(4)=1. Thus peC, for
each such C,; hence pe T(A4) for any Ae 5#. By Lemma 5.1 y, is
fixed and since L C () clearly p is fixed. Thus & is replete.

Taking & = &4 in Theorem 5.4 we get

THEOREM 5.5. Let T:X—Y be &£ — & continuous and
F — 1(0(ZF) closed where £ is a delta lattice and & is a
separating disjunctive delta lattice with (&) Cs(4). Then if
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T Yy} is relatively & replete for each yeY, 5 replete implies
Z-replete. (In particular if T *{y} is compact for each y €Y, then
% replete implies & replete.) We note that in the case Ty} is
compact for each y € Y one may relax the condition that & be a
delta lattice since [} <% in Lemma 5.1 is nonempty.

Let us specialize to the case where Fc X and T: E— X is the
identity map. If <& is a separating disjunctive delta lattice of sub-
sets of X with 0(&) Cs(¥°) and & is a lattice of subsets of E
with & N E C &%, then obviously T is & — & continuous. If in
addition 5 Cto(.&”) then T is also &%, — 70(<°) closed. Since T
is an injection T *{y} is clearly relatively replete and the conditions
of Theorem 5.5 hold. Thus we have

THEOREM 5.6. If EC X and & 1is a separating disjunctive
delta lattice of subsets of X with o()Cs(&) and if &£ is o
lattice of subsets of E with ¥ N EC 5 then if & (&), &
replete implies &5 replete. (In particular if Feto(&) and & =
< N E, then & replete implies &2 N E replete.)

REMARK 5.3. If T'X—Y is & — & continuous, & — &
closed and onto, then we may relax the condition 0(<;) Cs(.%) in
Theorem 5.4 since the measure vy, constructed in the proof of
Theorem 5.4 is necessarily & regular. Thus we have

THEOREM 5.7. If T: X — Y is & — & continuous, &, — 10(5)
closed and onto where &£, is a delta lattice and <5 is a separating
disjunctive delta lattice then 1f Ty} is relatively Z-replete for
each yeY, & replete implies F-replete. (In particular if T is
F — & perfect F-replete implies & replete.)

Some further corollaries follow.

COROLLARY 5.2. If X, Y are Tychonoff spaces and if T:X—Y
s a continuous Z-map (i.e. T(ZF)C . F,), with the property that
T Yy} is realcompact and o Z-embedded subset of X for each y€Y,
(i.e., every zero set of T '{y} is the trace of a zero set of X), then,
if Y is realcompact then X is realcompact.

Proof. In Theorem 5.4 let &4 = &4 = 27, &5 = %,. Tisclearly
&, — & continuous and &£ — 7(5) = &, closed. Finally T7'{y} is
relatively .&Z-replete because it is realcompact and Z-embedded.

REMARK 5.4. Corollary 5.2 strengthens Theorem 5.3 in Isiwata
[31].
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COROLLARY 5.3 (Varadarajan-Moran [51], [42]). If X is a real-
compact Tychonoff space and EC X is in 7to(%") then E is real-
compact. (In particular a Baire subset of a realcompact space is
realcompact.)

Proof. In Theorem 5.6 take &%, to be the zero sets of E and
¥ = 2, the zero sets of X. To see that <&, C 70(&°) take a Z e &;
then Z = FN E where Fe & =17(%2). Since Fect0(%), Zec10(%),
hence &% C to(%).

REMARK 5.5. If X — {x}c0(2") for each x€X for X a real-
compact Tychonoff space, then every subset F of X is in 7¢(2") and
thus by Corollary 5.3 every subset is realcompact.

COROLLARY 5.4 (Hager-Reynolds-Rice [24]). If T: X—Y is a
Borel measurable injection then if Y is Borel replete, X is Borel
replete. (In particular by taking X< Y and T to be the identity
map we get that any subset of a Borel replete space is Borel replete.)

Proof. In Theorem 5.5 take & = 0(%;), & = 0(,). Note
that T(<%%) is always contained in to(.%#;) = all subsets of Y, regard-
less of what <&~ is.

COROLLARY 5.5 (Dykes [16]). If X, Y are Tychonoff spaces and
T: X —Y is perfect then tf Y is &, replete then X is F#, replete.

(The converse follows simply from Theorem 5.2 together with
Lemma 5.2.)

Proof. In Theorem 5.7 take & = &, & = F,

COROLLARY 5.6. If a c.b. space E s contained in a Borel
replete Tychonoff space X then E is realcompact.

Proof. By a previous Corollary, E is Borel replete and thus by
Theorem 4.2 Z-replete. The corollary now follows from the remarks
after (4.4).

One can get many more subspace and mapping theorems con-
cerning repleteness as special cases of Theorems 5.4-5.7. By com-
bining these theorems with our general extension theorems, still more
general theorems may be obtained. We do not pursue this however,
since the general techniques and assumptions necessary should be
clear., We will just consider one specialized case of particular interest
and note some of its significant consequences.
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THEOREM 5.8. Let &£ and 5 be lattices of subsets of X such
that £ C A4 C1(F) and 0(F) Cs(F). Let & C £ be lattices of
subsets of Y such that & is & countably paracompact or a c.b
% lattice. Let T be an & — £ continuous closed surjection. If
& 18 T™(F) countably paracompact, then F-replete implies 5
replete.

Proof. Since &£ is replete and ¥ C 5 C (%)) we have that
%, is replete. Now let velIR(g, &4). v can be extended to a
p € IR(o, &) by Theorem 3.4 (a). Also p = T where ¢ e IR(o, &)
by Theorem 5.2 (b). Since p is fixed, we have, as is easily seen, that
o is fixed.

Before giving some consequences of this, we note:
LEMMA 5.3. If T:X—Y is & — & perfect and if & is
countably paracompact, then & is T (%) countably paracompact.

Proof. If F,| @ where F, e <& then by Lemma 5.2 T(F,) | @.
Thus there are G, G, € & with T(F,)CcG, and G, | @. We therefore
have F,c (T Y(G,)) | @.

COROLLARY 5.7. If X and Y are Tychonoff spaces and T: X — Y
1s a perfect map, then if Y 1s countably paracompact and normal
or @ c.b space then X realcompact implies Y realcompact.

Proof. In the theorem take &= .7, & =.%, L =%,
L= 2.

COROLLARY 5.8 (Frolik-Isiwata). Let X and Y be Tychonoff
spaces and let T: X — Y be perfect. If X is countably paracompact
and nmormal or a c.b space, then X realcompact implies Y real-
compact.

Proof. This follows from the previous corollary observing that
countably paracompact and normal is preserved under continuous
closed surjections.

COROLLARY 5.9 (Frolik). Realcompactness is preserved under an
open perfect mapping.

Proof. If T: X— Y is perfect where X and Y are Tychonoff
spaces then of course T7'(2;) C 2; and T Yy} is Z;-compact for each
y€Y. Alsosince T is open it is not difficult to see that T(2)) C 2.
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To complete the proof we need only take in the theorem & = 5= 2,
=L =2

REMARK 5.6. For completeness we will consider here the rela-
tionship of some of the previous work with almost realcompactness.
Returning to the abstract framework, let T: X— Y be & — &
perfect. Let ve IR(<:) N I(o*, ). Then there exists a € IR(<)
such that pT7'(A4) =v(4) where Ae (&) = ¥ (H). Thus
uT7 =y on &. By Lemma 5.2 if ve I(c*, &%) then pe I(o*, ).
Thus if g is fixed, v is fixed.

Conversely let peIR(Z) N I(c*, &) and define v = puT' on
7 (F). Then ve I(o*, &5). If <4 is regular then by 3.5, v is fixed
and by the perfectness and Lemma 5.2 z is fixed. Thus we have:

THEOREM 5.8. Let T: X — Y be & — & perfect.

(a) If X is F-almost replete then Y is & almost replete.

(b) If Y is & almost replete and & is regular, then X 1is
F-almost replete.

As a corollary of this we get of course Frolik’s result that for
regular spaces almost realcompactness is preserved under perfect
mappings.

We note that further generalizations of some of the corollaries
given have been obtained (see e.g., [16], [31], [11]). We could indeed
generalize slightly some of our abstract results in line with those
but most of this brings us into the realm of r-smooth measures and
will not be considered here.

6. Further mapping theorems. We turn to some further
general abstract mapping theorems which have a great number of
application.

We noted earlier in Theorem 5.3, general conditions under which
T: X— Y induces a continuous map T**: MR(c, &) — MR(c, ).
If we specialize part of this theorem to the case of zero-one measures
and use a remark analogous to Remark 5.1 then we have

THEOREM 6.1. If T:X— Y 1s & — 5 countinuous, and if
%5 18 o delta lattice such that (x) 0(F) Cs(3) then the map
T.: IR(0, &) — IR(0, &) given by T.(p) = pT7* 1is continuous with
respect to the Wallman topologies.

Let us specialize still further. We assume that both & and &
are separating disjunctive delta lattices. In this case, X and Y with
the respective topologies 7(<) and 7(;) are densely embedded in
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their respective repletions IR(o, &) and IR(g, &). Now let Dc Y
and let £ = T7Y(D). Let <, and <%, be basic separating disjunctive
delta lattices of subsets of D and FE respectively. Consider the
inclusion map ¢: Ec X, and suppose that &£ N EC &% so that 1 is
& — &, continuous. Clearly &£ N E satisfies (*) of Theorem 6.1 if
<#, does. Consider the map i,: IR(o, %) — IR(0, %)) of Theorem 6.1.
Then if X is &4 replete, i,: IR(0, &%) — X. Next the restriction 7"
of T to E maps E into D and T" = Toi. If T7Y() C & and &5,
satisfies (*) then Ti: IR(c, &%) — IR(0, &) = D if D is )-replete.
By denseness T; = (Tot), = To¢, and by a standard elementary
denseness and continuity result ([22], p. 92) +,(IR(0, &) — E)cX - E
and thus T\(IR(co, &) — E)CcT(X — E)cY — D. Also

T(IR(c, <) — E)c D .
Therefore IR(o, &) = E. Summarizing we get:

THEOREM 6.2. Let T: X — Y be & — & continuous where &
and &, are basic separating disjumnctive delta lattices such that
0(F)cs(F) and o(H) (). If DY and E = TY(D), and if
& and Fy are basic separating disjunctive lattices of subsets of
D and E respectively such that &£, N EC ., T () C P and
0( &) C8(F), then iof X is Fi-replete, and D is Fp-replete, it
follows that E is Zy-replete.

REMARK 6.1. In general if X is an abstract set and <& is a
lattice of subsets and if B e€d(&”), then it is a routine set theoretic
argument to show that W(o(<")) = cW(<") where here

W(B) = {¢t€ IR(o, ): ((B) = 1},

and W(o()) and a(W(¥")) have the obvious meaning.

Next if we follow the terminology and notations immediately
after Definition 3.1, we have that if & is strongly normal delta
lattice and if fe C(%°) has L as a zero set, i.e.,

L = Z(f) = {xe X: f(z) = 0},

then W(L) = Z(f*) where f* is the continuous extension of f to
IR(o, &) (see [49]) and from this it follows that {W(L): Le &
L = Z(f) for feC(<")} gives the totality of zero sets of IR(c, &).

COROLLARY 6.1 (Moran [42]). Let X and Y be Tychonoff spaces
and let T: X —Y be Baire measurable (i.e., T Y(0(%3)) Co(¥) where
%, 18 the collection of zero sets of X and & is the collection of
zero sets of Y). Then
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(a) there exists a unique Baire measurable extension T* of T
Jfrom vX to vY;

(b) the inverse image under T of every relatively realcompact
(i.e., (27N D-replete)) subset of Y is realcompact vf X is realcompact.

Proof. (a) Follows directly from Theorem 6.1 in conjunction
with Remark 6.1 while (b) follows directly from Theorem 6.2 by
taking & = 0(%2), &4 = 0(%,), L = 0(2%) where 27 is the collec-
tion of zero sets of F and &, = a(23) N D.

COROLLARY 6.2 (Gillman-Jerrison [22]). Let X and Y be
Tychonoff spaces. If T: X — Y s continuous and if X is realcom-
pact, then the inverse image of any realcompact subset of Y 1is
realcompact.

Proof. This follows from (b) of the previous corollary or may
be obtained directly from Theorem 6.2 by taking &£ = 23, & = 25,
& = Zpand & = F5 where &4, &5, 2, and 23 are the zero sets
respectively of X, Y, D, and E.

REMARK 6.2. In Theorem 6.1 we obtained conditions under which
an &, — &, continuous function could be extended to the respective
repletions IR(g, &) and IR(o, &) of X and Y. We consider here
because of its importance (see e.g., [28]) the “extension” of an
A — Zeontinuous T: X —Y to a T*: IR(¥) — IR(%;). As in the
proof of Lemma 3.1, let geIR(%4). Then p restricted to T7(<4)
is in IR(T (=) if T™(<~;) semiseparates <. Define v(4) = T ' (4)
for Ae 7 (%;). If Tis a surjection then ye IR(%5). As in Theorem
5.1 only using the simpler extension process of Theorem 3.1 and
Remark 5.1 we get that any ve IR(%4) is of this form. Therefore
we have:

THEOREM 6.3. If T' X — Y is an &£ — & continuows surjec-
tion such that T (<) semiseparates &, then the map T*: IR(F) —
IR(=7,) given by T*p = pT7 is a surjection and s continuous with
respect to the Wallman topologies. If &£ and & are separating
disjunctive lattices which are bases for the topologies () and
7(£) then X and Y are embedded in IR(F) and IR(<4) respectively
and T* extends T.

In what follows the closure will be taken with respect to the
topologies 7(&) and 7(<%;). Let T: X — Y be &, — & continuous
and ¢ € IR(<). Define #T™ on .%7(%3). Again we want conditions
which will insure that T induces a continuous map from IR(%)—
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IR(#). Assume that cl (T(%))) € & where cl (T(L,)) is the closure
of T(L) in Y and cl(T(&)) = {cl (T(L)): L, &%}, This would
certainly be the case for example if T is & — &4 closed.

Suppose also that T satisfies condition (**): Whenever B; U B; U
-+ UB,=Y where B, B, ---, B, € &, thereexists 4,, A4,, --+, A,€ &,
such that X = AU 4,U --- U A, and for each 4,,k=1,2,8,---,m,
and any CcC A;, Ce & implies there existsa B, r =1, 2, ---, n, such
that el (T(C)) c B..

If pe IR(¥) then uT ' € I(<3;) and there exists a v e IR(%;) such
that 4T <y on <. We show first that under condition (**) v is
unique. (Note: uniqueness follows from (3.3) if &5 is normal.)
Suppose p e IR(<) and T < p on &, and vy # p. Then there exists
B, B,€ & such that B.NB, = @, ¥(B) =1, p(B) =0 and o(B,) =1,
y(B,) = 0. Thus, BiUB; =Y and by (**) there are 4,, ---, 4,€ &4,
such that X = A] U A;U --- U 4,.. Hence for some £k =1,2, ---, m,
M#(A;) = 1. By regularity there is an A€ &4, ACA, and p¢(4) = 1.
By (**) either cl(T'(4)) c B; or cl(T(A))c B;. If cl(T(A))c B, then
V(cl (T(A))) = T (el (T(A)) = M(A) = 1, so ¥(B;) = 1, a contradiction.
Similarly, cl (T(A)) < B; leads to a contradiction Thus v is unique,
and we have a well defined map T.: IR(¥)— IR(%;) given by p—v
where v is the unique element of IR(.%;) which is = T on &4,

Next we show that T, is continuous. Let yeIR(<%;) and let
Be & If veW(B) ={peclIR(%): p(B) =0} (a basic open set in
IR(%)), then y(B') =1 and by regularity there is a Ce_ & such
that Cc B’ and »(C)=1. Clearly Y =C U B’ and as above there
are A, A, e &£, with AcC A;, u(A) = 1(4;) = 1, where cl(T(A))cC’ or
cd(T(A)c B'. If el (T(A))cC’ then y(cl(T(4)) =1 and ¥(C')=1, a
contradiction. Thus cl(T(A) Cc B'. peW(4,). If ne W(A,) then
MA*) =1 for some A*C A, where A*e & Thus (el (T(A*))c B’ and
if Tov=p = pT™, then p(cl(T(A*))) = 1. It follows that p(B) =1
and T,(W(A,)cW(B'). Thus T, is continuous. Finally we note that
if &4 and & are separating and disjunctive, then Tz, = v,, where
!, € IR(%)) is concentrated at 2. Thus T, extends 7.

We summarize these cases in the following theorem.

THEOREM 6.4. Let &, and £, be separating disjunctive lattices
of X and Y respectively and T: X — Y be &, — & continuous.

(a) If T: X— Y 1s also a surjection such that T (%) semi-
separates &, then the map T*:IR(F)— IR() given by
T*(¢) = pT7* is a continuous surjection extending T.

(b) If T is also a surjection which is closed, the same con-
clusions as in (a) hold.

(¢) If el (T(¥)) <& and T satisfies condition (**) the map
Ty IR(Z) — IR(A) given by T.(¢) =v where v is the wunique
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element of IR(4) which is = T on &, 18 a continuous map ex-
tending T.

Proof. (a) and (c) have been given; (b) follows from Theorem
5.2, part (a).

REMARK 6.3. Condition (**) was first given by D. Harris in a
topological setting with &% and &4 the closed sets in T, topological
spaces X and Y respectively. Such functions were called WO func-
tions by him. However he did not demand that the original map
be continuous. We have demanded &£ — & continuity to show the
relationship of T, to pT'. However we need not assume T is
&, — & continuous to define and obtain (¢) of the theorem, namely:
On the lattice generated by cl (T(%))), we define the set function

e (TA) N -+~ Nel(T4,) =1

ifcl(TA)N ---Nel(TA,) Nel(TB) +# @ for all Be &, with #(B) =1
and where A, ---,A4,€%, and 0 otherwise. Observe that if
oel(TA)Nn ---nel(TA4,)) =1, and p(l(TB)N --- Necl(TB,) =1,
A, -+, A, B,---,B,c % then p(cl(TA)N ---cl(TA,)Ncl(TB)N
«+- Nel(TB,) = 1, for otherwise cl(TA)N --- Nel(TA,) Nel(TB)N
««-Nel(TB,)Necl(TB) = ¢ for some Be ¥, with ¢(B) = 1, but then
(I (TA)Y U---U(cl(TA,) U(cl(TB))U---U(cl(TB,) U(cl(TB)) =Y,
and, there exists a De &4, (D) = 1, such that cl(T'D)cecl(T4,) for
some ¢t=1,---,n or cl(T'D)cecl(TB,), for some ¢t=1, ---, m, or
cl(TD)cecl(TB)Y. Clearly, the last alternative is not possible for
this implies that Dc T (cl(TD)) < T '(cl (TB))’ which implies that
D'D B, an impossibility. Therefore either cl(7'D)cecl(TA4;) for
some ¢t =1, ---,m, or cl(TD)ccl(TB;) for some ¢=1, ---, m, but
both these lead to contradictions of the original assumptions that
ol (TA)N - -+ Necl(TA,) =1 and p(cl(TB)N --- Nel(TB,) = 1.

It is now readily seen, as before, that there exists a unique
ve IR(%;) such that o <v on the lattice generated by cl(7(%)
and the remainder of the proof is unchanged.

It is a simple matter to give functorial characterizations of those
matters analogous to those given by Harris and also to enlarge the
class of extendable 7”s as in [25]. But we will not pursue these
matters any further in this paper.

7. Subspaces. We will consider in this section subspace ques-
tions pertaining to repleteness which do not fall under the general
mapping considerations of §§5 and 6. The techniques developed here
seem to be particularly useful and have broad applications. We will
assume throughout this section that X is an abstract set and & is
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a lattice of subsets of X.

THEOREM 7.1. If &¥ s a separating disjunctive delta lattice
and if X = Ug-.B, where each B, is relatively F-replete then X is
F-replete.

Proof. Suppose p € IR(g, ). We may assume without loss of
generality that g is defined on 0(&°). (X)) =1 implies p*(B,) =1
for some © where p¢* is the outer measure associated with p¢. Thus
B, is thick in X in the sense of [26] and we may project # on B,
by defining ¢, on 0(& N B,) = 0(<°) N B, as follows: ¢(B N B,) = (B)
where Beo(). M, is o-smooth and & N B,-regular and its restric-
tion to .&7(% N B,) is degenerate at some point of » of B,. Its
unique extension to 0(<° N B,) is also degenerate at p. We need
only show that g is also concentrated at p. By “-regularity it
is sufficient to show that (L) =1 if and only if peL for any
Le <. However this is immediate since pe L if and only if
peLN B,

COROLLARY 7.1. If a Tychonoff space X s the wunion of a
sequence of z-embedded realcompact subspaces then X is realcompact.

Proof. Take &© in the theorem to be the zero sets of X.

COROLLARY 7.2. If a Tychonoff space X is the wunion of a
sequence of Borel replete subspaces then X is Borel replete.

Proof. Take & in the theorem to be the Borel sets of X.

COROLLARY 7.3 (see [23]). If X is a zero set space and if
AcC X 1s the union of a sequence of realcompact zero set spaces A,,
then A is realcompact as a zero set space.

Proof. According to [23] A, is realcompact as a subspace if
every Z N A, ultrafilter with the countable intersection property is
fixed where Z is the zero set structure of the original space. Thus
the conditions of the theorem are built into Gordon’s terminology.

(Note: Gordon calls a zero set space a set together with a
strongly normal complement generated delta lattice.)

COROLLARY 7.4 (Dykes). If a Tychonoff space is the union of
a sequence of F-replete (i.e., a-complete) subspaces then X is F#-
replete.

Proof. Take & in the theorem to be the lattice of closed sets
of X.
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Along these lines we have

COROLLARY 7.5. If a c¢.b. space is the union of a sequence of
F-replete (in particular Borel replete by (4.1)) subspaces, then X is
realcompact.

Proof. By the previous corollary X is .#-replete; hence, by a
result prior to (4.5), realcompact.

REMARK 7.1. Corollary 7.1 includes Mrowka’s result [43]: If
a normal space X is the union of a sequence of closed realcompact
subspaces then X is realcompact. Corollary 7.2 is a very strong
improvement of Theorem 2.4 of [24].

Again, one may get further corollaries concerning & -repleteness
by combining these results with our previous mapping theorems and
results in §4. The following theorems whose proofs are modifications
of the above proof also have several applications.

THEOREM 7.2. If & is a separating and disjunctive delta
lattice and if X = U, L; where L;e ¥, 1 =1,2,3, -+, where each
L; is & N Li-almost replete, then X is F-almost replete.

Proof. Suppose peIR(Z")N I(c*, &¥). Then p(X) =1 implies
p(L;) =1 for some k since g is o-smooth on & Define y, on
(< N L) by p(B,) = (B) where B, = BN L;, Be & (<¥). 4, is
well defined since if B, = B,N L, = B,N L; where B, B,e . (%),
then B, A B,C L, where B, /\ B, is the symmetric difference of B,
and B, This implies that @B, A B, < #(L,) =0 and thus that
H(B) = p(B,). It is easy to see that g, e€IR((< N L:)). Further-
more # is o-smooth on ¥ N L;. To see this note that if B, N L; | @,
n=12 ---, then BNL,=@ where B=NZ,B,. Thus 0=
t(B N L) = (B). But then x(B;) =0 for some j (again since g is
o-smooth on ). Thus pg(B;NL;) =0 for all ¢ = 5. It follows
that g, must be fixed at some point pe L;. A simple argument
shows that p is also fixed at p, and thus X is & almost replete.

By an obvious modification of the proof we also obtain

THEOREM 7.3. If X = U7? B, where each B,c .7 (<) and each
B, ts & N B,-almost replete, where &£ 1is a separating disjunctive
delta lattice then X is F-almost replete.

The following two corollaries improve both Theorems 4.2 and 4.1
respectively in [15].
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COROLLARY 7.5. If a Tychonoff space is the union of a sequence
of open almost realcompact subspaces, then X is almost realcompact.

Proof. Take & in Theorem 7.2 to be the lattice of closed sets
of X.

COROLLARY 7.6. If a Tychonoff space is the wnion of a finite
number of almost realcompact subsets of X belonging to 7 (F)
then X ts almost realcompact.
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