SUPERALGEBRAS OF WEAK-*DIRICHLET ALGEBRAS

TAKAHIKO NAKAZI

Let A be a weak-*Dirichlet algebra of $L^{\infty}(m)$ and let $H^{\infty}(m)$ denote the weak-*closure of A in $L^{\infty}(m)$. Muhly showed that if $H^{\infty}(m)$ is an integral domain, then $H^{\infty}(m)$ is a maximal weak-*closed subalgebra of $L^{\infty}(m)$. We show in this paper that if $H^{\infty}(m)$ is not maximal as a weak-*closed subalgebra of $L^{\infty}(m)$, there is no algebra which contains $H^{\infty}(m)$ and is maximal among the proper weak-*closed subalgebras of $L^{\infty}(m)$. Moreover, we investigate the weak-*closed superalgebras of A and we try to classify them. We show that there are two canonical weak-*closed superalgebras of A which play an important role in the problem of describing all the weak-*closed superalgebras of A.

*Dirichlet algebra is an algebra A of essentially bounded measurable functions on a probability measure space (X, \mathcal{A}, m) such that (i) the constant functions lie in A; (ii) $A + \overline{A}$ is weak-*dense in $L^{\infty}(m)$ (the bar denotes conjugation, here and always); (iii) for all f and g in A, $\int_{X} fgdm = \int_{X} fdm \int_{X} gdm$. The abstract Hardy space $H^{p}(m)$, $1 \le p \le \infty$, associated with A are defined as follows. For $1 \le p \le \infty$, $H^{p}(m)$ is the $L^{p}(m)$ -closure of A, while $H^{\infty}(m)$ is defined to be the weak-*closure of A in $L^{\infty}(m)$. For $1 \le p \le \infty$, let $H^{p}_{0} = \{f \in H^{p}(m); \int_{X} fdm = 0\}$.

A (weak-*closed) subalgebra B^{∞} of $L^{\infty}(m)$, containing A, is called a superalgebra of A. Let $B_0^{\infty} = \left\{ f \in B^{\infty}; \int_X f dm = 0 \right\}$ and let I_B^{∞} be the largest weak-*closed ideal of B^{∞} which is contained in B_0^{∞} . (The existence of I_B^{∞} is shown in Lemma 2 of [6]). If $B^{\infty} = H^{\infty}(m)$ (resp. $L^{\infty}(m)$), it is clear that $B_0^{\infty} = I_B^{\infty} = H_0^{\infty}$ (resp. $I_B^{\infty} = \{0\}$). In general, $I_B^{\infty} \subseteq H_0^{\infty}$ by [6, Lemma 2]. Let \mathcal{L}_B^{∞} be a self-adjoint part of B^{∞} , i.e. the set of all functions in B^{∞} whose complex conjugates are also in B^{∞} .

For any subset $M \subseteq L^{\infty}(m)$ and $1 \leq p < \infty$, denote by $[M]_p$ the norm closed linear span of M in $L^p(m)$ and by $[M]_*$ the weak-*closed linear span of M. For a weak-*closed superalgebra B^{∞} , let $B^p = [B^{\infty}]_p$ and let $I_B^p = [I_B^{\infty}]_p$ for $1 \leq p < \infty$. For any measurable subset E of X, the function χ_E is the characteristic function of E. If $f \in L^p(m)$, denote by E_f the support set of f and by χ_f the characteristic function of E_f .

LEMMA 1. If B^* is a weak-*closed superalgebra of A, then B^2 and \bar{I}_B^2 are orthogonal in $L^2(m)$ and $B^2 \oplus \bar{I}_B^2 = L^2(m)$.

The proof is in [6, Lemma 2].

LEMMA 2. (Hoffman) Let E be a measurable subset of X such that 0 < m(E) < 1. Then there exists k in $H^{\infty}(m)$ such that k is real on E while k is not constant on E.

The proof for logmodular algebra [1, p. 138] is valid without change for weak-*Dirichlet algebras.

2. Support sets. If no nonzero function $H^{\infty}(m)$ can vanish on a set of positive measure, then $H^{\infty}(m)$ is a maximal weak-*closed subalgebra (cf. [3]). This shows the importance of the support set of each function in $H^{\infty}(m)$. We shall investigate properties of support sets of functions in superalgebras of A, in particular, in the algebra $H^{\infty}(m)$.

DEFINITION. Let B^{∞} be a weak-*closed superalgebra of A. We say that the characteristic function χ_E is *minimal for* B^{∞} in case any characteristic function χ_F in B^{∞} which satisfies the strict inequality $\chi_F \not \equiv \chi_E$ on a set of positive measure must be zero a.e. Note that we do *not* assume that χ_E lies in B^{∞} . Similarly, χ_E is called *maximal for* B^{∞} in case any characteristic function χ_F in B^{∞} which satisfies the strict inequality $\chi_E \not \equiv \chi_F$ on a set of positive measure must be 1 a.e.

- LEMMA 3. Let B^* be a weak-*closed superalgebra of A.
- (1) If B^{∞} contains $H^{\infty}(m)$ properly, there exists a nontrivial characteristic function in B^{∞} .
- (2) There exists no nontrivial minimal (maximal) characteristic function for B^{∞} in B^{∞} .

Proof. Assertion (1) is shown in the proof of [3, Theorem]. We shall show assertion (2). Let χ_{E_0} be a minimal characteristic function for B^{∞} in B^{∞} . Then, it follows that there exists no nonconstant real-valued function in $\chi_{E_0}\mathcal{L}_B^{\infty}$ and hence in $\chi_{E_0}B^{\infty}$. For if it were not the case, then $\chi_{E_0}\mathcal{L}_B^{\infty}$ would be a nontrivial commutative von Neumann algebra of operators on $L^2(m)$ contrary to the assumption on χ_{E_0} . On the other hand, Lemma 2 shows that there exists k in $H^{\infty}(m)$ such that $\chi_{E_0}k$ is a nonconstant real-valued function in $\chi_{E_0}B^{\infty}$. This contradiction shows that there exists no nontrivial minimal characteristic function for B^{∞} in B^{∞} . If χ_{E_0} were a nontrivial maximal characteristic function for B^{∞} in B^{∞} , then $1 - \chi_{E_0}$ would be a nontrivial minimal characteristic function for

 B^{∞} in B^{∞} . Since this is not possible by what was just proved, χ_{F_0} cannot be a nontrivial maximal characteristic function for B^{∞} in B^{∞} .

LEMMA 4. If M is a closed invariant subspace of $L^2(m)$ (invariant under multiplication by functions in A), then $M \cap L^{\infty}(m)$ is a weak-*closed invariant subspace. Moreover, the map $M \to M \cap L^{\infty}(m)$ is one-to-one and onto.

The proof for logmodular algebras [1, p. 131] is valid without change for weak-*Dirichlet algebras.

LEMMA 5. Let B^{∞} be a weak-*closed superalgebra of A and suppose $D^{\infty} = [\chi_f B^{\infty}]_* + (1 - \chi_f) L^{\infty}(m)$ for some f in I_B^{∞} . Then D^{∞} is a weak-*closed superalgebra which contains B^{∞} , χ_f is in D^{∞} , and f lies in I_D^{∞} .

Proof. It is clear that D^{∞} is a weak-*closed superalgebra which contains B^{∞} and χ_f . By Lemma 1 and Lemma 4, $I_B^{\infty} \supseteq I_D^{\infty}$ but it is not clear that $f \in I_D^{\infty}$. Since $f \in I_B^{\infty}$, by Lemma 2,

$$\int_X f \chi_f g dm = 0 \qquad g \in B^{\infty}$$

and hence

$$\int_X f\chi_f g dm = 0 \qquad g \in D^{\infty}.$$

Thus again by Lemma 1 and Lemma 4, it follows that $f \in I_D^{\infty}$.

THEOREM 1. If f is a function in B^{∞} such that $0 \leq \chi_f \leq 1$, then there exists a nonzero g in B^{∞} such that $\chi_g \leq \chi_f$.

Proof. Suppose $f \in I_B^{\infty}$. If fh = 0 a.e for all h in I_B^{∞} , then by Lemma 1 and Lemma 4, it follows that $f \in \mathcal{L}_B^{\infty}$. Thus $\chi_f \in \mathcal{L}_B^{\infty} \subset B^{\infty}$, so by (2) of Lemma 3, there exists a nonzero characteristic function χ_E in B^{∞} such that $\chi_E \not = \chi_f$. Thus we may assume that $fh \neq 0$ for some h in I_B^{∞} . Since I_B^{∞} is an ideal of I_B^{∞} , I_B^{∞} and I_B^{∞} and I_B^{∞} is an ideal of I_B^{∞} .

By taking fh if necessary we may assume that $f \in I_B^{\infty}$. Suppose $D^{\infty} = [\chi_f B^{\infty}]_* + (1 - \chi_f) L^{\infty}(m)$, then by Lemma 5, it follows that $f \in I_D^{\infty}$ and $\chi_f \in D^{\infty}$. By (2) of Lemma 3, there exists a nonzero χ_E in D^{∞} such that $\chi_f \not \ge \chi_E$. Since I_D^{∞} is an ideal of D^{∞} , $\chi_E f \in I_D^{\infty}$ and hence $\chi_E f \in B^{\infty}$. Suppose $g = \chi_E f$, then g is a nonzero function in B^{∞} and $\chi_f \not \ge \chi_E$.

It is natural to ask if whenever there is a function f in B^{∞} such that $0 \le \chi_f \le 1$, there also exists a function g in B^{∞} such that

 $\chi_f \leq \chi_g \leq 1$. However, the third example of §6 shows that in general such a g need not exist.

- **3.** Non-maximality. Muhly [3] showed that if $H^{\infty}(m)$ is an integral domain, then $H^{\infty}(m)$ is a maximal weak-*closed subalgebra of $L^{\infty}(m)$. In this section, we shall show that if $H^{\infty}(m)$ is not an integral domain, there is no maximal proper weak-*closed superalgebra of A.
- LEMMA 6. Let B^* be a weak-*closed superalgebra of A. Then B^* has the form $B^* = \chi_{E_0} B^* + (1 \chi_{E_0}) L^*(m)$, where $(1 \chi_{E_0}) L^*(m)$ is the largest subspsace of B^* reducing $L^*(m)$. χ_{E_0} is called the essential function of B^* .
- THEOREM 2. If $H^*(m)$ is not maximal as a weak-*closed subalgebra of $L^*(m)$, then there is no algebra which contains $H^*(m)$ and is maximal among the proper weak-*closed subalgebra of $L^*(m)$.
- *Proof.* Suppose B^{∞} contains $H^{\infty}(m)$ and is maximal among the proper weak-*closed subalgebras of $L^{\infty}(m)$. Then by assumption $B^{\infty} \neq H^{\infty}(m)$. Since $B^{\infty} \neq L^{\infty}(m)$, Lemma 6 implies that we can find a nonzero χ_{E_0} in B^{∞} such that $B^{\infty} = \chi_{E_0}B^{\infty} + (1-\chi_{E_0})L^{\infty}(m)$ and the algebra $(1-\chi_{E_0})L^{\infty}(m)$ is the largest subspace of B^{∞} reducing $L^{\infty}(m)$. By Lemma 3, there exists $\chi_F \in B^{\infty}$ such that $0 \leq \chi_F \leq \chi_{E_0}$. For such a χ_F in B^{∞} , set $D^{\infty} = \chi_F B^{\infty} + (1-\chi_F)L^{\infty}(m)$. Then D^{∞} is a weak-*closed subalgebra which contains B^{∞} . Since $\chi_F \leq \chi_{E_0}$ and $(1-\chi_{E_0})L^{\infty}(m)$ is the largest subspace of B^{∞} reducing $L^{\infty}(m)$, it follows that D^{∞} contains B^{∞} properly and $D^{\infty} \neq L^{\infty}(m)$. This contradiction proves theorem.
- **4. Relation between two superalgebras.** In this section, we shall investigate the relation between two superalgebras. Let B_1^{∞} and B_2^{∞} be weak-*closed superalgebras of A such that $\chi_F B_1^{\infty} \subseteq \chi_F B_2^{\infty}$ for some χ_F in B_1^{∞} . If $\chi_E \cdot \chi_F B_1^{\infty} \neq \chi_E \cdot \chi_F B_2^{\infty}$ for all χ_E in B_1^{∞} with $\chi_E \cdot \chi_F \neq 0$, then we write $\chi_F B_1^{\infty} < \chi_F B_2^{\infty}$. For a weak-*closed superalgebra B^{∞} of A, we define B_{\min}^{∞} to be the intersection of all weak-*closed superalgebras $\{B_{\alpha}^{\infty}\}$ such that $B^{\infty} \subseteq B_{\alpha}^{\infty}$ and $\chi_{E_0} B^{\infty} < \chi_{E_0} B^{\infty}$, χ_{E_0} being the essential function of B^{∞} .

Lemma 7. Let B^{∞} be a weak-*closed superalgebra of A.

(1) Each weak-*closed superalgebra D^* such that $B^* \subseteq D^* \subseteq B^*_{\min}$ has the form

$$D^{\infty} = \chi_E B^{\infty} + (1 - \chi_E) B^{\infty}_{\min}$$

for some χ_E in B^{∞} .

- (2) If f is a function in I_B^{∞} and $\chi_f (\neq 1)$ is minimal for B^{∞} , then f lies in $I_{B_{min}}^{\infty}$.
- *Proof.* (1) Let $\alpha = \sup\{m(F); \chi_F D^\infty = \chi_F B^\infty (\chi_F \in B^\infty)\}$. Choose χ_{E_n} in B^∞ with $m(E_n) \to \alpha$ and $\chi_{E_1} \le \chi_{E_2} \le \cdots$. Set $E = \bigcup_{n=1}^\infty E_n$, then $\chi_E \in B^\infty$, $\chi_E D^\infty = \chi_E B^\infty$ and $(1 \chi_E) D^\infty > (1 \chi_E) B^\infty$. By the definition of B^∞_{\min} , it follows that $(1 \chi_E) D^\infty = (1 \chi_E) B^\infty_{\min}$ and hence $D^\infty = \chi_E B^\infty + (1 \chi_E) B^\infty_{\min}$.
- (2) Let f be in I_B^{∞} and let χ_f ($\neq 1$) be minimal for B^{∞} . Suppose $D^{\infty} = [\chi_f B^{\infty}]_+ + (1 \chi_f) L^{\infty}(m)$. By Lemma 5, $f \in I_D^{\infty}$, $\chi_f \in D^{\infty}$ and hence in order to prove assertion (2), it is sufficient to prove that $I_D^{\infty} \subseteq I_{B_{min}}^{\infty}$. If there existed a nonzero χ_E in B^{∞} such that $\chi_E \leq \chi_{E_0}$ and $\chi_E D^{\infty} = \chi_E B^{\infty}$, where χ_{E_0} is the essential function of B^{∞} , then $\chi_E \cdot \chi_f \in B^{\infty}$ because $\chi_f \in D^{\infty}$. Since χ_f ($\neq 1$) is minimal for B^{∞} , it follows that $\chi_E \cdot \chi_f = 0$ a.e. and hence $\chi_E < 1 \chi_f$. By the definition of D^{∞} , $\chi_E B^{\infty} = \chi_E L^{\infty}(m)$ and hence $\chi_E \leq 1 \chi_{E_0}$. This contradiction shows that $\chi_{E_0} B^{\infty} < \chi_{E_0} D^{\infty}$, hence $D^{\infty} \supseteq B_{\min}^{\infty}$. By Lemma 1 and Lemma 4, it follows that $I_D^{\infty} \subseteq I_{\min}^{\infty}$.
- LEMMA 8. Let B_1^{∞} and B_2^{∞} be weak-*closed superalgebras of A. If B_2^{∞} contains B_1^{∞} properly, there exists a nontrivial minimal characteristic function for B_1^{∞} in B_2^{∞} .
- **Proof.** Suppose there exists no nontrivial minimal characteristic function for B_1^{∞} in B_2^{∞} . Then if χ_E is in B_2^{∞} , then χ_E lies in B_1^{∞} . For given $\chi_E \in B_2^{\infty}$, let $\alpha = \sup\{m(F); \chi_F \leq \chi_E \ (\chi_F \in B_1^{\infty})\}$. Then, as in the proof of (1) in Lemma 7, there is χ_{F_0} in B_1^{∞} such that $\chi_{F_0} \leq \chi_E$ and $m(F_0) = \alpha$. If $m(E) > \alpha$, then $(1 \chi_{F_0})\chi_E$ would be a minimal characteristic function for B_1^{∞} in B_2^{∞} contrary to the assumption on B_2^{∞} . Hence $m(E) = \alpha$ and hence $\chi_E = \chi_{F_0} \in B_1^{\infty}$. On the other hand, as in the proof of (1) of Lemma 3 we can show that there exists at least one characteristic function χ_S in B_2^{∞} with $\chi_S \not\in B_1^{\infty}$. This contradiction implies that there exists a nontrivial minimal characteristic function for B_1^{∞} in B_2^{∞} .
- LEMMA 9. Let B_1^{∞} and B_2^{∞} be weak-*closed superalgebras of A such that $B_1^{\infty} \subseteq B_2^{\infty}$. Let $\overline{K} = B_2^2 \bigoplus B_1^2$, where ' \bigoplus ' denotes the orthogonal complement of B_1^2 in B_2^2 . If $\chi_f \in B_1^{\infty}$ for every $f \in K$, then each weak-*closed superalgebra B^{∞} such that $B_1^{\infty} \subseteq B^{\infty} \subseteq B_2^{\infty}$ has the form $B^{\infty} = \chi_E B_1^{\infty} + (1 \chi_E) B_2^{\infty}$ for some χ_E in B_1^{∞} .
- *Proof.* Suppose $\bar{S} = B_2^2 \bigcirc B^2$, then $\bar{S} \subseteq \bar{K}$. Hence the hypothesis shows that $\chi_f \in B_1^\infty$ for every $f \in S$. Let $\alpha = \sup\{m(E_f); f \in S\}$. If $f, g \in S$, there exists h in S with $E_h = E_f \cup E_g$. For let $h = f + (1 \chi_f)g$, since $\mathcal{L}_B^\infty S \subseteq S$ and hence $\mathcal{L}_{B_1}^\infty S \subseteq S$, then h lies in S. Choose $f_n \in S$ with $m(E_f) \to \alpha$ and $E_f \subseteq E_f \subseteq \cdots$. Alter the function f_n by the

technique above so that their supports are disjoint. Suppose $f_0 = \sum_{n=1}^{\infty} 2^{-n} f_n$, then $f_0 \in S$, $m(E_{f_0}) = \alpha$ and hence $\chi_{f_0} = \chi_E$, where E is the support set of S. Thus $\chi_E \in B_1^{\infty}$. Since $(1 - \chi_E)B_2^{\infty}$ is orthogonal to \overline{S} and is contained in B_2^{∞} , the set $(1 - \chi_E)B_2^{\infty}$ is contained in B_2^{∞} . Thus by Lemma 4, it follows that $B^{\infty} \supseteq \chi_E B_1^{\infty} + (1 - \chi_E)B_2^{\infty}$ and $\chi_E B_1^{\infty} + (1 - \chi_E)B_2^{\infty}$ is a weak-*closed superalgebra. If the two superalgebras above did not coincide, by Lemma 8, there would exist at least one nontrivial minimal χ_{F_0} for $\chi_E B_1^{\infty} + (1 - \chi_E)B_2^{\infty}$ in B^{∞} . Then it may be assumed that $\chi_{F_0} \le \chi_E$. For if it were not so, the set $\chi_{F_0}(1 - \chi_E)B_2^{\infty}$ would be contained in $\chi_E B_1^{\infty} + (1 - \chi_E)B_2^{\infty}$ since χ_E lies in B_2^{∞} . By (2) of Lemma 3, there exists a nonzero χ_{E_1} in $\chi_E B_1^{\infty} + (1 - \chi_E)B_2^{\infty}$ such that $\chi_{F_0}(1 - \chi_E) \ge \chi_{E_1}$. This contradicts minimality of χ_{F_0} for $\chi_E B_1^{\infty} + (1 - \chi_E)B_2^{\infty}$.

It is clear that $\chi_{F_0}S \subseteq S$. If $\chi_{F_0}S \neq \{0\}$, since $\chi_f \in B_1^{\infty}$ for every $f \in S$, χ_{F_0} may not be minimal. If $\chi_{F_0}S = \{0\}$, the set E may not be the support set of S. Thus $B^{\infty} = \chi_E B_1^{\infty} + (1 - \chi_E)B_2^{\infty}$.

THEOREM 3. Let B_1^* and B_2^* be weak-*closed superalgebras of A such that $B_1^* \subseteq B_2^*$ and hence $I_{B_1}^* \supseteq I_{B_2}^*$. If $f \in I_{B_2}^*$ for every $f \in I_{B_1}^*$ such that χ_f is minimal for B_1^* , then each weak-*closed superalgebra B_1^* such that $B_1^* \subseteq B_2^* \subseteq B_2^*$ has the form

$$B^{\infty} = \chi_E B_1^{\infty} + (1 - \chi_E) B_2^{\infty}$$

for some χ_E in B_1^{∞} .

Proof. Suppose $K = B_2^2 \bigcirc B_1^2$, $\overline{K} = I_{B_2}^2 \bigcirc I_{B_2}^2$ by Lemma 1. If $k = \min(1/|f|, 1)$ for $f \in K$, then k is in $L^{\infty}(m)$ and $\log k$ is in $L^{1}(m)$. Consequently, by [7, Theorem 2.5.9] there is an outer function g in $H^{\infty}(m)$ such that k = |g|. Then, by Lemma 4 $fg \in I_{B_1}^2 \cap L^{\infty}(m) = I_{B_1}^{\infty}$. However, fg does not lie in $I_{B_2}^{\infty}$. For since g is the outer function, there exist g_n in $H^{\infty}(m)$ such that $g_n fg \to f(n \to \infty)$ weakly in $L^2(m)$. If $fg \in I_{B_2}^{\infty}$, by $g_n fg \in I_{B_2}^{\infty}$, it follows that $f \in I_{B_2}^{\infty}$ contrary to the assumption on f. Thus $fg \not\in I_{B_2}^{\infty}$ and $\chi_f = \chi_{fg}$. By the hypothesis, χ_f is not minimal for B_1^{∞} and hence there exists nonzero χ_E in B_1^{∞} such that $\chi_f \ge \chi_E$. If $\chi_f \ne \chi_E$, let $h = (1 - \chi_E)f$, then h lies in K again. We can repeat the above argument for $g = (1 - \chi_E)f$ and hence we can show that $\chi_f \in B_1^{\infty}$ as in the proof of Lemma 8. Now Lemma 9 proves theorem.

THEOREM 4. Let B_1^{∞} and B_2^{∞} be weak-*closed superalgebras of A such that $B_1^{\infty} \subseteq B_2^{\infty}$ (so $I_{B_1}^{\infty} \supseteq I_{B_2}^{\infty}$). Suppose $\chi_{E_0} B_1^{\infty} < \chi_{E_0} B_{1 \min}^{\infty}$ for the essential function χ_{E_0} of B_1^{∞} . Then the following are equivalent.

- (1) If f is in $I_{B_1}^{\infty}$ and $\chi_f \neq 1$ is minimal for B_1^{∞} , then f lies in $I_{B_2}^{\infty}$.
- (2) If f and g are in $I_{B_1}^{\infty}$, if both χ_f and χ_g are minimal for B_1^{∞} , and if fg = 0, a.e., then either f or g lies in $I_{B_2}^{\infty}$.

(3) Each weak-*closed superalgebra B^{∞} such that $B_1^{\infty} \subseteq B^{\infty} \subseteq B_2^{\infty}$ has the form

$$B^{\infty} = \chi_E B_1^{\infty} + (1 - \chi_E) B_2^{\infty}$$

for some χ_E in B_1^{∞} .

Proof. (1) \Rightarrow (2) is trivial. (2) \Rightarrow (1). Take $f \in I_{B_2}^{\infty}$ such that χ_f (\neq 1) is minimal for B_1^{∞} . Suppose $D^{\infty} = [\chi_f B_1^{\infty}] + (1 - \chi_f) L^{\infty}(m)$, then by Lemma 5, D^{∞} is a weak-*closed superalgebra such that $B_1^{\infty} \subseteq D^{\infty}$, $f \in I_D^{\infty}$, and $\chi_f \in D^{\infty}$. By (2) of Lemma 3, there exists at least one χ_E in D^{∞} such that both $\chi_E f$ and $(1 - \chi_E) f$ are nonzero functions in I_D^{∞} (so in $I_{B_1}^{\infty}$). Since χ_f is minimal for B_1^{∞} , it follows that both $\chi_E \chi_f$ and $(1 - \chi_E) \chi_f$ are minimal for B_1^{∞} . (2) implies that $\chi_E f \in I_{B_2}^{\infty}$ or $(1 - \chi_E) f \in I_{B_2}^{\infty}$. Thus we have proved that, for $f \in I_{B_1}^{\infty}$ such that χ_f is minimal, there exists $\chi_F \in B_2^{\infty}$ such that $\chi_F f \neq 0$ and $\chi_F f \in I_{B_2}^{\infty}$. Thus we can show that $f \in I_{B_2}^{\infty}$ as in the proof of Lemma 8.

Assertion (1) implies (3) by Theorem 3. We will show that assertion (3) implies (1). If we can show that $B_2^{\infty} \subseteq B_{1\min}^{\infty}$ and hence $I_{B_{1\min}}^{\infty} \subseteq I_{B_2}^{\infty}$, then by (2) of Lemma 7, it follows that if $f \in I_{B_1}^{\infty}$ and χ_f is minimal for B_1^{∞} , then $f \in I_{B_2}^{\infty}$, and the proof is complete. As in the proof of Lemma 7 there is χ_{F_0} in B_1^{∞} such that $\chi_{F_0}B_1^{\infty} = \chi_{F_0}B_2^{\infty}$, $(1-\chi_{F_0})B_1^{\infty} < (1-\chi_{F_0})B_2^{\infty}$, and $(1-\chi_{F_0}) \le \chi_{E_0}$. It is clear that $(1-\chi_{F_0})B_2^{\infty} \supseteq (1-\chi_{F_0})B_{1\min}^{\infty}$. Suppose $(1-\chi_{F_0})B_2^{\infty} \ne (1-\chi_{F_0})B_{1\min}^{\infty}$, and let $D^{\infty} = (1-\chi_{F_0})B_{1\min}^{\infty} + \chi_{F_0}B^{\infty}$. Then $B_1^{\infty} \subseteq D^{\infty} \subsetneq B_2^{\infty}$. By hypothesis, we can write $D^{\infty} = \chi_F B_1^{\infty} + (1-\chi_F)B_2^{\infty}$ for some χ_F in B_1^{∞} . $D^{\infty} = (\chi_F + \chi_{F_0} - \chi_F \cdot \chi_{F_0})B_1^{\infty} + (1-\chi_{F_0})(1-\chi_{F_0})B_2^{\infty}$ because $B_2^{\infty} = \chi_{F_0}B_1^{\infty} + (1-\chi_{F_0})B_2^{\infty}$. If $\chi_F (1-\chi_{F_0}) = 0$ a.e., then $D^{\infty} = B_2^{\infty}$. Hence $\chi_F (1-\chi_{F_0}) \ne 0$ and $\chi_F (1-\chi_{F_0})B_{1\min}^{\infty} \subseteq \chi_F D^{\infty} = \chi_F B_1^{\infty}$. Thus $\chi_F (1-\chi_{F_0}) \le \chi_F \cdot \chi_{E_0} \le \chi_{E_0}$. This contradicts that $\chi_{E_0}B_1^{\infty} < \chi_{E_0}B_{1\min}^{\infty}$. Thus $\chi_F (1-\chi_{F_0}) \le \chi_{F_0}B_1^{\infty} + (1-\chi_{F_0})B_{1\min}^{\infty} \subseteq B_1^{\infty}$.

5. Two canonical superalgebras. As corollaries of the results in §4, we shall show that there are two canonical superalgebras of A. We define H_{\max}^{∞} to be the weak-*closed superalgebra of A generated by $H^{\infty}(m)$ and χ_f for all f in $H^{\infty}(m)$. This superalgebra was considered by the author [5]. If no nonzero function in $H^{\infty}(m)$ can vanish on a set of positive measure, then $H_{\max}^{\infty} = H^{\infty}(m)$.

COROLLARY 1. Each weak-*closed superalgebra B^{∞} of A which contains H^{∞}_{\max} has the form $B^{\infty} = \chi_E H^{\infty}_{\max} + (1 - \chi_E) L^{\infty}(m)$ for some χ_E in H^{∞}_{\max} .

Proof. Apply Theorem 4 with $B_1^{\infty} = H_{\max}^{\infty}$ and $B_2^{\infty} = L^{\infty}(m)$. By definition of H_{\max}^{∞} , $\chi_f \in H_{\max}^{\infty}$ for every $f \in I_{H_{\max}}^{\infty}$ and hence if $\chi_f \neq 1$ is minimal for H_{\max}^{∞} , then by (2) of Lemma 3, f = 0 a.e.

If $\chi_{E_0}H_{\max}^{\infty} < \chi_{E_0}B^{\infty}$ for the essential function χ_{E_0} of H_{\max}^{∞} , by Corollary 1 it follows that $B^{\infty} = L^{\infty}(m)$. Hence $(H_{\max}^{\infty})_{\min} = L^{\infty}(m)$ and if $\chi_{E_0} \neq 0$, then $\chi_{E_0}H_{\max}^{\infty} < \chi_{E_0}(H_{\max}^{\infty})_{\min}$.

COROLLARY 2. Let B^{∞} be a weak-*closed superalgebra of A. If each weak-*closed superalgebra D^{∞} of A which contains B^{∞} has the form $D^{\infty} = \chi_E B^{\infty} + (1 - \chi_E) L^{\infty}(m)$ for some χ_E in B^{∞} , then $B^{\infty} \supseteq H^{\infty}_{max}$.

Proof. We may assume that $B^{\infty} \neq L^{\infty}(m)$. It is easy to show that $B_{\min}^{\infty} = L^{\infty}(m)$ and hence $I_{B_{\min}}^{\infty} = \{0\}$. Applying Lemma 7, if $f \in I_B^{\infty}$ and χ_f $(\neq 1)$ is minimal for B^{∞} , then f = 0 a.e. Hence if $f \in I_B^{\infty}$ with $0 \nleq \chi_f \nleq 1$, then there exists nonzero χ_E in B^{∞} such that $\chi_f \ngeq \chi_E$. If $f \in B^{\infty}$, $f \neq 0$, then $f \in \mathcal{L}_B^{\infty}$ or there exists a function g in I_B^{∞} such that $gf \neq 0$. Thus if $f \in B^{\infty}$ and $f \neq 0$, then there exists nonzero χ_F in B^{∞} such that $\chi_f \trianglerighteq \chi_F$. As in the proof of Lemma 8, we can show that $\chi_f \in B^{\infty}$. Thus $B^{\infty} \supseteq H_{\max}^{\infty}$.

The second canonical superalgebra of A is H_{\min}^{∞} . If $\chi_{E} \in H^{\infty}(m)$, then $\chi_{E} = 0$ a.e. or $\chi_{E} = 1$ a.e. So H_{\min}^{∞} is an intersection of all weak-*closed superalgebras $\{B_{\alpha}^{\infty}\}$ which contains $H^{\infty}(m)$ properly. Then H_{\min}^{∞} may coincide with or may be different from $H^{\infty}(m)$. If $H_{\min}^{\infty} \neq H^{\infty}(m)$, then H_{\min}^{∞} is the minimum weak-*closed superalgebra which contains $H^{\infty}(m)$ properly.

COROLLARY 3. Let B^{∞} be a weak-*closed superalgebra of A which contains $H^{\infty}(m)$ properly. Suppose $H^{\infty}_{\min} \neq H^{\infty}(m)$. Then the following are equivalent.

- (1) If f in $H^{\infty}(m)$ vanishes on a set of positive measure, then f lies in $I_{\mathbb{R}}^{\infty}$.
- (2) If f and g in $H^{\infty}(m)$ and fg = 0 a.e., then f lies in I_B^{∞} or g lies in I_B^{∞} .
- (3) Each weak-*closed superalgebra D^{∞} such that $H^{\infty}(m) \subseteq D^{\infty} \subseteq B^{\infty}$ coincides with $H^{\infty}(m)$ or B^{∞} .
- (4) B^{∞} is a minimum weak-*closed superalgebra which contains $H^{\infty}(m)$ properly, i.e. $B^{\infty} = H^{\infty}_{\min}$.

Proof. Since $H_{\min}^{\infty} \neq H^{\infty}(m)$, assertions (3) and (4) are equivalent. Apply Theorem 4 with $B_1^{\infty} = H^{\infty}(m)$ and $B_2^{\infty} = B^{\infty}$, then $I_{B_1}^{\infty} = H_0^{\infty}$ and $I_{B_2}^{\infty} = I_B^{\infty}$. If $f \in H^{\infty}(m)$ vanishes on a set of positive measure, then by Jensen's inequality, $f \in H_0^{\infty}$. For any nonzero function f in $H_0^{\infty}(m)$, χ_f is minimal for $H^{\infty}(m)$.

As a corollary of Corollary 3, Muhly's theorem [3] follows.

COROLLARY 4. (Muhly) The following properties for $H^{\infty}(m)$ are equivalent.

- (1) No nonzero function in $H^{\infty}(m)$ can vanish on a set of positive measure.
 - (2) $H^{\infty}(m)$ is an integral domain.
- (3) $H^{\infty}(m)$ is a maximal weak-*closed subalgebra of $L^{\infty}(m)$, i.e. $H^{\infty}_{\min} = L^{\infty}(m)$.

Proof. Apply Corollary 3 with $B^{\infty} = L^{\infty}(m)$ remarking $I_{B}^{\infty} = \{0\}$.

We can show the next result which was shown by the author [5, Theorem 1] as a slight modification of Hoffman [2, p. 194].

COROLLARY 5. Suppose $H_0^{\infty} = ZH^{\infty}(m)$ for some inner function Z in $H^{\infty}(m)$ and let B^{∞} be the weak-*closure of $\bigcup_{n=0}^{\infty} \bar{Z}H^{\infty}(m)$. Then B^{∞} is the minimum of all weak-*closed superalgebras of A which contains $H^{\infty}(m)$ properly, i.e. $B^{\infty} = H_{\min}^{\infty}$ ($\neq H^{\infty}(m)$).

Proof. By Theorem 5 of [6] and the proof of Corollary 3 of [6], it follows that $H^{\infty}(m) = \mathcal{H}^{\infty} \oplus I_{B}^{\infty}$ where \mathcal{H}^{∞} is the weak-*closure of polynomials of Z. By Jensen's inequality and $Z\mathcal{H}^{\infty} = \left\{ f \in \mathcal{H}^{\infty}; \int_{X} f dm = 0 \right\}$, it follows that if $g \in H^{\infty}(m)$ and $g \in I_{B}^{\infty}$, then $\log |g| \in L^{1}(m)$ and hence |g| > 0 a.e. Apply Corollary 3.

If $H^{\infty}(m)$ is an integral domain, then $H^{\infty}(m) = H^{\infty}_{max} \subseteq H^{\infty}_{min} = L^{\infty}(m)$. If $H^{\infty}(m)$ is not an integral domain, then $H^{\infty}(m) \subseteq H^{\infty}_{man} \subseteq H^{\infty}_{man} \subseteq L^{\infty}(m)$. We are interested in case $H^{\infty}(m)$ is not an integral domain. If $H^{\infty}_{0} = ZH^{\infty}(m)$ for some inner function Z, then $H^{\infty}(m) \neq H^{\infty}_{min}$ by Corollary 5. In general, H^{∞}_{min} may coincide with or be different from $H^{\infty}(m)$. In the second example in §6 H^{∞}_{min} coincides with $H^{\infty}(m)$. In general, H^{∞}_{max} may coincide with or be different from $L^{\infty}(m)$. In the first example in §6 H^{∞}_{max} coincides with $L^{\infty}(m)$. In general, H^{∞}_{min} may coincide with or be different from H^{∞}_{max} .

Since $H^{\infty}(m)$ has no nonconstant real-valued function, $H^{\infty}(m)$ has not a subspace reducing $L^{\infty}(m)$, i.e. the essential function of $H^{\infty}(m)$ is constant. But when $H^{\infty}(m)$ is not an integral domain, it is not clear whether H^{∞}_{\min} has a subspace reducing $L^{\infty}(m)$. For in case which $H^{\infty}_{\min} \neq H^{\infty}(m)$, H^{∞}_{\min} has nonconstant real-valued functions. Many natural examples show that H^{∞}_{\min} has no subspace reducing $L^{\infty}(m)$. The third example in §6 shows that in general H^{∞}_{\min} need not have a subspace reducing $L^{\infty}(m)$.

6. Examples. First example. Let A be the algebra of continuous complex-valued functions on the infinite torus T^{∞} , the countable product of circles, which are uniform limits of polynomials in $z_1^{\ell_1} z_2^{\ell_2} \cdots z_n^{\ell_n}$ where $(\ell_1, \ell_2, \dots, \ell_n, 0, 0, \dots) \in \Gamma$ and Γ is the set of $(\ell_1, \ell_2, \dots) \in Z^{\infty}$, the

countable direct sum of the integers, whose last nonzero entry is positive, together with 0. Denote by m the normalized Haar measure on T^{∞} , then A is the weak-*Dirichlet algebra of $L^{\infty}(m)$.

We shall show that $H_{\max}^{\infty} = L^{\infty}(m)$. Let B_n^{∞} be the weak-*closure of $\bigcup_{i=0}^{\infty} \bar{z}_n^i H^{\infty}(m)$. Then

$$H^{\infty}(m) \subsetneq B_1^{\infty} \subsetneq B_2^{\infty} \cdots \subsetneq B_n^{\infty} \cdots \subseteq L^{\infty}(m).$$

It is sufficient to show that H_{\max}^{∞} contains \tilde{z}_n for any n. Let $\mathcal{L}_{B_n}^{\infty}$ be the self-adjoint part of B_n^{∞} , then we can show that there exists f in $H^{\infty}(m)$ such that $\chi_f = \chi_E$ for every χ_E in $\mathcal{L}_{B_n}^{\infty}$ and $\mathcal{L}_{B_n}^{\infty}$ is generated by characteristic functions in $\mathcal{L}_{B_n}^{\infty}$. Since $\chi_f \in H_{\max}^{\infty}$ for every f in $H^{\infty}(m)$, H_{\max}^{∞} contains $\mathcal{L}_{B_n}^{\infty}$ and hence contains \bar{z}_n . Thus $H_{\max}^{\infty} = L^{\infty}(m)$.

Second example. Let A be the algebra of continuous complexvalued functions on the infinite torus T^{∞} which are uniform limits of polynomials in $z_1^{\ell_1}, z_2^{\ell_2} \cdots z_n^{\ell_n}$ where $(\ell_1, \ell_2, \cdots, \ell_n, 0, 0, \cdots) \in \Gamma$ and Γ is the set of $(\ell_1, \ell_2, \cdots) \in Z^{\infty}$ whose first non-zero entry is positive, together with 0. Denote by m the normalized Haar measure on T^{∞} , then A is the weak-*Dirichlet algebra of $L^{\infty}(m)$.

We shall show that $H_{\min}^{\infty} = H^{\infty}(m)$. Let B_n^{∞} be the weak-*closure of $\bigcup_{i=0}^{\infty} \bar{z}_n^i H^{\infty}(m)$, then

$$L^{\infty}(m) = B_{1}^{\infty} \supseteq H_{\max}^{\infty} = B_{2}^{\infty} \supseteq B_{3}^{\infty} \supseteq \cdots H^{\infty}(m).$$

It is easy to show that $\bigcap_{n=1}^{\infty} B_n^{\infty} = H^{\infty}(m)$.

Third example. Let \mathscr{A} be the σ -algebra of all Borel sets on the torus T^2 . Let \mathscr{A}_0 be the σ -subalgebra of \mathscr{A} consisting of Borel sets of the form $E_1 \times T$ where E_1 is a Borel set on the circle T. Suppose \mathscr{B} be the σ -subalgebra which consists of all Borel sets such that $\{(E_0 \times T) \cap F; F \in \mathscr{A}_0\} \cup \{(E_0 \times T) \cap F'; F' \in \mathscr{A}\}$ for some fixed Borel set E_0 on T such that $\theta(E_0) < 1$, where θ is the normalized Haar measure on T.

Denote by m the normalized Haar measure on T^2 and denote by m_0 the restriction to \mathcal{B} . Let A be the algebra of complex-valued Borel function on T^2 which are polynomials in z^nq^m where

$$(n, m) \in \Gamma = \{(n, m); m > 0\} \cup \{(n, m); n \ge 0\}$$

and $q = \chi_{E_0 \times T} \cdot w$ and both z and w are coordinate functions on T^2 . Then A is a weak-*Dirichlet algebra of $L^{\infty}(m_0)$. For it is clear that m_0 is multiplicative on A. To show that $A + \overline{A}$ is weak-*dense in $L^{\infty}(m_0)$ it is sufficient to show that the characteristic functions for the Borel sets of T^2 of the form of $(E_1 \times T) \cup \{(E_0 \times T) \cap F\}$, where F is any

Borel set of T^2 , are in the weak-*closure of $A + \bar{A}$. However it is not difficult to show this.

By Corollary 5, the minimal superalgebra $H_{\min}^{\infty} = H_{\max}^{\infty}$ is a weak*closure of $\bigcup_{n=0}^{\infty} \bar{z}^n H^{\infty}(m_0)$ which contains $H^{\infty}(m_0)$ properly. Then $I_{H_{\min}}^{\infty}$ is $\bigcap_{n=0}^{\infty} z^n H^{\infty}(m_0)$ and the support set of $I_{H_{\min}}^{\infty}$ is $E_0 \times T$. Since $H_{\min}^2 \bigoplus \bar{I}_{H_{\min}}^2 = L^2(m_0)$ by Lemma 1, H_{\min}^{∞} has a subspace reducing $L^{\infty}(m_0)$. For $q = \chi_{E_0 \times T} \cdot w$ in $H^{\infty}(m_0)$, χ_q satisfies that if $\chi_q \not = \chi_f$ for $f \in H^{\infty}(m_0)$, then $\chi_f = 1$, a.e. For if $\chi_f \not = 1$, by Corollary 3, it follows that $f \in I_{H_{\min}}^{\infty}$.

Fourth example. Let A be the algebra of continuous complexvalued functions on the polydisc $T^3 = \{(z_1, z_2, z_3) \in C^3; |z_1| = |z_2| = |z_3| = 1\}$ which are uniform limit of polynomials in $z_1^{\ell_1} z_2^{\ell_2} z_3^{\ell_3}$ where

$$(\ell_1, \ell_2, \ell_3) \in \Gamma = \{(\ell_1, \ell_2, \ell_3); \ell_3 > 0\} \cup \{(\ell_1, \ell_2, 0); \ell_2 > 0\} \cup \{(\ell_1, 0, 0); \ell_1 > 0\}.$$

Denote by m the normalized Haar measure on T^3 , then A is a weak-*Dirichlet algebra of $L^{\infty}(m)$. H^{∞}_{\min} is the weak-*closure of $\bigcup_{n=0}^{\infty} \bar{z}_{1}^{n} H^{\infty}(m)$. H^{∞}_{\max} is the weak-*closure of $\bigcup_{n=0}^{\infty} \bar{z}_{2}^{n} H^{\infty}(m)$. Theorem 3 can be applied each weak-*closed superalgebra B^{∞} such that $H^{\infty}_{\min} \subseteq B^{\infty} \subseteq H^{\infty}_{\max}$ has form $B^{\infty} = \chi_{E} H^{\infty}_{\min} + (1 - \chi_{E}) H^{\infty}_{\max}$ for some $\chi_{E} \in H^{\infty}_{\min}$. For it is sufficient to show that if $f \in I^{\infty}_{H_{\min}}$ and χ_{f} is minimal for H^{∞}_{\min} , then $f \in I^{\infty}_{H_{\max}}$. By [6, Theorem 4], $H^{\infty}(m) = H^{\infty}(m) \cap \bar{H}^{\infty}_{\max} \oplus I^{\infty}_{H_{\max}}$ and hence if $f \in I^{\infty}_{H_{\max}}$, then $f = u + f_{0}$ for some $u \in H^{\infty}(m) \cap \bar{H}^{\infty}_{\max}$ and for some $f_{0} \in I^{\infty}_{H_{\max}}$. It is not difficult to show that if $u \neq 0$, then χ_{f} is not minimal for H^{∞}_{\min} . Moreover $H^{\infty}_{\max} = (H^{\infty}_{\min})_{\min}$.

REFERENCES

- 1. T. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969.
- 2. K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, 1962.
- 3. P. S. Muhly, Maximal weak -* Dirichlet algebras, Proc. Amer. Math. Soc., 36 (1972), 515-518.
- 4. S. Merrill, Maximality of certain algebras $H^{\infty}(m)$, Math. Zeit., 106 (1968), 261-266.
- 5. T. Nakazi, Nonmaximal weak-*Dirichlet algebras, Hokkaido Math. J., 5 (1975), 88-96.
- 6. ——, Invariant subspaces of weak-* Dirichlet algebras, to appear in Pacific J. Math., 68 (1977), 151-167.
- 7. T. P. Srinivasan and Ju-Kwei Wang, Weak-*Dirichlet algebras, Proc. Internat. Sympos. On Function Algebras (Tulane Univ., 1965), Scott-Foresman, Chicago, III., 1966, 216–249.

Received April 6, 1976.

RESEARCH OF APPLIED ELECTRICITY HOKKAIDO UNIVERSITY SAPPORO, JAPAN