GENERALISED QUASI-NÖRLUND SUMMABILITY

PREMALATA MOHAPATRO

Just as (N, p, q) generalises Nörlund methods, so also, in this paper we define generalised quasi-Nörlund Method (N^*, p, q) generalising the quasi-Nörlund method due to Thorpe.

To begin with, we have determined the inverse of a generalised quasi-Nörlund matrix in a limited case. Besides, limitation Theorems for both ordinary and absolute (N^*, p, q) summability have been established.

Finally we have established an Abelian Theorem (the main theorem) for $(N^*, p, q) \Rightarrow (J, q)$, where (J, q) is a power series method which reduces to the Abel method (A) for $q_n = 1$ (all n).

1. Vermes [10] pointed out that there is a close relation between the summability properties of a matrix $A = (a_{nk})$ regarded as a sequence to sequence transformation and those of its transpose $A^* = (a_{kn})$ regarded as a series to series transformation.

Suppose that A is a sequence to sequence transformation and further that

$$\sum_{k=0}^{\infty} a_{nk} = 1 \quad \text{for all } n,$$

then by using Theorems of regularity (see Hardy [5], Theorem 2) and absolute regularity (see Knopp and Lorentz [6]) we see that A^* is an absolutely regular series to series transformation.

Conversely, given any absolutely regular series to series method $C = (c_{nk})$, its transpose C^* is regular as a sequence to sequence method provided that

$$c_{nk} \rightarrow 0$$
 as $k \rightarrow \infty$ for fixed *n*.

We can also see that if A is absolutely regular and the above condition is satisfied then A^* is regular and the converse also holds.

We shall call A^* the quasi-method associated with A and remember that, it is a series to series transformation.

Kuttner [7] defined quasi-Cesàro summability and investigated its main properties as a quasi-Hausdorff transformation (see also Ramunujan [8] and White [11]. Thorpe [9] defined quasi-Nörlund (quasi-Riesz) summability.

Just as (N, p, q) generalises Nörlund methods, so also we can define generalised quasi-Nörlund method (N^*, p, q) generalising the quasi-Nörlund methods. We give the definition in the following manner: Given p_n and q_n we define $r_n = \sum_{v=0}^n p_{n-v}q_v$ and suppose that $r_n \neq 0$ for $n \ge 0$. We say that the (N^*, p, q) method is applicable to the given infinite series $\sum a_n$ if

$$(1.1) b_n = q_n \sum_{k=n}^{\infty} \frac{p_{k-n}a_k}{r_k}$$

exists for each $n \ge 0$. If further, $\sum b_n = s$, then we say that $\sum a_n$ is summable by (N^*, p, q) method to sum s and if $\sum |b_n| < \infty$ then $\sum a_n$ is said to be absolutely summable by $|N^*, p, q|$ method.

The method (N^*, p, q) reduces to the quasi-Nörlund method (N^*, p) if $q_n = 1$, to the quasi-Riesz method (\bar{N}^*, q) if $p_n = 1$, to (say) quasi-Euler-Knopp method (E^*, σ) when

$$p_n=\frac{\alpha^n\sigma^n}{n!},\quad q_n=\frac{\alpha^n}{n!}\quad (\alpha>0,\ \sigma>0),$$

to the (say) (C^*, α, β) method (let us call it generalised quasi-Cesàro method) when

$$p_n = \binom{n+\alpha-1}{\alpha}, \qquad q_n = \binom{n+\beta}{\beta}.$$

It may be recalled that (N, p, q) matrix is given by

$$a_{nk} = \begin{cases} \frac{p_{n-k}q_k}{r_n} & (k \leq n), \\ 0 & (k > n). \end{cases}$$

and the (N^*, p, q) is given by its transpose matrix:

$$a_{nk}^* = \begin{cases} \frac{q_n p_{k-n}}{r_k} & (k \ge n), \\ 0 & (k < n). \end{cases}$$

Since for the (a_{nk}) defined above we have

$$\sum_{k=0}^n a_{nk} = 1,$$

it follows from the above discussion that if

$$p_{k-n} = o(r_k)$$
 as $k \to \infty$,

for each fixed *n*, then (N^*, p, q) is regular if and only if (N, p, q) is absolutely regular, and (N^*, p, q) is absolutely regular if and only if (N, p, q) is regular.

The main object of this paper is to obtain certain conditions for which $\sum a_n \in (N^*, p, q) \Rightarrow \sum a_n \in (J, q)$.

The method (J,q) is defined as follows. Suppose that $q_n \ge 0$ and $q_n \ne 0$ for an infinity values of *n*. Let ρ_q ($\rho_q < \infty$) be the radius of convergence of the power series

$$q(z)=\sum_{n=0}^{\infty} q_n z^n.$$

If the sequence to function transformation,

$$J(x) = \frac{\sum\limits_{n=0}^{\infty} q_n s_n x^n}{\sum\limits_{n=0}^{\infty} q_n x^n}$$

exists for $0 \le x \le \rho_q$, we say that (J, q) method is applicable to $\sum a_n$ (or $\{s_n\}$), and if further $J(x) \to s$ as $x \to \rho_q - 0$, we say that $\sum a_n$ (or $\{s_n\}$) is summable (J, q) to s. See Hardy [5], Das [4].

As well-known particular cases of the (J, q) method, we have the Abel method when $q_n = 1$, the logarithmic method or (L) method when $q_n = 1/n + 1$ (Borwein [1], Hardy [5] p. 81), the A_{α} method when $q_n = \binom{n+\alpha}{\alpha}$ (Borwein [2] (A_0 is the same as Abel method A), the Borel method where $q_n = 1/n$! (see Hardy [5]). We write $p_n \in \mathfrak{M}$, when $p_n > 0$ and $p_n/p_{n-1} \leq p_{n+1}/p_n \leq 1$ (n > 0).

Let $P_n = \sum_{v=0}^n p_v$, $Q_n = \sum_{v=0}^n q_v$.

Let c_n be defined formally by the identity,

$$\left(\sum_{n=0}^{\infty} p_n x^n\right) \left(\sum_{n=0}^{\infty} c_n x^n\right) = 1.$$

2. Statements of the theorems. As in the case of quasi-Nörlund, it is not always possible to obtain an inverse to the transformation (1.1) but we have succeeded in getting an inverse for a class of sequences $p_n \in \mathfrak{M}$ and $q_n \neq 0$ $(n \ge 0)$.

This is embodied in.

THEOREM 1. Suppose that $p_n \in \mathfrak{M}$ and $q_n \neq 0$ $(n \ge 0)$. Then (N^*, p, q) (where applicable) has an inverse transformation, whose matrix

is given by the transpose of the inverse of (N, p, q), that is, if b_n is given by transformation (1.1), then

(2.1)
$$a_n = r_n \sum_{k=n}^{\infty} \frac{b_k c_{k-n}}{q_k}.$$

This is our basic theorem in the sense that it is widely used here and elsewhere and it may be noted that this theorem yields a result due to Thorpe [8] in the case $q_n = 1$.

The next couple of theorems are limitation theorems which assert that the method can not sum too rapidly divergent series.

THEOREM 2. Suppose $p_n \in \mathfrak{M}$, $q_n \neq 0$ $(n \ge 0)$ and that $|q_n|$ is nondecreasing. If Σa_n be summable (N^*, p, q) to s then

$$a_n = o\left(\frac{|r_n|}{|q_n|}\right).$$

If further $r_n \ge 0$, then

$$s_n = s + o\left(Q_n / |q_n|\right).$$

THEOREM 3. Suppose $p_n \in \mathfrak{M}$, q_n is positive, $\{q_n\}$ is nondecreasing and $\{q_n/r_n\}$ is nonincreasing. Then if Σa_n is summable $|N^*, p, q|$, then

$$\left\{\frac{q_n s_n}{r_n}\right\} \in BV$$

The main theorem in this paper is the Abelian theorem which is stated as:

THEOREM 4. Suppose $p_n \in \mathfrak{M}$, $q_n > 0$ and that $\{q_n\}$ and $\{q_n/q_{n+1}\}$ are nondecreasing. Also let

(2.2)
$$r_n(q_{n+1}-q_n) = O(q_{n+1}(r_{n+1}-r_n)).$$

Then

$$\Sigma a_n = s(N^*, p, q) \Rightarrow \Sigma a_n = s(J, q).$$

It may be remarked that the relationship between (N, p, q) and (J, q) was studied by Das (4). Putting $q_n = 1$ in Theorem 4, we obtain the result of Thorpe regarding $(N^*, p) \Rightarrow$ (A). We need the following lemma for the proof of the theorem.

LEMMA 1. Let $p_n \in \mathfrak{M}$. Then (i) $\sum_{n=0}^{\infty} |c_n| < \infty$, (ii) $c_0 > 0, c_n \leq 0 \ (n \geq 1)$, (iii) $\sum c_n \geq 0$, (iv) $\sum c_n = 0$, if and only if $P_n \rightarrow \infty$ as $n \rightarrow \infty$.

The above theorem is due to Kaluza. The proof of the theorem appears in Hardy (5), Theorem 22.

3. Proof of Theorem 1. We know from the identity:

$$(\Sigma c_n x^n)(\Sigma p_n x^n) = 1$$

that

(3.1)
$$\sum_{n=0}^{k} p_n c_{k-n} = \begin{cases} 1 & (k=0), \\ 0 & (k>0). \end{cases}$$

Hence

(3.2)
$$\sum_{k=n}^{N} c_{k-n} p_{v-k} = -\sum_{k=N+1}^{v} c_{k-n} p_{v-k} \qquad (v > n).$$

Now for N > n and by (1.1) we have,

$$r_{n}\sum_{k=n}^{N} \frac{b_{k}c_{k-n}}{q_{k}} = r_{n}\sum_{k=n}^{N} \frac{c_{k-n}}{q_{k}}q_{k}\sum_{v=k}^{\infty} \frac{a_{v}p_{k-v}}{r_{v}}$$

$$= r_{n}\sum_{k=n}^{N} c_{k-n} \left(\sum_{v=k}^{N} + \sum_{v=N+1}^{\infty}\right) \frac{a_{v}p_{v-k}}{r_{v}}$$

$$= r_{n}\sum_{v=n}^{N} \frac{a_{v}}{r_{v}}\sum_{k=n}^{v} c_{k-n}p_{v-k}$$

$$+ r_{n}\sum_{v=N+1}^{\infty} \frac{a_{v}}{r_{v}}\sum_{k=n}^{N} c_{k-n}p_{v-k}$$

$$= a_{n} + r_{n}\sum_{v=N+1}^{\infty} \frac{a_{v}}{r_{v}}\sum_{k=n}^{N} c_{k-n}p_{v-k}$$

by (3.1). Thus the necessary and sufficient condition for the validity of (2.1) is that, for each fixed n,

$$\sum_{v=N+1}^{\infty} \frac{a_v}{r_v} \sum_{k=n}^{N} c_{k-n} p_{v-k} \to 0, \quad \text{as} \quad N \to \infty,$$

which is the same thing as, for each fixed n,

(3.3)
$$\phi_N = \sum_{v=N+1}^{\infty} \frac{a_v}{r_v} \sum_{k=N+1}^{v} c_{k-n} p_{v-k} \to 0, \quad \text{as} \quad N \to \infty$$

in view of (3.2).

Let us write

(3.4)
$$b_0 = q_0 \sum_{k=0}^{\infty} \frac{p_k a_k}{r_k},$$
$$\omega_v = q_0 \sum_{k=v}^{\infty} \frac{p_k a_k}{r_k}.$$

Since (N^*, p, q) method is applicable to $\sum a_n$, b_0 is finite and hence, ω_v is well defined and tends to zero as $v \to \infty$. Now from (3.4)

$$\frac{a_v}{r_v}=\frac{\omega_v-\omega_{v+1}}{q_0p_v}.$$

Hence

$$\phi_{N} = \frac{1}{q_{0}} \sum_{v=N+1}^{\infty} \frac{\omega_{v} - \omega_{v+1}}{q_{0}p_{v}} \sum_{k=N+1}^{v} c_{k-n}p_{v-k}.$$

Now for M > N,

$$\frac{1}{q_0} \sum_{v=N+1}^{M} \frac{\omega_v - \omega_{v+1}}{p_v} \sum_{k=N+1}^{v} c_{k-n} p_{v-k}$$

$$= \frac{1}{q_0} \sum_{v=N+1}^{M} \omega_v \left[\sum_{k=N+1}^{v} \frac{p_{v-k} c_{k-v}}{p_v} - \sum_{k=N+1}^{v-1} \frac{p_{v-k-1} c_{k-n}}{p_{v-1}} \right]$$

$$- \frac{1}{q_0} \frac{\omega_{M+1}}{p_M} \sum_{k=N+1}^{M} p_{M-k} c_{k-n}.$$

Since $p_n \in \mathfrak{M}$ (by Lemma 1)

$$\left|\sum_{k=N+1}^{M} p_{M-k} c_{k-n}\right| = O(1), \text{ as } M \to \infty,$$

and by definition,

$$\omega_M = o(1), \quad \text{as} \quad M \to \infty,$$

we see that,

$$\phi_N = \frac{1}{q_0} \sum_{v=N+1}^{\infty} \omega_v \sum_{k=N+1}^{v} c_{k-n} \left(\frac{p_{v-k}}{p_v} - \frac{p_{v-k-1}}{p_{v-1}} \right).$$

Since $\{\omega_{\nu}\}$ is an arbitrary sequence tending to 0, hence (3.3) is valid, that is, $\phi_N \rightarrow 0$ if and only if, (see Hardy (5), Theorem 8) for fixed *n*,

$$J_{N} = \sum_{v=N+1}^{\infty} \left| \sum_{k=N+1}^{v} \left(\frac{p_{v-k}}{p_{v}} - \frac{p_{v-k-1}}{p_{v-1}} \right) c_{k-n} \right| = O(1)$$

as $N \rightarrow \infty$. But by virtue of (3.1)

$$\sum_{k=N+1}^{\nu} \left(\frac{p_{\nu-k}}{p_{\nu}} - \frac{p_{\nu-k-1}}{p_{\nu-1}} \right) c_{k-n} = -\sum_{k=n}^{N} \left(\frac{p_{\nu-k}}{p_{\nu}} - \frac{p_{\nu-k-1}}{p_{\nu-1}} \right) c_{k-n}$$

for v > n and also,

$$\frac{p_{v-k}}{p_v} - \frac{p_{v-k-1}}{p_{v-1}} \le 1$$
, for $k \le v - 1$.

Hence

$$J_{N} = \sum_{v=N+1}^{\infty} \left| \sum_{k=n}^{N} \left(\frac{p_{v-k}}{p_{v}} - \frac{p_{v-k-1}}{p_{v-1}} \right) c_{k-n} \right|$$

$$\leq \sum_{v=N+1}^{\infty} c_{0} \left| \frac{p_{v-n}}{p_{v}} - \frac{p_{v-n-1}}{p_{v-1}} \right|$$

$$+ \sum_{v=N+1}^{\infty} \sum_{k=n+1}^{N} \left| c_{k-n} \left(\frac{p_{v-k}}{p_{v}} - \frac{p_{v-k-1}}{p_{v-1}} \right) \right|$$

$$= J_{N}^{(1)} + J_{N}^{(2)}, \quad (say).$$

Since $p_n \in \mathfrak{M}$, $\{p_n/p_{n+1}\}$ is nonincreasing and so,

$$J_N^{(1)} = O(1), \text{ as } N \to \infty.$$

Since $p_n/p_{n+1} \ge 1$ and $\{p_n/p_{n+1}\}$ is nonincreasing it follows that, $\lim p_n/p_{n+1}$ exists and

$$A = \lim p_n / p_{n+1} \ge 1.$$

Hence,

$$\sum_{v=N+1}^{\infty} \left(\frac{p_{v-k}}{p_v} - \frac{p_{v-k-1}}{p_{v-1}} \right)$$

=
$$\lim_{v \to \infty} \frac{p_{v-k}}{p_v} - \frac{p_{N-k}}{p_N}$$

=
$$\lim_{v \to \infty} \left(\frac{p_{v-k}}{p_{v+1-k}} \frac{p_{v+1-k}}{p_{v+2-k}} \cdots \frac{p_{v-1}}{p_v} \right) - \frac{p_{N-k}}{p_N}$$

= $A^k - \frac{p_{N-k}}{p_N}$.

Therefore, by (3.1)

$$J_{N}^{(2)} = \sum_{k=n+1}^{N} c_{k-n} A^{k} - \sum_{k=n+1}^{N} c_{k-n} \frac{p_{N-k}}{p_{N}}$$
$$= \sum_{k=n+1}^{N} c_{k-n} A^{k} - \frac{1}{p_{N}} \left[\sum_{k=n}^{N} c_{k-n} p_{N-k} - c_{0} p_{N-n} \right]$$
$$= \sum_{k=n+1}^{N} c_{k-n} A^{k} + c_{0} \frac{p_{N-n}}{p_{N}}.$$

Since,

$$\sum_{k=n+1}^N c_{k-n} A^k \leq 0,$$

we get,

$$J_N^{(2)} \leq \frac{c_0 p_{N-n}}{p_N}$$

= $O(1)$, as $N \to \infty$.

This completes the proof of the theorem.

4. Proof of Theorem 2. Since $\sum a_n$ is (N^*, p, q) summable, $\sum b_n$ is convergent and hence $b_n = o(1)$. By using the inversion formula as given in Theorem 1 we obtain, by using hypotheses,

$$|a_{n}| = \left| r_{n} \sum_{k=n}^{\infty} \frac{b_{k}c_{k-n}}{q_{k}} \right|$$

$$\leq \frac{|r_{n}|}{|q_{n}|} \sum_{k=n}^{\infty} |b_{k}c_{k-n}|$$

$$= \frac{|r_{n}|}{|q_{n}|} \sum_{k=n}^{\infty} o(1) |c_{k-n}|$$

$$= o\left(\frac{|r_{n}|}{|q_{n}|}\right),$$

since $\Sigma |c_n| < \infty$ and $b_n = o(1)$.

Next, suppose that $\sum b_n = s$. Since

$$(\Sigma c_n x^n)(\Sigma r_n x^n) = \Sigma q_n x^n,$$

$$(\Sigma c_n^{(1)} x^n)(\Sigma r_n x^n) = \Sigma Q_n x^n,$$

184

it follows that

(4.1)
$$\sum_{v=0}^{n} r_{v}c_{n-v} = q_{n},$$

(4.2)
$$\sum_{v=0}^{n} r_{v} c_{n-v}^{(1)} = Q_{n}.$$

Thus, when $p_n \in \mathfrak{M}$ we have $c_n^{(1)} \ge 0$ and if $r_n \ge 0$, it follows from (4.2) that $Q_n \ge 0$ whether or not q_n is positive.

Now by (4.1)

$$s_{m} = \sum_{n=0}^{m} r_{n} \sum_{k=n}^{\infty} \frac{b_{k}c_{k-n}}{q_{k}}$$

= $\sum_{n=0}^{m} r_{n} \left(\sum_{k=n}^{m} + \sum_{k=m+1}^{\infty} \right) \frac{b_{k}c_{k-n}}{q_{k}}$
= $\sum_{k=0}^{m} \frac{b_{k}}{q_{k}} \sum_{n=0}^{k} r_{n}c_{k-n} + \sum_{n=0}^{m} r_{n} \sum_{k=m+1}^{\infty} \frac{b_{k}c_{k-n}}{q_{k}}$
= $\sum_{k=0}^{m} b_{k} + \sum_{n=0}^{m} r_{n} \sum_{k=m+1}^{\infty} \frac{b_{k}c_{k-n}}{q_{k}}.$

Hence, as $b_k = o(1)$,

$$\left| s_{m} - \sum_{k=0}^{m} b_{k} \right| \leq \sum_{n=0}^{m} r_{n} \sum_{k=m+1}^{\infty} o(1) \frac{|c_{k-n}|}{q_{k}}$$
$$= o(1) \frac{1}{|q_{m}|} \sum_{n=0}^{m} r_{n} \sum_{k=m+1}^{\infty} |c_{k-n}|.$$

But when $p_n \in \mathfrak{M}$, by Lemma 1, we have

(4.3)
$$\sum_{k=m+1}^{\infty} |c_{k-n}| \leq c_{m-n}^{(1)};$$

and hence, by identity (4.2)

$$\left| s_{m} - \sum_{k=0}^{m} b_{k} \right| = o(1) \frac{1}{|q_{m}|} \sum_{n=0}^{m} r_{n} c_{m-n}^{(1)}$$
$$= o(1) \frac{Q_{m}}{|q_{m}|}.$$

This completes the proof.

Proof of Theorem 3. We have

$$\sum_{n=0}^{\infty} \left| \frac{s_n q_n}{r_n} - \frac{s_{n+1} q_{n+1}}{r_{n+1}} \right| = \sum_{n=0}^{\infty} \left| \Delta \left(\frac{s_n q_n}{r_n} \right) \right|$$
$$\leq \sum_{n=0}^{\infty} \left| a_{n+1} \right| \frac{q_{n+1}}{r_{n+1}} + \sum_{n=0}^{\infty} \left| s_n \right| \Delta \left| \frac{q_n}{r_n} \right|$$
$$= L_n + M_n, \quad (\text{say}).$$

By using (2.1), we get (as q_n is nondecreasing)

$$L_{n} \leq \sum_{n=0}^{\infty} \frac{q_{n+1}}{r_{n+1}} r_{n+1} \sum_{k=n+1}^{\infty} \frac{|b_{k}| |c_{k-n-1}|}{q_{k}}$$
$$\leq \sum_{n=0}^{\infty} \sum_{k=n+1}^{\infty} |b_{k}| |c_{k-n-1}|$$
$$= \sum_{k=0}^{\infty} |b_{k}| \sum_{n=0}^{k-1} |c_{k-n-1}|$$
$$= O(1),$$

since $\Sigma |b_k| < \infty$ and $\Sigma |c_n| < \infty$ as $p_n \in \mathfrak{M}$. Since $\{q_n/r_n\}$ is decreasing we have,

$$\sum_{n=v}^{\infty} \left| \Delta \frac{q_n}{r_n} \right| = \sum_{n=v}^{\infty} \left(\frac{q_n}{r_n} - \frac{q_{n+1}}{r_{n+1}} \right) \leq \frac{q_v}{r_v}.$$

Hence,

$$M_{n} = \sum_{n=0}^{\infty} \left| \Delta \frac{q_{n}}{r_{n}} \right| \left| \sum_{v=0}^{n} r_{v} \sum_{k=v}^{\infty} \frac{b_{k} c_{k-v}}{q_{k}} \right|$$

$$\leq \sum_{n=0}^{\infty} \left| \Delta \frac{q_{n}}{r_{n}} \right| \sum_{v=0}^{n} r_{v} \sum_{k=v}^{\infty} \frac{|b_{k}| |c_{k-v}|}{q_{k}}$$

$$= \sum_{v=0}^{\infty} r_{v} \sum_{n=v}^{\infty} \left| \Delta \frac{q_{n}}{r_{n}} \right| \sum_{k=n}^{\infty} \frac{|b_{k}| |c_{k-v}|}{q_{k}}$$

$$= \sum_{v=0}^{\infty} r_{v} \sum_{k=v}^{\infty} \frac{|b_{k}| |c_{k-v}|}{q_{k}} \sum_{n=v}^{\infty} \left| \Delta \frac{q_{n}}{r_{n}} \right|$$

$$\leq \sum_{v=0}^{\infty} \frac{r_{v}}{q_{v}} \sum_{k=v}^{\infty} |b_{k}| |c_{k-v}|$$

$$= \sum_{v=0}^{\infty} \sum_{k=v}^{\infty} |b_{k}| |c_{k-v}|$$

$$= \sum_{k=0}^{\infty} |b_{k}| \sum_{v=0}^{k} |c_{k-v}|$$

$$< \infty,$$

by hypothesis. Hence

$$\Sigma \left| \Delta \left(\frac{s_n q_n}{r_n} \right) \right| \leq L_n + M_n = O(1) \text{ as } n \to \infty$$

and therefore

.

$$\{s_nq_n/r_n\} \in BV.$$

This completes the proof of Theorem 3.

5. Now we will prove our main theorem and for this, we require the following lemma.

LEMMA 2. Let $p_n \in \mathfrak{M}$, $q_n > 0$ and nondecreasing. Then (2.2) implies that

$$0 \leq q_{k}^{2} \leq \sum_{v=0}^{k} q_{v} r_{v} c_{k-v} = O(q_{k}^{2}).$$

Proof. Since $q_n > 0$ and nondecreasing and $p_n > 0$, it follows that $r_n > 0$ and nondecreasing. Since, as $p_n \in \mathfrak{M}$, by Lemma 1, $c_0 > 0$, $c_n \leq 0$ $(n \geq 1)$, when we get

$$\sum_{v=0}^{k} q_{v} r_{v} c_{k-v} \geq q_{k} \sum_{v=0}^{k} r_{v} c_{k-v} = q_{k}^{2} \geq 0,$$

by identity (4.1). Now

$$\sum_{v=0}^{k} q_{v} r_{v} c_{k-v} = \sum_{v=0}^{k} \Delta_{v} (q_{k-v} r_{k-v}) c_{v} (1)$$
$$= \sum_{v=0}^{k} q_{k-v} (r_{k-v} - r_{k-v-1}) c_{v} (1)$$
$$+ \sum_{v=0}^{k} r_{k-v-1} (q_{k-v} - q_{k-v-1}) c_{v} (1).$$

Hence, as $c_n^{(1)} \ge 0$, we get by (4.2)

$$\sum_{v=0}^{k} q_{k-v}(r_{k-v}-r_{k-v-1})c_{v}^{(1)} \leq q_{k}(Q_{k}-Q_{k-1}) = q_{k}^{2}.$$

Again by (2.2)

$$0 \leq \sum_{v=0}^{k} r_{k-v-1} (q_{k-v} - q_{k-v-1}) c_{v}^{(1)}$$

= $O(1) \sum_{v=0}^{k} q_{k-v} (r_{k-v} - r_{k-v-1}) c_{v}^{(1)}$
= $O(1) q_{k}^{2},$

as in the previous case. Hence

$$0 \leq \sum_{v=0}^{k} q_{v} \mathbf{r}_{v} c_{k-v} = O(q_{k}^{2}).$$

This completes the proof of the lemma.

Proof of Theorem 4. We shall first prove that whenever $\sum a_n$ is summable (N^*, p, q) , then (J, q) method is applicable to $\sum a_n$.

By Theorem 2, we have

$$s_n = s + o\left(\frac{Q_n}{q_n}\right) = O\left(\frac{Q_n}{q_n}\right).$$

Hence

$$J(x) = \frac{\sum q_n s_n x^n}{\sum q_n x^n}$$
$$= O(1) \frac{\sum Q_n x^n}{\sum q_n x^n}$$
$$= O(1) \sum x^n.$$

Since $\sum x^n = 1/(1-x)$ for |x| < 1, it follows that J(x) exists for |x| < 1and hence (J,q) method is applicable. Now for |x| < 1,

(5.1)

$$J(x) = \frac{1}{q(x)} \sum_{v=0}^{\infty} r_v \sum_{n=v}^{\infty} q_n x^n \sum_{k=v}^{\infty} \frac{b_k c_{k-v}}{q_k}$$

$$= \frac{1}{q(x)} \sum_{v=0}^{\infty} r_v \sum_{k=v}^{\infty} \frac{b_k c_{k-v}}{q_k} \sum_{n=v}^{\infty} q_n x^n$$

$$= \frac{1}{q(x)} \sum_{k=0}^{\infty} \frac{b_k}{q_k} \sum_{v=0}^{k} r_v c_{k-v} \sum_{n=v}^{\infty} q_n x^n$$

$$= \sum_{k=0}^{\infty} g_k(x) b_k,$$

where,

$$g_k(x) = \frac{\sum_{v=0}^k r_v c_{k-v} \sum_{n=v}^{\infty} q_n x^n}{q_k q(x)}.$$

The change of order of summation involved in obtaining (5.1) is justified in the range |x| < 1, by the absolute convergence of the double sum.

Now (5.1) is a series to function transformation, transforming the series $\sum b_n$ to the function J(x). To prove the theorem, we have to show that the transformation (5.1) is regular, that is, we have to show that the conditions of regularity (see Cooke [3], page 65) are satisfied. Note that

(5.2)

$$g_{k}(x) = \frac{\sum_{\nu=0}^{k} r_{\nu}c_{k-\nu}\left(q(x) - \sum_{n=0}^{\nu-1} q_{n}x^{n}\right)}{q_{k}q(x)}$$

$$= \frac{1}{q_{k}} \sum_{\nu=0}^{k} r_{\nu}c_{k-\nu}\left(1 - \sum_{n=0}^{\nu-1} q_{n}x^{n}/q(x)\right)$$

$$= 1 - \left(\sum_{\nu=0}^{k} r_{\nu}c_{k-\nu}\sum_{n=0}^{\nu-1} q_{n}x^{n}\right) / (q(x)q_{k})$$

by identity (4.1).

Since $q_n > 0$ is increasing, we have

$$\Sigma q_n x^n \ge q_0 \Sigma x^n \to \infty$$
 as $x \to 1-0$.

Hence from (5.2), we obtain

$$g_k(x) \rightarrow 1$$
, as $x \rightarrow 1 - 0$.

We have only to show that

(5.3)
$$\sum_{k=1}^{\infty} |g_k(x) - g_{k+1}(x)| \leq M,$$

for 0 < x < 1, where M is a positive number.

Now let us write

$$\phi_v(x) = \sum_{k=v}^{\infty} q_k x^k / q(x).$$

It is obvious that, $\phi_0(x) = 1$. Hence

$$g_{k}(x) - g_{k+1}(x) = \sum_{v=0}^{k+1} \phi_{v}(x) r_{v} \left(\frac{c_{k-v}}{q_{k}} - \frac{c_{k+1-v}}{q_{k+1}} \right)$$
$$= \sum_{v=0}^{k} c_{k-n} \left(\phi_{v}(x) \frac{r_{v}}{q_{k}} - \phi_{v+1}(x) \frac{r_{v+1}}{q_{k+1}} \right) - r_{0} \frac{c_{k+1}}{q_{k+1}}$$

Since by hypothesis $\Sigma |c_n| < \infty$ and $\{1/q_n\}$ decreases as *n* increases, we have,

$$\sum_{k=0}^{\infty} \frac{|c_{k+1}|}{q_{k+1}} \leq \frac{1}{q_0} \sum_{k=0}^{\infty} |c_{k+1}| < \infty.$$

Hence in order to show that (5.3) holds it is enough to show that,

$$\theta(x) = \sum_{k=0}^{\infty} \left| \sum_{v=0}^{k} c_{k-v} \left(\phi_{v}(x) \frac{r_{v}}{q_{k}} - \phi_{v+1}(x) \frac{r_{v+1}}{q_{k+1}} \right) \right| < M,$$

for 0 < x < 1.

Now since

$$\phi_{v}(x)-\phi_{v+1}(x)=\frac{q_{v}x^{v}}{q(x)},$$

it follows that,

(5.5)
$$\theta(x) = \sum_{k=0}^{\infty} \left| \sum_{v=0}^{k} c_{k-v} \left(\phi_v(x) - \phi_{v+1}(x) \right) \frac{r_v}{q_k} + \phi_{v+1}(x) \left(\frac{r_v}{q_k} - \frac{r_{v+1}}{q_{k+1}} \right) \right|$$

 $\leq M(x) + N(x),$

where,

$$M(x) = \frac{1}{q(x)} \sum_{k=0}^{\infty} \frac{1}{q_k} \left| \sum_{v=0}^k c_{k-v} q_v r_v x^v \right|$$
$$N(x) = \sum_{k=0}^{\infty} \left| \sum_{v=0}^k c_{k-v} \phi_{v+1}(x) \left(\frac{r_v}{q_k} - \frac{r_{v+1}}{q_{k+1}} \right) \right|.$$

Since

$$\sum_{v=0}^{k} c_{k-v} q_{v} r_{v} x^{v} = \sum_{v=0}^{k-1} c_{k-v} q_{v} r_{v} (x^{v} - x^{k}) + x^{k} \sum_{v=0}^{k} c_{k-v} q_{v} r_{v},$$

to prove M(x) = O(1) we need only show that,

$$M'(x) = \frac{1}{q(x)} \sum_{k=0}^{\infty} \frac{1}{q_k} \sum_{v=0}^{k-1} c_{k-v} q_v r_v(x^v - x^k) = O(1),$$

in view of Lemma 2.

Since $c_n \leq 0$ $(n \geq 1)$ and $\{1/q_n\}$ is decreasing, we get,

190

$$M'(x) = -\frac{1}{q(x)} \sum_{k=0}^{\infty} \frac{1}{q_k} \sum_{v=0}^{k-1} q_v r_v c_{k-v} (x^v - x^k)$$

$$= -\frac{1}{q(x)} \sum_{v=0}^{\infty} q_v r_v x^v \sum_{k=v+1}^{\infty} c_{k-v} \frac{(1 - x^{k-v})}{q_k}$$

$$\leq -\frac{1}{q(x)} \sum_{v=0}^{\infty} \frac{q_v r_v x^v}{q_v} \sum_{k=v+1}^{\infty} c_{k-v} (1 - x^{k-v})$$

$$= -\frac{1}{q(x)} \sum_{v=0}^{\infty} r_v x^v (c(1) - c(x))$$

$$\leq \frac{1}{q(x)} \sum_{v=0}^{\infty} r_v x^v c(x)$$

$$= \frac{r(x)c(x)}{q(x)}$$

$$= 1.$$

Hence,

(5.6)
$$M(x) = O(1).$$

The inner sum of N(x) can be written as,

$$\begin{split} \phi_{k+1}(x) \sum_{\nu=0}^{k} c_{k-\nu} \left(\frac{r_{\nu}}{q_{k}} - \frac{r_{\nu+1}}{q_{k+1}} \right) + \sum_{\nu=0}^{k} c_{k-\nu} (\phi_{\nu+1}(x) - \phi_{k+1}(x)) \left(\frac{r_{\nu}}{q_{k}} - \frac{r_{\nu+1}}{q_{k+1}} \right) \\ &= \phi_{k+1}(x) \sum_{\nu=0}^{k} c_{k-\nu} \left(\frac{r_{\nu}}{q_{k}} - \frac{r_{\nu+1}}{q_{k+1}} \right) \\ &+ \sum_{\nu=0}^{k} \frac{c_{k-\nu}}{q(x)} \left(\frac{r_{\nu}}{q_{k}} - \frac{r_{\nu+1}}{q_{k+1}} \right) \sum_{\mu=\nu+1}^{k} q_{\mu} x^{\mu}. \end{split}$$

Hence,

(5.7)
$$N(x) \leq N'(x) + N''(x),$$

where,

$$N'(x) = \sum_{k=0}^{\infty} \left| \phi_{k+1}(x) \sum_{v=0}^{k} c_{k-v} \left(\frac{r_{v}}{q_{k}} - \frac{r_{v+1}}{q_{k+1}} \right) \right|,$$

and

$$N''(x) = \sum_{k=0}^{\infty} \left| \sum_{\nu=0}^{k} c_{k-\nu} \left(\frac{r_{\nu}}{q_{k}} - \frac{r_{\nu+1}}{q_{k+1}} \right) \frac{\sum_{\mu=\nu+1}^{k} q_{\mu} x^{\mu}}{q(x)} \right|.$$

By (4.1)

$$\sum_{v=0}^{k} c_{k-v} \frac{r_{v}}{q_{k}} - \sum_{v=0}^{k} c_{k-v} \frac{r_{v+1}}{q_{k+1}}$$

$$= 1 - \frac{1}{q_{k+1}} \sum_{v=0}^{k} c_{k-v} r_{v+1}$$

$$= 1 - \frac{1}{q_{k+1}} \left(\sum_{v=0}^{k+1} c_{k+1-v} r_{v} - c_{k+1} r_{0} \right)$$

$$= r_{0} \frac{c_{k+1}}{q_{k+1}}.$$

Hence,

$$N'(x) = r_0 \sum_{k=0}^{\infty} \phi_{k+1}(x) \frac{|c_{k+1}|}{q_{k+1}}.$$

We know from the very definition of $\phi_k(x)$ that for 0 < x < 1,

$$0 \leq \phi_k(x) \leq 1.$$

Hence

$$N'(x) \leq r_0 \sum_{k=0}^{\infty} \frac{c_{k+1}}{q_{k+1}} \leq \frac{r_0}{q_0} \Sigma |c_{k+1}| < \infty.$$

And

$$N''(x) \leq \sum_{k=0}^{\infty} \sum_{v=0}^{k} |c_{k-v}| \left| \frac{r_{v}}{q_{k}} - \frac{r_{v+1}}{q_{k+1}} \right| \frac{\sum_{\mu=v+1}^{k} q_{\mu} x^{\mu}}{q(x)}$$

$$= \frac{1}{q(x)} \sum_{v=0}^{\infty} \sum_{k=v}^{\infty} |c_{k-v}| \left| \frac{r_{v}}{q_{k}} - \frac{r_{v+1}}{q_{k+1}} \right| \sum_{\mu=v+1}^{k} q_{\mu} x^{\mu}$$

$$= \frac{1}{q(x)} \sum_{v=0}^{\infty} \sum_{\mu=v+1}^{\infty} q_{\mu} x^{\mu} \sum_{k=\mu}^{\infty} |c_{k-v}| \left| r_{v} \left(\frac{1}{q_{k}} - \frac{1}{q_{k+1}} \right) + \frac{r_{v} - r_{v+1}}{q_{k+1}} \right|$$

$$\leq \frac{1}{q(x)} \sum_{v=0}^{\infty} r_{v} \sum_{\mu=v+1}^{\infty} q_{\mu} x^{\mu} \sum_{k=\mu}^{\infty} |c_{k-v}| \left(\frac{1}{q_{k}} - \frac{1}{q_{k+1}} \right) + \frac{1}{q(x)} \sum_{v=0}^{\infty} (r_{v+1} - r_{v}) \sum_{\mu=v+1}^{\infty} q_{\mu} x^{\mu} \sum_{k=\mu}^{\infty} |c_{k-v}| \frac{1}{q_{k+1}}$$

$$= \alpha(x) + \beta(x), \quad (say).$$

192

Now, since $\{q_n\}$ and $\{q_n/q_{n+1}\}$ are increasing with *n* we get, by using hypothesis (2.2) and (4.3)

$$\begin{aligned} \alpha(x) &\leq \frac{1}{q(x)} \sum_{\nu=0}^{\infty} r_{\nu} \sum_{\mu=\nu+1}^{\infty} x^{\mu} \sum_{k=\mu}^{\infty} |c_{k-\nu}| \left(1 - \frac{q_{k}}{q_{k+1}}\right) \\ &\leq \frac{1}{q(x)} \sum_{\nu=0}^{\infty} \frac{r_{\nu}(q_{\nu+1} - q_{\nu})}{q_{\nu+1}} \sum_{\mu=\nu+1}^{\infty} c_{\mu-\nu-1}^{(1)} x^{\mu} \\ &= \frac{1}{q(x)} \sum_{\nu=0}^{\infty} \frac{r_{\nu}(q_{\nu+1} - q_{\nu})}{q_{\nu+1}} x^{\nu+1} \sum_{n=0}^{\infty} c_{n}^{(1)} x^{n} \\ &= \frac{1}{(1-x)q(x)p(x)} \sum_{\nu=0}^{\infty} \frac{r_{\nu}(q_{\nu+1} - q_{\nu})}{q_{\nu+1}} x^{\nu+1} \\ &= \frac{1}{(1-x)r(x)} O(1) \sum_{\nu=0}^{\infty} (r_{\nu+1} - r_{\nu}) x^{\nu+1} \\ &= O(1), \end{aligned}$$

by using the identity,

$$(1-x)p(x)\sum c_n^{(1)}x^n = 1, \qquad (0 < x < 1).$$

Again since $\{r_n\}$ increases with n as $\{q_n\}$ increases, we get,

$$\beta(x) \leq \frac{1}{q(x)} \sum_{v=0}^{\infty} (r_{v+1} - r_v) \sum_{\mu=v+1}^{\infty} x^{\mu} \sum_{k=\mu}^{\infty} |c_{k-v}|$$

$$\leq \frac{1}{q(x)} \sum_{v=0}^{\infty} (r_{v+1} - r_v) \sum_{\mu=v+1}^{\infty} x^{\mu} c_{\mu-v-1}^{(1)}$$

$$= \frac{1}{q(x)} \sum_{v=0}^{\infty} (r_{v+1} - r_v) x^{v+1} \sum_{n=0}^{\infty} c_n^{(1)} x^n$$

$$= \frac{1}{(1-x)p(x)q(x)} \sum_{v=0}^{\infty} (r_{v+1} - r_v) x^{v+1}$$

$$\leq 1.$$

Hence,

$$N''(x) = \alpha(x) + \beta(x) = O(1).$$

Hence by (5.7), (5.6) and (5.5)

$$\theta(x) \leq M(x) + N(x) = O(1).$$

Hence (5.3) holds and this completes the proof of the theorem.

6. In this section, we now deduce some corollaries of Theorem 4.

COROLLARY 1. (Thorpe [9]). Suppose $p_n \in \mathfrak{M}$, then $\Sigma a_n \in (N^*, p) \Rightarrow \Sigma a_n \in (A)$, where (A) is the Abel method.

Proof. Put $q_n = 1$, for all n in Theorem 4.

COROLLARY 2. Let $q_n > 0$ for all $n, \{q_n\}$ be increasing in n, such that $\{q_n/q_{n+1}\}$ is also increasing in n and,

(6.1)
$$Q_n(q_{n+1}-q_n) = O(q_{n+1}^{(2)}).$$

Then,

$$\Sigma a_n \in (\overline{N}^*, q) \Rightarrow \Sigma a_n \in (J, q).$$

Proof. Put $p_n = 1$ for all *n*, in Theorem 4. In this case we have,

 $c_0 = 1$, $c_1 = -1$, $c_n = 0$ (n > 2).

COROLLARY 3. $(C^*, \alpha, \beta) \Rightarrow A_\beta$ for $0 < \alpha \le 1 \le \beta$.

Proof. Set

$$p_n = A_n^{\alpha - 1}, \qquad q_n = A_n^{\beta - 1}$$
 in Theorem 4.

Then $r_n = A_n^{\alpha+\beta-1}$ and condition (2.2) reduces to proving that

$$n^{\alpha+\beta-1}n^{\beta-2}=O(n^{\beta-1}n^{\alpha+\beta-2}),$$

which is valid in the present case. Also when $0 < \alpha \leq 1$, then $p_n = A_n^{\alpha^{-1}} \in \mathfrak{M}$ and when $\beta \geq 1$, then $q_n = A_n^{\beta^{-1}}$ is nondecreasing.

Lastly I would like to thank Professor G. Das for his valuable suggestions during the preparation of this paper. I would also like to thank the referee for some suggestions.

REFERENCES

- 1. D. Borwein, A logarithmic method of summability, J. London Math. Soc., 33 (1958), 212-220.
- 2. ____, On products of sequences, J. London Math. Soc., 33 (1958), 352-375.
- 3. R. G. Cooke, Infinite Matrices and Sequence Spaces, (Dover, New York 1955).
- 4. G. Das, On some methods of summability, Quart. J. Math., Oxford (2) 17 (1966), 244-256.
- 5. G. H. Hardy, Divergent Series, (Oxford 1949).
- 6. Knopp and Lorentz, Betrage Zur absoluten Limitierung, Archiv der Math., 2 (1949), 10-16.

7. B. Kuttner, On quasi-Cesàro summability, J.I.M.S., 24 (1960), 319-341.

8. M. S. Ramanujan, Note on the quasi-Hausdorff series to series transformation, J. London Math. Soc., 32 (1957), 27-32.

9. B. Thorpe, Nörlund and related summability methods, Ph.D. Thesis, (1970) Birmingham University.

10. P. Vermes, *The transpose of a summability matrix*, Colloque sur la Theorie des Suttes, Centre Belge de rechroches Math., (1958) 60-86.

11. A. J. White, On quasi-Cesàro summability, Quart. J. Math. Oxford (2), 12 (1961) 81-99.

Received May 3, 1976 and in revised form July 16, 1976

Sambalpur University Tala Telenga Bazar Cuttack 753009 Orissa India