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GENERALISED QUASI -NORLUND SUMMABILITY

PREMALATA MOHAPATRO

Just as (N,p,q) generalises Norlund methods, so also, in this
paper we define generalised quasi-Nόrlund Method (N*,p,q)
generalising the quasi-Nόrlund method due to Thorpe.

To begin with, we have determined the inverse of a generali-
sed quasi-Nόrlund matrix in a limited case. Besides, limitation
Theorems for both ordinary and absolute (N*,p,q) summability
have been established.

Finally we have established an Abelian Theorem (the main
theorem) for (N*,p,q) => (J,q), where (/, q) is a power series
method which reduces to the Abel method (A) for qn = 1 (all n).

1. Vermes [10] pointed out that there is a close relation between
the summability properties of a matrix A - (ank) regarded as a sequence
to sequence transformation and those of its transpose A* = (akn) re-
garded as a series to series transformation.

Suppose that A is a sequence to sequence transformation and
further that

X αnfc = 1 for all n,
fc=0

then by using Theorems of regularity (see Hardy [5], Theorem 2) and
absolute regularity (see Knopp and Lorentz [6]) we see that A * is an
absolutely regular series to series transformation.

Conversely, given any absolutely regular series to series method
C = (cnfc), its transpose C* is regular as a sequence to sequence method
provided that

cnk —> 0 as k -»oo for fixed n.

We can also see that if A is absolutely regular and the above
condition is satisfied then A * is regular and the converse also holds.

We shall call A * the quasi-method associated with A and remember
that, it is a series to series transformation.

Kuttner [7] defined quasi-Cesaro summability and investigated its
main properties as a quasi-Hausdorff transformation (see also Ramunu-
jan [8] and White [11]. Thorpe [9] defined quasi-Nόrlund (quasi-Riesz)
summability.

Just as (N,pyq) generalises Norlund methods, so also we can define
generalised quasi-Nόrlund method (N*,p,q) generalising the quasi-
Nόrlund methods. We give the definition in the following manner:
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Given pn and qn we define rn = Σ"=opn-Vqv and suppose that rn^ 0 for
n^O. We say that the (N*,p,q) method is applicable to the given
infinite series Σan if

(1.1) 6- = < ? - Σ £ b 2 ί ί ί

k=n ?k

exists for each n ^ 0. If further, X bn = s, then we say that X an is
summable by (N*,p, q) method to sum 5 and if X|ftn|<oo then Xαπ is
said to be absolutely summable by \N*,p,q\ method.

The method (N*,p, q) reduces to the quasi-Nόrlund method (N*,p)
if qn = 1, to the quasi-Riesz method (N*,q) if pπ = 1, to (say) quasi-
Euler-Knopp method (JB*, σ) when

to the (say) (C*,α,/3) method (let us call it generalised quasi-Cesaro
method) when

a ) ' qn \ β

It may be recalled that (N,p,q) matrix is given by

ank =

and the (N*,p,q) is given by its transpose matrix:

Since for the (ank) defined above we have

it follows from the above discussion that if

as
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for each fixed n, then (N*,p,q) is regular if and only if (N,p,q) is
absolutely regular, and (N*,p,q) is absolutely regular if and only if
(N,p,q) is regular.

The main object of this paper is to obtain certain conditions for
which Σ an G (N*9 p , ί ) Φ U ε (/, q).

The method (/, q) is defined as follows. Suppose that qn ^ 0 and
qn 7^ 0 for an infinity values of n. Let ρq (ρq < oo) be the radius of
convergence of the power series

If the sequence to function transformation,

Σ qnsnx
n

/(*) = n = 0

Σ ^"

exists for 0 ̂  JC ̂  ρφ we say that (/, q) method is applicable to Xan (or
{sn})9 and if further /(*)-> s as x -^p^ - 0 , we say that Σαn (or {sn}) is
summable (J9q) to 5. See Hardy [5], Das [4].

As well-known particular cases of the (/, q) method, we have the
Abel method when qn = 1, the logarithmic method or (L) method when
qn = 1/n +1 (Borwein [1], Hardy [5] p. 81), the Aa method when

qn = I ) (Borwein [2] (Ao is the same as Abel method A), the Borel

method where qn = 1/n ! (see Hardy [5]). We write pn E 9Jί, when pn > 0
and pn/pn-i g pnjpn S 1 (n > 0).

Let F n =Σ;. o p w O n = Σ U ^
Let cn be defined formally by the identity,

2. Statements of the theorems. As in the case of quasi-
Nόrlund, it is not always possible to obtain an inverse to the transforma-
tion (1.1) but we have succeeded in getting an inverse for a class of
sequences pn E Wl and qn ^ 0 (n ^ 0).

This is embodied in.

THEOREM 1. Suppose that pneW and qn/0 ( n ^ 0 ) . Then
(N*,p, q) (where applicable) has an inverse transformation, whose matrix
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is given by the transpose of the innerse of (N,p, q), that is, if bn is given by
transformation (1.1), then

(2.1)
k=n

This is our basic theorem in the sense that it is widely used here and
elsewhere and it may be noted that this theorem yields a result due to
Thorpe [8] in the case qn = 1.

The next couple of theorems are limitation theorems which assert
that the method can not sum too rapidly divergent series.

THEOREM 2. Suppose pn E Wl, qn/ 0 (n ^ 0) and that \qn | is non-
decreasing. If Σα n be summable (N*,p,q) to s then

// further rn ^ 0, then

sn = s + o(QJ\qn\).

THEOREM 3. Suppose pn E2JΪ, qn is positive, {qn} is nondecreasing
and {qn/rn} is nonincreasing. Then if Σ an is summable | N*, p, q |, then

The main theorem in this paper is the Abelian theorem which is
stated as:

THEOREM 4. Suppose pnG$Jl,qn>0 and that {qn} and {qn/qn+\} are
nondecreasing. Also let

(2.2) rn(qn+ι -qn)= O(qn+ι(rn+ι - rn)).

Then

Σα n = s(N*,p,q) Φ S an = s(J,q).

It may be remarked that the relationship between (N,p, q) and (/, q)
was studied by Das (4). Putting qn = 1 in Theorem 4, we obtain the
result of Thorpe regarding (JV*,p)Φ(A). We need the following
lemma for the proof of the theorem.
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LEMMA 1. LetpneTt. Then
0) Σ : = 0 I cn i < GO,
(ii) co>0, cn^0 ( n ^ l ) ,
(iii) Xc n ^0,
(iv) Σ c« = 0, if and on/y // Pn-» °° as n —> oo.

The above theorem is due to Kaluza. The proof of the theorem
appears in Hardy (5), Theorem 22.

3. Proof of Theorem 1. We know from the identity:

picnx
n)(2<pnx

n) = 1

that

, r 1 (k = 0),

(3.1) Σ p A . n =
n=0 I 0 (fc>0).

Hence

N v

(3.2) Σ Ck-^-k = - Σ Ck-nPv-k (v>n).

Now for N > n and by (1.1) we have,

ft V
„ 2^ Ck-nPv-k

v=n rυ k=π

^rn ZJ r ZJ Ck-nPv~k

- i V ^ V

by (3.1). Thus the necessary and sufficient condition for the validity of
(2.1) is that, for each fixed n,

Σ ~ Σ Ck-nPv-k-^O, as ΛΓ->oo5
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which is the same thing as, for each fixed n,

(3.3) φN = Σ 7" Σ ck-npΌ-k-+0, as

in view of (3.2).
Let us write

fc=G 'fc

(3.4)
Σ r

u rk

Since (N*,p, g) method is applicable to Σαn, 60 is finite and hence, ωυ is
well defined and tends to zero as v->°°. Now from (3.4)

ωυ - ωv wυ +

Hence

Now for M > N,

, - ω0+x Σ
Pv k = N

_ i y ί y Pv-kCk-v_ y> pυ-k-λck-n 1
<Jθv^N + l Lk = N+l Pv k=N+l Pv-\ J

Since pn E 3K (by Lemma 1)

Σ = O(l), as

and by definition,

we see that,

), as

^Λ ( Pυ-k Pυ-k-l

k=N+l \ Pυ Pv-\
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Since {ωv} is an arbitrary sequence tending to 0, hence (3.3) is valid, that
is, φN —> 0 if and only if, (see Hardy (5), Theorem 8) for fixed n,

Ck-r

as N->°o. But by virtue of (3.1)

Σ

for v > n and also,

Hence

v=k^Evzhzλ^1 f o r k ^ υ - 1 .
Pv Pv-l

V
ZJ

Pvk Pυ-k-l
Ck-r

^ Σ
Pv

N

Ck-n
pv-k Pv-k-l

+ Σ Σ
v = N+l /:=«•+

= Jtf+JS>, (say).

Since pn GίK, {pn/pn+ι} is nonincreasing and so,

J$=O(l), as N-^oo.

Since pn/pn+ί ^ 1 and {pn/pn+ι} is nonincreasing it follows that, limpn/pn+ι

exists and

A = li

Hence,

V I Pvk Pv-k-l

= N+l \ Pv Pv-l

PN

ϋ + l-fc P t +2-fe Pt;

= Ak-
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Therefore, by (3.1)

N
Γ(2) _ Y

J N £j

Since,

we get,

— V

Λf

- Σ c*-

PN

Σ

PN

~ COPNH

PN

= O(l), as N-»oo.

This completes the proof of the theorem.

4. Proof of Theorem 2. Since Σ an is (JV*, p, ̂ ) summable, Σ 6« is
convergent and hence fen = o(l). By using the inversion formula as
given in Theorem 1 we obtain, by using hypotheses,

an = r.Σ
bkck-n

since Σ | cn j < °o and bn-o (1).
Next, suppose that Σ £„ = s. Since
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it follows that

(4.1)

(4.2)

Σ V-. = qn,
v=0

n

/ J
 rυC n-v~ CAi

Thus, when pn E Wl we have 0^= 0 and if rn ^ 0, it follows from (4.2) that
On=0 whether or not qn is positive.

Now by (4.1)

„ _ v « v bkckj=n

k=0 n=0

Hence, as bk = o(l),

k=0 n=0

\qm I n = 0

But when pn E 9K, by Lemma 1, we have

and hence, by identity (4.2)

-tbkSm — Z~ι vk

k=0

This completes the proof.

Proof of Theorem 3. We have
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n = 0

- J o
t Qn + \ X ^ I 1

frt + 1 rt=O

hM n , (say).

By using (2.1), we get (as qn is nondecreasing)

= / J / J &k I ^k-

<?<•

k=0 n=0

since 'Z\bk\<<χ and Σ | c n | < °° as pn G 9J?. Since {̂ n/rn} is decreasing we
have,

Hence,

n = 0

n = y \ 'n n + \J '

bkckrυ

Δa«

= Σr.ί
u =0 n = y

ΔH« lklk-,1

^ΣΣ
u=0

Δa-

= ΣΣ

u=0 k = v

k=0
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by hypothesis. Hence

| L M O ( 1 ) as n - > ^

and therefore

{snqJrn}GBV.

This completes the proof of Theorem 3.

5. Now we will prove our main theorem and for this, we require the
following lemma.

LEMMA 2. Letpn E 2ft, qn > 0 and nondecreasing. Then (2.2) im-
plies that

Proof. Since qn > 0 and nondecreasing and pn > 0, it follows that
rn > 0 and nondecreasing. Since, as pn E 3K, by Lemma 1, c0 > 0, cn S 0
(n ^ 1), when we get

k

Y rvCkυ = gl^O,
ι>=0

by identity (4.1). Now

k k

Σ ^ r Λ - y = Σ ΔΌ(qk-υrk-Ό)cΌ(ϊ)

fc

= Σ Qk-v(rk-v ~ rk-v-ι)cυ(l)

k

+ Σ -̂«-i(9ik-« - qh-v-i)cΰ(l).

Hence, as c^gO, we get by (4.2)

k

Σ qk-v(rk-υ - rk^λ)c^^qk{Qk - Qk-ι) = ql

Again by (2.2)
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as in the previous case.
Hence

O^Σ qvrυck-0 = O(q2

k).

This completes the proof of the lemma.

Proof of Theorem 4. We shall first prove that whenever Σαn is
summable (N*,p, g), then (/, q) method is applicable to Σαn.

By Theorem 2, we have

Hence

Since Σ x " = 1/(1 - JC) for | jt | < 1, it follows that J(x) exists for |JC | < 1
and hence (/, q) method is applicable. Now for \x \ < 1,

-_JL_V
q\X) V=Q

(5-1) 1 »

00

= Σ gk(x)bk,
k=Ό

where,
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The change of order of summation involved in obtaining (5.1) is justified
in the range } JC | < 1, by the absolute convergence of the double sum.

Now (5.1) is a series to function transformation, transforming the
series S bn to the function J(x). To prove the theorem, we have to show
that the transformation (5.1) is regular, that is, we have to show that the
conditions of regularity (see Cooke [3], page 65) are satisfied. Note that

( qnx
= — —

(5.2) =^Σrvck
qk υ=o \ «=o

= 1 - ( Σ rvck
\v=o

by identity (4.1).
Since qn > 0 is increasing, we have

n^qozxπ-^oo as JC —> J

Hence from (5.2), we obtain

gk(x)—*l, a s JC —> 1 — 0-

We have only to show that

00

k = l

for 0 < x < 1, where M is a positive number.
Now let us write

00

ΦΛx)=Σ qkx
klq{x).

It is obvious that, φo(x)= 1. Hence
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Since by hypothesis Σ | c n | < o ° and {II qn) decreases as n increases, we
have,

Hence in order to show that (5.3) holds it is enough to show that,

θ(χ)=Σ
fc=0

for 0 < x < l .
Now since

φv(x)-φv+ι(x) =
q(xY

it follows that,

(5.5) θ(x)=Σ
k

where,

1 v> 1M(x) = -7-r Σ — Σ ck-vqvrυxq\X) ko qk o

N(x)=Σ
k

v=0

Since

<ffc

k

yj Ck-vqv\
ϋ = 0

k-1
r v v — ^ r n r (y v —'v* — J?J ίk-vqvrv\ *

υ = 0

to prove M(JC)= O(l) we need only show that,

k=o

in view of Lemma 2.
Since cn ^ 0 (n ^ 1) and is decreasing, we get,
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1 vS 1 k ι

M'(χ)= - - 7 - v Σ — Σ qjvCk-v{χυ -χk)
q{x)k=o qk u=o1

2
( I - * * - " )

\~o qΌ tfr+i

Σ rυx"{c{\)~c{x))

1
•Σ r«χ"c

= !jx]c(x}
q(x)

= 1

Hence,

(5.6) M(x)--

The inner sum of N(x) can be written as,

k s* / \ k

Hence,

(5.7)

where,

N'(x)=Σ

and
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ZJ
v=0

Ck-υ Zj ^k-i

k

L V=0

fk + \

IE±1

1 /k+ι \
= 1 I 2*t Ck + l-vrv ~ C/c + l̂ O )

Qk + ί \Ό=0 /

= ' Ό

Hence,

We know from the very definition of φk(x) that for 0< JC < 1,

Hence

And

=0 k

1

q(x)

ΣΣ
υ=0 k = v

^ ZJ 9μ 2 J
V=0 μ = V + l k=μ

μ=v+i

μ = Ό + l k=μ qk + \

= a(x) + β(x), (say).
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Now, since {qn} and {qn/qn+ι} are increasing with n we get, by using
hypothesis (2.2) and (4.3)

«W^Σ'. Σ **Σk-
qyx)

α )

rv{qv+\- qυ) 0+ι y 0 )

y rv{qv+
(l~x)q(x)p(x)άΌ qv+ι

by using the identity,

Again since {rn} increases with n as {qn} increases, we get,

\2L ~~ Γ) 2i * C μ-u-1Vυ + \~~ Γυ) 2il * C

0 n=0

1
. v

Hence,

Hence by (5.7), (5.6) and (5.5)

Hence (5.3) holds and this completes the proof of the theorem.
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6. In this section, we now deduce some corollaries of Theorem 4.

COROLLARY 1. (Thorpe [9]). Suppose pnE$Jl, then Xan£
(N*,p) => Xan G (Λ), where (A) is the Abel method.

Proof. Put qn = 1, for all n in Theorem 4.

COROLLARY 2. Let qn>0 for all n, {qn} be increasing in n, such that
{qnlqn+\} is also increasing in n and,

(6.1) Qn(qn+ι-qn)

Then,

Proof. Put pn = 1 for all n, in Theorem 4. In this case we have,

c o = l , c ,= - 1 , cn = 0 ( n > 2 ) .

COROLLARY 3. (C*, α, β) => Aβ /or 0 < α ^ 1 ^ β.

Proof. Set

pn = A ; " 1 , qn = A Γ 1 in Theorem 4.

Then rn = A ; ^ " 1 and condition (2.2) reduces to proving that

which is valid in the present case. Also when 0 < α ̂  1, then pn =
Aa

n~
λ E 9K and when β ^ 1, then qn = AS"1 is nondecreasing.

Lastly I would like to thank Professor G. Das for his valuable
suggestions during the preparation of this paper. I would also like to
thank the referee for some suggestions.
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