GENERALISED QUASI-NÖRLUND SUMMABILITY

Premalata Mohapatro

Abstract

Just as (N, p, q) generalises Nörlund methods, so also, in this paper we define generalised quasi-Nörlund Method (N^{*}, p, q) generalising the quasi-Nörlund method due to Thorpe.

To begin with, we have determined the inverse of a generalised quasi-Nörlund matrix in a limited case. Besides, limitation Theorems for both ordinary and absolute (N^{*}, p, q) summability have been established.

Finally we have established an Abelian Theorem (the main theorem) for $\left(N^{*}, p, q\right) \Rightarrow(J, q)$, where (J, q) is a power series method which reduces to the Abel method (A) for $q_{n}=1$ (all n).

1. Vermes [10] pointed out that there is a close relation between the summability properties of a matrix $A=\left(a_{n k}\right)$ regarded as a sequence to sequence transformation and those of its transpose $A^{*}=\left(a_{k n}\right)$ regarded as a series to series transformation.

Suppose that A is a sequence to sequence transformation and further that

$$
\sum_{k=0}^{\infty} a_{n k}=1 \quad \text { for all } n
$$

then by using Theorems of regularity (see Hardy [5], Theorem 2) and absolute regularity (see Knopp and Lorentz [6]) we see that A^{*} is an absolutely regular series to series transformation.

Conversely, given any absolutely regular series to series method $C=\left(c_{n k}\right)$, its transpose C^{*} is regular as a sequence to sequence method provided that

$$
c_{n k} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty \quad \text { for fixed } n .
$$

We can also see that if A is absolutely regular and the above condition is satisfied then A^{*} is regular and the converse also holds.

We shall call A^{*} the quasi-method associated with A and remember that, it is a series to series transformation.

Kuttner [7] defined quasi-Cesàro summability and investigated its main properties as a quasi-Hausdorff transformation (see also Ramunujan [8] and White [11]. Thorpe [9] defined quasi-Nörlund (quasi-Riesz) summability.

Just as (N, p, q) generalises Nörlund methods, so also we can define generalised quasi-Nörlund method (N^{*}, p, q) generalising the quasiNörlund methods. We give the definition in the following manner:

Given p_{n} and q_{n} we define $r_{n}=\sum_{v=0}^{n} p_{n-v} q_{v}$ and suppose that $r_{n} \neq 0$ for $n \geqq 0$. We say that the $\left(N^{*}, p, q\right)$ method is applicable to the given infinite series $\sum a_{n}$ if

$$
\begin{equation*}
b_{n}=q_{n} \sum_{k=n}^{\infty} \frac{p_{k-n} a_{k}}{r_{k}} \tag{1.1}
\end{equation*}
$$

exists for each $n \geqq 0$. If further, $\Sigma b_{n}=s$, then we say that Σa_{n} is summable by (N^{*}, p, q) method to sum s and if $\Sigma\left|b_{n}\right|<\infty$ then Σa_{n} is said to be absolutely summable by $\left|N^{*}, p, q\right|$ method.

The method $\left(N^{*}, p, q\right)$ reduces to the quasi-Nörlund method $\left(N^{*}, p\right)$ if $q_{n}=1$, to the quasi-Riesz method $\left(\bar{N}^{*}, q\right)$ if $p_{n}=1$, to (say) quasi-Euler-Knopp method $\left(E^{*}, \sigma\right)$ when

$$
p_{n}=\frac{\alpha^{n} \sigma^{n}}{n!}, \quad q_{n}=\frac{\alpha^{n}}{n!} \quad(\alpha>0, \sigma>0)
$$

to the (say) $\left(C^{*}, \alpha, \beta\right)$ method (let us call it generalised quasi-Cesàro method) when

$$
p_{n}=\binom{n+\alpha-1}{\alpha}, \quad q_{n}=\binom{n+\beta}{\beta} .
$$

It may be recalled that (N, p, q) matrix is given by

$$
a_{n k}= \begin{cases}\frac{p_{n-k} q_{k}}{r_{n}} & (k \leqq n) \\ 0 & (k>n)\end{cases}
$$

and the $\left(N^{*}, p, q\right)$ is given by its transpose matrix:

$$
a_{n k}^{*}= \begin{cases}\frac{q_{n} p_{k-n}}{r_{k}} & (k \geqq n) \\ 0 & (k<n)\end{cases}
$$

Since for the $\left(a_{n k}\right)$ defined above we have

$$
\sum_{k=0}^{n} a_{n k}=1
$$

it follows from the above discussion that if

$$
p_{k-n}=o\left(r_{k}\right) \quad \text { as } \quad k \rightarrow \infty,
$$

for each fixed n, then $\left(N^{*}, p, q\right)$ is regular if and only if (N, p, q) is absolutely regular, and $\left(N^{*}, p, q\right)$ is absolutely regular if and only if (N, p, q) is regular.

The main object of this paper is to obtain certain conditions for which $\Sigma a_{n} \in\left(N^{*}, p, q\right) \Rightarrow \Sigma a_{n} \in(J, q)$.

The method (J, q) is defined as follows. Suppose that $q_{n} \geqq 0$ and $q_{n} \neq 0$ for an infinity values of n. Let $\rho_{q}\left(\rho_{q}<\infty\right)$ be the radius of convergence of the power series

$$
q(z)=\sum_{n=0}^{\infty} q_{n} z^{n}
$$

If the sequence to function transformation,

$$
J(x)=\frac{\sum_{n=0}^{\infty} q_{n} s_{n} x^{n}}{\sum_{n=0}^{\infty} q_{n} x^{n}}
$$

exists for $0 \leqq x \leqq \rho_{q}$, we say that (J, q) method is applicable to Σa_{n} (or $\left\{s_{n}\right\}$), and if further $J(x) \rightarrow s$ as $x \rightarrow \rho_{q}-0$, we say that $\sum a_{n}$ (or $\left\{s_{n}\right\}$) is summable (J, q) to s. See Hardy [5], Das [4].

As well-known particular cases of the (J, q) method, we have the Abel method when $q_{n}=1$, the logarithmic method or (L) method when $q_{n}=1 / n+1$ (Borwein [1], Hardy [5] p. 81), the A_{α} method when $q_{n}=\binom{n+\alpha}{\alpha}$ (Borwein [2] (A_{0} is the same as Abel method A), the Borel method where $q_{n}=1 / n!\left(\right.$ see Hardy [5]). We write $p_{n} \in \mathfrak{M}$, when $p_{n}>0$ and $p_{n} / p_{n-1} \leqq p_{n+1} / p_{n} \leqq 1(n>0)$.

Let $P_{n} \doteq \sum_{v=0}^{n} p_{v}, Q_{n}=\sum_{v=0}^{n} q_{v}$.
Let c_{n} be defined formally by the identity,

$$
\left(\sum_{n=0}^{\infty} p_{n} x^{n}\right)\left(\sum_{n=0}^{\infty} c_{n} x^{n}\right)=1
$$

2. Statements of the theorems. As in the case of quasiNörlund, it is not always possible to obtain an inverse to the transformation (1.1) but we have succeeded in getting an inverse for a class of sequences $p_{n} \in \mathfrak{M}$ and $q_{n} \neq 0(n \geqq 0)$.

This is embodied in.

Theorem 1. Suppose that $p_{n} \in \mathfrak{M}$ and $q_{n} \neq 0 \quad(n \geqq 0)$. Then (N^{*}, p, q) (where applicable) has an inverse transformation, whose matrix
is given by the transpose of the inverse of (N, p, q), that is, if b_{n} is given by transformation (1.1), then

$$
\begin{equation*}
a_{n}=r_{n} \sum_{k=n}^{\infty} \frac{b_{k} c_{k-n}}{q_{k}} \tag{2.1}
\end{equation*}
$$

This is our basic theorem in the sense that it is widely used here and elsewhere and it may be noted that this theorem yields a result due to Thorpe [8] in the case $q_{n}=1$.

The next couple of theorems are limitation theorems which assert that the method can not sum too rapidly divergent series.

Theorem 2. Suppose $p_{n} \in \mathfrak{M}, q_{n} \neq 0(n \geqq 0)$ and that $\left|q_{n}\right|$ is nondecreasing. If Σa_{n} be summable $\left(N^{*}, p, q\right)$ to s then

$$
a_{n}=o\left(\frac{\left|r_{n}\right|}{\left|q_{n}\right|}\right)
$$

If further $r_{n} \geqq 0$, then

$$
s_{n}=s+o\left(Q_{n} /\left|q_{n}\right|\right)
$$

Theorem 3. Suppose $p_{n} \in \mathfrak{M}, q_{n}$ is positive, $\left\{q_{n}\right\}$ is nondecreasing and $\left\{q_{n} / r_{n}\right\}$ is nonincreasing. Then if Σa_{n} is summable $\left|N^{*}, p, q\right|$, then

$$
\left\{\frac{q_{n} s_{n}}{r_{n}}\right\} \in B V
$$

The main theorem in this paper is the Abelian theorem which is stated as:

Theorem 4. Suppose $p_{n} \in \mathfrak{M}, q_{n}>0$ and that $\left\{q_{n}\right\}$ and $\left\{q_{n} / q_{n+1}\right\}$ are nondecreasing. Also let

$$
\begin{equation*}
r_{n}\left(q_{n+1}-q_{n}\right)=O\left(q_{n+1}\left(r_{n+1}-r_{n}\right)\right) \tag{2.2}
\end{equation*}
$$

Then

$$
\Sigma a_{n}=s\left(N^{*}, p, q\right) \Rightarrow \Sigma a_{n}=s(J, q)
$$

It may be remarked that the relationship between (N, p, q) and (J, q) was studied by Das (4). Putting $q_{n}=1$ in Theorem 4, we obtain the result of Thorpe regarding $\left(N^{*}, p\right) \Rightarrow(\mathrm{A})$. We need the following lemma for the proof of the theorem.

Lemma 1. Let $p_{n} \in \mathfrak{M}$. Then
(i) $\sum_{n=0}^{\infty}\left|c_{n}\right|<\infty$,
(ii) $\quad c_{0}>0, c_{n} \leqq 0(n \geqq 1)$,
(iii) $\Sigma c_{n} \geqq 0$,
(iv) $\Sigma c_{n}=0$, if and only if $P_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

The above theorem is due to Kaluza. The proof of the theorem appears in Hardy (5), Theorem 22.
3. Proof of Theorem 1. We know from the identity:

$$
\left(\Sigma c_{n} x^{n}\right)\left(\sum p_{n} x^{n}\right)=1
$$

that

$$
\sum_{n=0}^{k} p_{n} c_{k-n}= \begin{cases}1 & (k=0) \tag{3.1}\\ 0 & (k>0)\end{cases}
$$

Hence

$$
\begin{equation*}
\sum_{k=n}^{N} c_{k-n} p_{v-k}=-\sum_{k=N+1}^{v} c_{k-n} p_{v-k} \quad(v>n) . \tag{3.2}
\end{equation*}
$$

Now for $N>n$ and by (1.1) we have,

$$
\begin{aligned}
r_{n} \sum_{k=n}^{N} \frac{b_{k} c_{k-n}}{q_{k}}= & r_{n} \sum_{k=n}^{N} \frac{c_{k-n}}{q_{k}} q_{k} \sum_{v=k}^{\infty} \frac{a_{v} p_{k-v}}{r_{v}} \\
= & r_{n} \sum_{k=n}^{N} c_{k-n}\left(\sum_{v=k}^{N}+\sum_{v=N+1}^{\infty}\right) \frac{a_{v} p_{v-k}}{r_{v}} \\
= & r_{n} \sum_{v=n}^{N} \frac{a_{v}}{r_{v}} \sum_{k=n}^{v} c_{k-n} p_{v-k} \\
& +r_{n} \sum_{v=N+1}^{\infty} \frac{a_{v}}{r_{v}} \sum_{k=n}^{N} c_{k-n} p_{v-k} \\
= & a_{n}+r_{n} \sum_{v=N+1}^{\infty} \frac{a_{v}}{r_{v}} \sum_{k=n}^{N} c_{k-n} p_{v-k}
\end{aligned}
$$

by (3.1). Thus the necessary and sufficient condition for the validity of (2.1) is that, for each fixed n,

$$
\sum_{v=N+1}^{\infty} \frac{a_{v}}{r_{v}} \sum_{k=n}^{N} c_{k-n} p_{v-k} \rightarrow 0, \quad \text { as } \quad N \rightarrow \infty
$$

which is the same thing as, for each fixed n,

$$
\begin{equation*}
\phi_{N}=\sum_{v=N+1}^{\infty} \frac{a_{v}}{r_{v}} \sum_{k=N+1}^{v} c_{k-n} p_{v-k} \rightarrow 0, \quad \text { as } \quad N \rightarrow \infty \tag{3.3}
\end{equation*}
$$

in view of (3.2).
Let us write

$$
\begin{align*}
& b_{0}=q_{0} \sum_{k=0}^{\infty} \frac{p_{k} a_{k}}{r_{k}}, \\
& \omega_{v}=q_{0} \sum_{k=v}^{\infty} \frac{p_{k} a_{k}}{r_{k}} . \tag{3.4}
\end{align*}
$$

Since (N^{*}, p, q) method is applicable to $\Sigma a_{n}, b_{0}$ is finite and hence, ω_{v} is well defined and tends to zero as $v \rightarrow \infty$. Now from (3.4)

$$
\frac{a_{v}}{r_{v}}=\frac{\omega_{v}-\omega_{v+1}}{q_{0} p_{v}}
$$

Hence

$$
\phi_{N}=\frac{1}{q_{0}} \sum_{v=N+1}^{\infty} \frac{\omega_{v}-\omega_{v+1}}{q_{0} p_{v}} \sum_{k=N+1}^{v} c_{k-n} p_{v-k} .
$$

Now for $M>N$,

$$
\begin{aligned}
& \frac{1}{q_{0}} \sum_{v=N+1}^{M} \frac{\omega_{v}-\omega_{v+1}}{p_{v}} \sum_{k=N+1}^{v} c_{k-n} p_{v-k} \\
& = \\
& \frac{1}{q_{0}} \sum_{v=N+1}^{M} \omega_{v}\left[\sum_{k=N+1}^{v} \frac{p_{v-k} c_{k-v}}{p_{v}}-\sum_{k=N+1}^{v-1} \frac{p_{v-k-1} c_{k-n}}{p_{v-1}}\right] \\
& \quad-\frac{1}{q_{0}} \frac{\omega_{M+1}}{p_{M}} \sum_{k=N+1}^{M} p_{M-k} c_{k-n} .
\end{aligned}
$$

Since $p_{n} \in \mathfrak{M}$ (by Lemma 1)

$$
\left|\sum_{k=N+1}^{M} p_{M-k} c_{k-n}\right|=O(1), \quad \text { as } \quad M \rightarrow \infty
$$

and by definition,

$$
\omega_{M}=o(1), \quad \text { as } \quad M \rightarrow \infty
$$

we see that,

$$
\phi_{N}=\frac{1}{q_{0}} \sum_{v=N+1}^{\infty} \omega_{v} \sum_{k=N+1}^{v} c_{k-n}\left(\frac{p_{v-k}}{p_{v}}-\frac{p_{v-k-1}}{p_{v-1}}\right)
$$

Since $\left\{\omega_{v}\right\}$ is an arbitrary sequence tending to 0 , hence (3.3) is valid, that is, $\phi_{N} \rightarrow 0$ if and only if, (see Hardy (5), Theorem 8) for fixed n,

$$
J_{N}=\sum_{v=N+1}^{\infty}\left|\sum_{k=N+1}^{v}\left(\frac{p_{v-k}}{p_{v}}-\frac{p_{v-k-1}}{p_{v-1}}\right) c_{k-n}\right|=O(1)
$$

as $N \rightarrow \infty$. But by virtue of (3.1)

$$
\sum_{k=N+1}^{v}\left(\frac{p_{v-k}}{p_{v}}-\frac{p_{v-k-1}}{p_{v-1}}\right) c_{k-n}=-\sum_{k=n}^{N}\left(\frac{p_{v-k}}{p_{v}}-\frac{p_{v-k-1}}{p_{v-1}}\right) c_{k-n}
$$

for $v>n$ and also,

$$
\frac{p_{v-k}}{p_{v}}-\frac{p_{v-k-1}}{p_{v-1}} \leqq 1, \quad \text { for } \quad k \leqq v-1
$$

Hence

$$
\begin{aligned}
J_{N}= & \sum_{v=N+1}^{\infty}\left|\sum_{k=n}^{N}\left(\frac{p_{v-k}}{p_{v}}-\frac{p_{v-k-1}}{p_{v-1}}\right) c_{k-n}\right| \\
\leqq & \sum_{v=N+1}^{\infty} c_{0}\left|\frac{p_{v-n}}{p_{v}}-\frac{p_{v-n-1}}{p_{v-1}}\right| \\
& +\sum_{v=N+1}^{\infty} \sum_{k=n+1}^{N}\left|c_{k-n}\left(\frac{p_{v-k}}{p_{v}}-\frac{p_{v-k-1}}{p_{v-1}}\right)\right| \\
= & J_{N}^{(1)}+J_{N}^{(2)}, \quad \text { (say). }
\end{aligned}
$$

Since $p_{n} \in \mathfrak{M},\left\{p_{n} / p_{n+1}\right\}$ is nonincreasing and so,

$$
J_{N}^{(1)}=O(1), \quad \text { as } \quad N \rightarrow \infty .
$$

Since $p_{n} / p_{n+1} \geqq 1$ and $\left\{p_{n} / p_{n+1}\right\}$ is nonincreasing it follows that, $\lim p_{n} / p_{n+1}$ exists and

$$
A=\lim p_{n} / p_{n+1} \geqq 1
$$

Hence,

$$
\begin{aligned}
& \sum_{v=N+1}^{\infty}\left(\frac{p_{v-k}}{p_{v}}-\frac{p_{v-k-1}}{p_{v-1}}\right) \\
& \quad=\lim _{v \rightarrow \infty} \frac{p_{v-k}}{p_{v}}-\frac{p_{N-k}}{p_{N}} \\
& \quad=\lim _{v \rightarrow \infty}\left(\frac{p_{v-k}}{p_{v+1-k}} \frac{p_{v+1-k}}{p_{v+2-k}} \ldots \frac{p_{v-1}}{p_{v}}\right)-\frac{p_{N-k}}{p_{N}} \\
& \quad=A^{k}-\frac{p_{N-k}}{p_{N}} .
\end{aligned}
$$

Therefore, by (3.1)

$$
\begin{aligned}
J_{N}^{(2)} & =\sum_{k=n+1}^{N} c_{k-n} A^{k}-\sum_{k=n+1}^{N} c_{k-n} \frac{p_{N-k}}{p_{N}} \\
& =\sum_{k=n+1}^{N} c_{k-n} A^{k}-\frac{1}{p_{N}}\left[\sum_{k=n}^{N} c_{k-n} p_{N-k}-c_{0} p_{N-n}\right] \\
& =\sum_{k=n+1}^{N} c_{k-n} A^{k}+c_{0} \frac{p_{N-n}}{p_{N}} .
\end{aligned}
$$

Since,

$$
\sum_{k=n+1}^{N} c_{k-n} A^{k} \leqq 0
$$

we get,

$$
\begin{aligned}
J_{N}^{(2)} & \leqq \frac{c_{0} p_{N-n}}{p_{N}} \\
& =O(1), \quad \text { as } \quad N \rightarrow \infty
\end{aligned}
$$

This completes the proof of the theorem.
4. Proof of Theorem 2. Since Σa_{n} is $\left(N^{*}, p, q\right)$ summable, Σb_{n} is convergent and hence $b_{n}=o(1)$. By using the inversion formula as given in Theorem 1 we obtain, by using hypotheses,

$$
\begin{aligned}
\left|a_{n}\right| & =\left|r_{n} \sum_{k=n}^{\infty} \frac{b_{k} c_{k-n}}{q_{k}}\right| \\
& \leqq \frac{\left|r_{n}\right|}{\left|q_{n}\right|} \sum_{k=n}^{\infty}\left|b_{k} c_{k-n}\right| \\
& =\frac{\left|r_{n}\right|}{\left|q_{n}\right|} \sum_{k=n}^{\infty} o(1)\left|c_{k-n}\right| \\
& =o\left(\frac{\left|r_{n}\right|}{\left|q_{n}\right|}\right),
\end{aligned}
$$

since $\Sigma\left|c_{n}\right|<\infty$ and $b_{n}=o(1)$.
Next, suppose that $\Sigma b_{n}=s$. Since

$$
\begin{aligned}
& \left(\Sigma c_{n} x^{n}\right)\left(\Sigma r_{n} x^{n}\right)=\Sigma q_{n} x^{n} \\
& \left(\Sigma c_{n}^{(1)} x^{n}\right)\left(\sum r_{n} x^{n}\right)=\Sigma Q_{n} x^{n}
\end{aligned}
$$

it follows that

$$
\begin{align*}
& \sum_{v=0}^{n} r_{v} c_{n-v}=q_{n} \tag{4.1}\\
& \sum_{v=0}^{n} r_{v} c_{n-v}^{(1)}=Q_{n} . \tag{4.2}
\end{align*}
$$

Thus, when $p_{n} \in \mathfrak{M}$ we have $c_{n}^{(1)} \geqq 0$ and if $r_{n} \geqq 0$, it follows from (4.2) that $Q_{n} \geqq 0$ whether or not q_{n} is positive.

Now by (4.1)

$$
\begin{aligned}
s_{m} & =\sum_{n=0}^{m} r_{n} \sum_{k=n}^{\infty} \frac{b_{k} c_{k-n}}{q_{k}} \\
& =\sum_{n=0}^{m} r_{n}\left(\sum_{k=n}^{m}+\sum_{k=m+1}^{\infty}\right) \frac{b_{k} c_{k-n}}{q_{k}} \\
& =\sum_{k=0}^{m} \frac{b_{k}}{q_{k}} \sum_{n=0}^{k} r_{n} c_{k-n}+\sum_{n=0}^{m} r_{n} \sum_{k=m+1}^{\infty} \frac{b_{k} c_{k-n}}{q_{k}} \\
& =\sum_{k=0}^{m} b_{k}+\sum_{n=0}^{m} r_{n} \sum_{k=m+1}^{\infty} \frac{b_{k} c_{k-n}}{q_{k}} .
\end{aligned}
$$

Hence, as $b_{k}=o(1)$,

$$
\begin{aligned}
\left|s_{m}-\sum_{k=0}^{m} b_{k}\right| & \leqq \sum_{n=0}^{m} r_{n} \sum_{k=m+1}^{\infty} o(1) \frac{\left|c_{k-n}\right|}{q_{k}} \\
& =o(1) \frac{1}{\left|q_{m}\right|} \sum_{n=0}^{m} r_{n} \sum_{k=m+1}^{\infty}\left|c_{k-n}\right| .
\end{aligned}
$$

But when $p_{n} \in \mathfrak{M}$, by Lemma 1 , we have

$$
\begin{equation*}
\sum_{k=m+1}^{\infty}\left|c_{k-n}\right| \leqq c_{m-n}^{(1)} \tag{4.3}
\end{equation*}
$$

and hence, by identity (4.2)

$$
\begin{aligned}
\left|s_{m}-\sum_{k=0}^{m} b_{k}\right| & =o(1) \frac{1}{\left|q_{m}\right|} \sum_{n=0}^{m} r_{n} c_{m-n}^{(1)} \\
& =o(1) \frac{Q_{m}}{\left|q_{m}\right|} .
\end{aligned}
$$

This completes the proof.
Proof of Theorem 3. We have

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left|\frac{s_{n} q_{n}}{r_{n}}-\frac{s_{n+1} q_{n+1}}{r_{n+1}}\right| & =\sum_{n=0}^{\infty}\left|\Delta\left(\frac{s_{n} q_{n}}{r_{n}}\right)\right| \\
& \leqq \sum_{n=0}^{\infty}\left|a_{n+1}\right| \frac{q_{n+1}}{r_{n+1}}+\sum_{n=0}^{\infty}\left|s_{n}\right| \Delta\left|\frac{q_{n}}{r_{n}}\right| \\
& =L_{n}+M_{n}, \quad \text { (say). }
\end{aligned}
$$

By using (2.1), we get (as q_{n} is nondecreasing)

$$
\begin{aligned}
L_{n} & \leqq \sum_{n=0}^{\infty} \frac{q_{n+1}}{r_{n+1}} r_{n+1} \sum_{k=n+1}^{\infty} \frac{\left|b_{k}\right|\left|c_{k-n-1}\right|}{q_{k}} \\
& \leqq \sum_{n=0}^{\infty} \sum_{k=n+1}^{\infty}\left|b_{k}\right|\left|c_{k-n-1}\right| \\
& =\sum_{k=0}^{\infty}\left|b_{k}\right| \sum_{n=0}^{k-1}\left|c_{k-n-1}\right| \\
& =O(1),
\end{aligned}
$$

since $\Sigma\left|b_{k}\right|<\infty$ and $\Sigma\left|c_{n}\right|<\infty$ as $p_{n} \in \mathfrak{M}$. Since $\left\{q_{n} / r_{n}\right\}$ is decreasing we have,

$$
\sum_{n=v}^{\infty}\left|\Delta \frac{q_{n}}{r_{n}}\right|=\sum_{n=v}^{\infty}\left(\frac{q_{n}}{r_{n}}-\frac{q_{n+1}}{r_{n+1}}\right) \leqq \frac{q_{v}}{r_{v}} .
$$

Hence,

$$
\begin{aligned}
M_{n} & =\sum_{n=0}^{\infty}\left|\Delta \frac{q_{n}}{r_{n}}\right|\left|\sum_{v=0}^{n} r_{v} \sum_{k=v}^{\infty} \frac{b_{k} c_{k-v}}{q_{k}}\right| \\
& \leqq \sum_{n=0}^{\infty}\left|\Delta \frac{q_{n}}{r_{n}}\right| \sum_{v=0}^{n} r_{v} \sum_{k=v}^{\infty} \frac{\left|b_{k}\right|\left|c_{k-v}\right|}{q_{k}} \\
& =\sum_{v=0}^{\infty} r_{v} \sum_{n=v}^{\infty}\left|\Delta \frac{q_{n}}{r_{n}}\right| \sum_{k=n}^{\infty} \frac{\left|b_{k}\right|\left|c_{k-v}\right|}{q_{k}} \\
& =\sum_{v=0}^{\infty} r_{v} \sum_{k=v}^{\infty} \frac{\left|b_{k}\right|\left|c_{k-v}\right|}{q_{k}} \sum_{n=v}^{\infty}\left|\Delta \frac{q_{n}}{r_{n}}\right| \\
& \leqq \sum_{v=0}^{\infty} \frac{r_{v}}{q_{v}} \sum_{k=v}^{\infty}\left|b_{k}\right|\left|c_{k-v}\right| \frac{q_{v}}{r_{v}} \\
& =\sum_{v=0}^{\infty} \sum_{k=v}^{\infty}\left|b_{k}\right|\left|c_{k-v}\right| \\
& =\sum_{k=0}^{\infty}\left|b_{k}\right| \sum_{v=0}^{k}\left|c_{k-v}\right| \\
& <\infty,
\end{aligned}
$$

by hypothesis. Hence

$$
\Sigma\left|\Delta\left(\frac{s_{n} q_{n}}{r_{n}}\right)\right| \leqq L_{n}+M_{n}=O(1) \quad \text { as } \quad n \rightarrow \infty
$$

and therefore

$$
\left\{s_{n} q_{n} / r_{n}\right\} \in B V
$$

This completes the proof of Theorem 3.
5. Now we will prove our main theorem and for this, we require the following lemma.

Lemma 2. Let $p_{n} \in \mathfrak{M}, q_{n}>0$ and nondecreasing. Then (2.2) implies that

$$
0 \leqq q_{k}^{2} \leqq \sum_{v=0}^{k} q_{v} r_{v} c_{k-v}=O\left(q_{k}^{2}\right)
$$

Proof. Since $q_{n}>0$ and nondecreasing and $p_{n}>0$, it follows that $r_{n}>0$ and nondecreasing. Since, as $p_{n} \in \mathfrak{M}$, by Lemma $1, c_{0}>0, c_{n} \leqq 0$ ($n \geqq 1$), when we get

$$
\sum_{v=0}^{k} q_{v} r_{v} c_{k-v} \geqq q_{k} \sum_{v=0}^{k} r_{v} c_{k-v}=q_{k}^{2} \geqq 0
$$

by identity (4.1). Now

$$
\begin{aligned}
\sum_{v=0}^{k} q_{v} r_{v} c_{k-v}= & \sum_{v=0}^{k} \Delta_{v}\left(q_{k-v} r_{k-v}\right) c_{v}(1) \\
= & \sum_{v=0}^{k} q_{k-v}\left(r_{k-v}-r_{k-v-1}\right) c_{v}(1) \\
& +\sum_{v=0}^{k} r_{k-v-1}\left(q_{k-v}-q_{k-v-1}\right) c_{v}(1)
\end{aligned}
$$

Hence, as $c_{n}^{(1)} \geqq 0$, we get by (4.2)

$$
\sum_{v=0}^{k} q_{k-v}\left(r_{k-v}-r_{k-v-1}\right) c_{v}^{(1)} \leqq q_{k}\left(Q_{k}-Q_{k-1}\right)=q_{k}^{2}
$$

Again by (2.2)

$$
\begin{aligned}
0 & \leqq \sum_{v=0}^{k} r_{k-v-1}\left(q_{k-v}-q_{k-v-1}\right) c_{v}^{(1)} \\
& =O(1) \sum_{v=0}^{k} q_{k-v}\left(r_{k-v}-r_{k-v-1}\right) c_{v}^{(1)} \\
& =O(1) q_{k}^{2},
\end{aligned}
$$

as in the previous case.
Hence

$$
0 \leqq \sum_{v=0}^{k} q_{v} r_{v} c_{k-v}=O\left(q_{k}^{2}\right)
$$

This completes the proof of the lemma.
Proof of Theorem 4. We shall first prove that whenever Σa_{n} is summable (N^{*}, p, q), then (J, q) method is applicable to Σa_{n}.

By Theorem 2, we have

$$
s_{n}=s+o\left(\frac{Q_{n}}{q_{n}}\right)=O\left(\frac{Q_{n}}{q_{n}}\right) .
$$

Hence

$$
\begin{aligned}
J(x) & =\frac{\sum q_{n} s_{n} x^{n}}{\sum q_{n} x^{n}} \\
& =O(1) \frac{\sum Q_{n} x^{n}}{\sum q_{n} x^{n}} \\
& =O(1) \Sigma x^{n} .
\end{aligned}
$$

Since $\Sigma x^{n}=1 /(1-x)$ for $|x|<1$, it follows that $J(x)$ exists for $|x|<1$ and hence (J, q) method is applicable. Now for $|x|<1$,

$$
\begin{align*}
J(x) & =\frac{1}{q(x)} \sum_{v=0}^{\infty} r_{v} \sum_{n=v}^{\infty} q_{n} x^{n} \sum_{k=v}^{\infty} \frac{b_{k} c_{k-v}}{q_{k}} \\
& =\frac{1}{q(x)} \sum_{v=0}^{\infty} r_{v} \sum_{k=v}^{\infty} \frac{b_{k} c_{k-v}}{q_{k}} \sum_{n=v}^{\infty} q_{n} x^{n} \\
& =\frac{1}{q(x)} \sum_{k=0}^{\infty} \frac{b_{k}}{q_{k}} \sum_{v=0}^{k} r_{v} c_{k-v} \sum_{n=v}^{\infty} q_{n} x^{n} \tag{5.1}\\
& =\sum_{k=0}^{\infty} g_{k}(x) b_{k},
\end{align*}
$$

where,

$$
g_{k}(x)=\frac{\sum_{v=0}^{k} r_{v} c_{k-v} \sum_{n=v}^{\infty} q_{n} x^{n}}{q_{k} q(x)} .
$$

The change of order of summation involved in obtaining (5.1) is justified in the range $|x|<1$, by the absolute convergence of the double sum.

Now (5.1) is a series to function transformation, transforming the series $\sum b_{n}$ to the function $J(x)$. To prove the theorem, we have to show that the transformation (5.1) is regular, that is, we have to show that the conditions of regularity (see Cooke [3], page 65) are satisfied. Note that

$$
\begin{align*}
g_{k}(x) & =\frac{\sum_{v=0}^{k} r_{v} c_{k-v}\left(q(x)-\sum_{n=0}^{n} q_{n} x^{n}\right)}{q_{k} q(x)} \\
& =\frac{1}{q_{k}} \sum_{v=0}^{k} r_{v} c_{k-v}\left(1-\sum_{n=0}^{5} q_{n} x^{n} / q(x)\right) \tag{5.2}\\
& =1-\left(\sum_{v=0}^{k} r_{v} c_{k-v} \sum_{n=0}^{5-1} q_{n} x^{n}\right) /\left(q(x) q_{k}\right)
\end{align*}
$$

by identity (4.1).
Since $q_{n}>0$ is increasing, we have

$$
\Sigma q_{n} x^{n} \geqq q_{0} \Sigma x^{n} \rightarrow \infty \quad \text { as } \quad x \rightarrow 1-0 .
$$

Hence from (5.2), we obtain

$$
g_{k}(x) \rightarrow 1, \quad \text { as } \quad x \rightarrow 1-0 .
$$

We have only to show that

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|g_{k}(x)-g_{k+1}(x)\right| \leqq M, \tag{5.3}
\end{equation*}
$$

for $0<x<1$, where M is a positive number.
Now let us write

$$
\phi_{v}(x)=\sum_{k=v}^{\infty} q_{k} x^{k} / q(x) .
$$

It is obvious that, $\phi_{0}(x)=1$. Hence

$$
\begin{aligned}
g_{k}(x)-g_{k+1}(x) & =\sum_{v=0}^{k+1} \phi_{v}(x) r_{v}\left(\frac{c_{k-v}}{q_{k}}-\frac{c_{k+1-v}}{q_{k+1}}\right) \\
& =\sum_{v=0}^{k} c_{k-n}\left(\phi_{v}(x) \frac{r_{v}}{q_{k}}-\phi_{v+1}(x) \frac{r_{v+1}}{q_{k+1}}\right)-r_{0} \frac{c_{k+1}}{q_{k+1}} .
\end{aligned}
$$

Since by hypothesis $\Sigma\left|c_{n}\right|<\infty$ and $\left\{1 / q_{n}\right\}$ decreases as n increases, we have,

$$
\sum_{k=0}^{\infty} \frac{\left|c_{k+1}\right|}{q_{k+1}} \leqq \frac{1}{q_{0}} \sum_{k=0}^{\infty}\left|c_{k+1}\right|<\infty .
$$

Hence in order to show that (5.3) holds it is enough to show that,

$$
\theta(x)=\sum_{k=0}^{\infty}\left|\sum_{v=0}^{k} c_{k-v}\left(\phi_{v}(x) \frac{r_{v}}{q_{k}}-\phi_{v+1}(x) \frac{r_{v+1}}{q_{k+1}}\right)\right|<M,
$$

for $0<x<1$.
Now since

$$
\phi_{v}(x)-\phi_{v+1}(x)=\frac{q_{v} x^{v}}{q(x)}
$$

it follows that,

$$
\begin{align*}
\theta(x) & =\sum_{k=0}^{\infty}\left|\sum_{v=0}^{k} c_{k-v}\left(\phi_{v}(x)-\phi_{v+1}(x)\right) \frac{r_{v}}{q_{k}}+\phi_{v+1}(x)\left(\frac{r_{v}}{q_{k}}-\frac{r_{v+1}}{q_{k+1}}\right)\right| \tag{5.5}\\
& \leqq M(x)+N(x)
\end{align*}
$$

where,

$$
\begin{aligned}
& M(x)=\frac{1}{q(x)} \sum_{k=0}^{\infty} \frac{1}{q_{k}}\left|\sum_{v=0}^{k} c_{k-v} q_{v} r_{v} x^{v}\right| \\
& N(x)=\sum_{k=0}^{\infty}\left|\sum_{v=0}^{k} c_{k-v} \phi_{v+1}(x)\left(\frac{r_{v}}{q_{k}}-\frac{r_{v+1}}{q_{k+1}}\right)\right| .
\end{aligned}
$$

Since

$$
\sum_{v=0}^{k} c_{k-v} q_{v} r_{v} x^{v}=\sum_{v=0}^{k-1} c_{k-v} q_{v} r_{v}\left(x^{v}-x^{k}\right)+x^{k} \sum_{v=0}^{k} c_{k-v} q_{v} r_{v}
$$

to prove $M(x)=O(1)$ we need only show that,

$$
M^{\prime}(x)=\frac{1}{q(x)} \sum_{k=0}^{\infty} \frac{1}{q_{k}} \sum_{v=0}^{k-1} c_{k-v} q_{v} r_{v}\left(x^{v}-x^{k}\right)=O(1)
$$

in view of Lemma 2.
Since $c_{n} \leqq 0(n \geqq 1)$ and $\left\{1 / q_{n}\right\}$ is decreasing, we get,

$$
\begin{aligned}
M^{\prime}(x) & =-\frac{1}{q(x)} \sum_{k=0}^{\infty} \frac{1}{q_{k}} \sum_{v=0}^{k-1} q_{v} r_{v} c_{k-v}\left(x^{v}-x^{k}\right) \\
& =-\frac{1}{q(x)} \sum_{v=0}^{\infty} q_{v} r_{v} x^{v} \sum_{k=v+1}^{\infty} c_{k-v} \frac{\left(1-x^{k-v}\right)}{q_{k}} \\
& \leqq-\frac{1}{q(x)} \sum_{v=0}^{\infty} \frac{q_{v} r_{v} x^{v}}{q_{v}} \sum_{k=v+1}^{\infty} c_{k-v}\left(1-x^{k-v}\right) \\
& =-\frac{1}{q(x)} \sum_{v=0}^{\infty} r_{v} x^{v}(c(1)-c(x)) \\
& \leqq \frac{1}{q(x)} \sum_{v=0}^{\infty} r_{v} x^{v} c(x) \\
& =\frac{r(x) c(x)}{q(x)} \\
& =1
\end{aligned}
$$

Hence,

$$
\begin{equation*}
M(x)=O(1) \tag{5.6}
\end{equation*}
$$

The inner sum of $N(x)$ can be written as,

$$
\begin{aligned}
\phi_{k+1}(x) \sum_{v=0}^{k} & c_{k-v}\left(\frac{r_{v}}{q_{k}}-\frac{r_{v+1}}{q_{k+1}}\right)+\sum_{v=0}^{k} c_{k-v}\left(\phi_{v+1}(x)-\phi_{k+1}(x)\right)\left(\frac{r_{v}}{q_{k}}-\frac{r_{v+1}}{q_{k+1}}\right) \\
= & \phi_{k+1}(x) \sum_{v=0}^{k} c_{k-v}\left(\frac{r_{v}}{q_{k}}-\frac{r_{v+1}}{q_{k+1}}\right) \\
& +\sum_{v=0}^{k} \frac{c_{k-v}}{q(x)}\left(\frac{r_{v}}{q_{k}}-\frac{r_{v+1}}{q_{k+1}}\right) \sum_{\mu=v+1}^{k} q_{\mu} x^{\mu} .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
N(x) \leqq N^{\prime}(x)+N^{\prime \prime}(x) \tag{5.7}
\end{equation*}
$$

where,

$$
N^{\prime}(x)=\sum_{k=0}^{\infty}\left|\phi_{k+1}(x) \sum_{v=0}^{k} c_{k-v}\left(\frac{r_{v}}{q_{k}}-\frac{r_{v+1}}{q_{k+1}}\right)\right|,
$$

and

$$
N^{\prime \prime}(x)=\sum_{k=0}^{\infty}\left|\sum_{v=0}^{k} c_{k-v}\left(\frac{r_{v}}{q_{k}}-\frac{r_{v+1}}{q_{k+1}}\right) \frac{\sum_{\mu=v+1}^{k} q_{\mu} x^{\mu}}{q(x)}\right| .
$$

By (4.1)

$$
\begin{aligned}
\sum_{v=0}^{k} & c_{k-v} \frac{r_{v}}{q_{k}}-\sum_{v=0}^{k} c_{k-v} \frac{r_{v+1}}{q_{k+1}} \\
& =1-\frac{1}{q_{k+1}} \sum_{v=0}^{k} c_{k-v} r_{v+1} \\
& =1-\frac{1}{q_{k+1}}\left(\sum_{v=0}^{k+1} c_{k+1-v} r_{v}-c_{k+1} r_{0}\right) \\
& =r_{0} \frac{c_{k+1}}{q_{k+1}} .
\end{aligned}
$$

Hence,

$$
N^{\prime}(x)=r_{0} \sum_{k=0}^{\infty} \phi_{k+1}(x) \frac{\left\lfloor c_{k+1}\right\rfloor}{q_{k+1}}
$$

We know from the very definition of $\phi_{k}(x)$ that for $0<x<1$,

$$
0 \leqq \phi_{k}(x) \leqq 1
$$

Hence

$$
N^{\prime}(x) \leqq r_{0} \sum_{k=0}^{\infty} \frac{c_{k+1}}{q_{k+1}} \leqq \frac{r_{0}}{q_{0}} \Sigma\left|c_{k+1}\right|<\infty .
$$

And

$$
\begin{aligned}
N^{\prime \prime}(x) \leqq & \sum_{k=0}^{\infty} \sum_{v=0}^{k}\left|c_{k-v}\right|\left|\frac{r_{v}}{q_{k}}-\frac{r_{v+1}}{q_{k+1}}\right| \frac{\sum_{\mu=v+1}^{k} q_{\mu} x^{\mu}}{q(x)} \\
= & \frac{1}{q(x)} \sum_{v=0}^{\infty} \sum_{k=v}^{\infty}\left|c_{k-v}\right|\left|\frac{r_{v}}{q_{k}}-\frac{r_{v+1}}{q_{k+1}}\right| \sum_{\mu=v+1}^{k} q_{\mu} x^{\mu} \\
= & \frac{1}{q(x)} \sum_{v=0}^{\infty} \sum_{\mu=v+1}^{\infty} q_{\mu} x^{\mu} \sum_{k=\mu}^{\infty}\left|c_{k-v}\right|\left|r_{v}\left(\frac{1}{q_{k}}-\frac{1}{q_{k+1}}\right)+\frac{r_{v}-r_{v+1}}{q_{k+1}}\right| \\
\leqq & \frac{1}{q(x)} \sum_{v=0}^{\infty} r_{v} \sum_{\mu=v+1}^{\infty} q_{\mu} x^{\mu} \sum_{k=\mu}^{\infty}\left|c_{k-v}\right|\left(\frac{1}{q_{k}}-\frac{1}{q_{k+1}}\right) \\
& +\frac{1}{q(x)} \sum_{v=0}^{\infty}\left(r_{v+1}-r_{v}\right) \sum_{\mu=v+1}^{\infty} q_{\mu} x^{\mu} \sum_{k=\mu}^{\infty}\left|c_{k-v}\right| \frac{1}{q_{k+1}} \\
= & \alpha(x)+\beta(x), \quad \text { (say). }
\end{aligned}
$$

Now, since $\left\{q_{n}\right\}$ and $\left\{q_{n} / q_{n+1}\right\}$ are increasing with n we get, by using hypothesis (2.2) and (4.3)

$$
\begin{aligned}
\alpha(x) & \leqq \frac{1}{q(x)} \sum_{v=0}^{\infty} r_{v} \sum_{\mu=v+1}^{\infty} x^{\mu} \sum_{k=\mu}^{\infty}\left|c_{k-v}\right|\left(1-\frac{q_{k}}{q_{k+1}}\right) \\
& \leqq \frac{1}{q(x)} \sum_{v=0}^{\infty} \frac{r_{v}\left(q_{v+1}-q_{v}\right)}{q_{v+1}} \sum_{\mu=v+1}^{\infty} c_{\mu-v-1}^{(1)} x^{\mu} \\
& =\frac{1}{q(x)} \sum_{v=0}^{\infty} \frac{r_{v}\left(q_{v+1}-q_{v}\right)}{q_{v+1}} x^{v+1} \sum_{n=0}^{\infty} c_{n}^{(1)} x^{n} \\
& =\frac{1}{(1-x) q(x) p(x)} \sum_{v=0}^{\infty} \frac{r_{v}\left(q_{v+1}-q_{v}\right)}{q_{v+1}} x^{v+1} \\
& =\frac{1}{(1-x) r(x)} O(1) \sum_{v=0}^{\infty}\left(r_{v+1}-r_{v}\right) x^{v+1} \\
& =O(1)
\end{aligned}
$$

by using the identity,

$$
(1-x) p(x) \Sigma c_{n}^{(1)} x^{n}=1, \quad(0<x<1)
$$

Again since $\left\{r_{n}\right\}$ increases with n as $\left\{q_{n}\right\}$ increases, we get,

$$
\begin{aligned}
\beta(x) & \leqq \frac{1}{q(x)} \sum_{v=0}^{\infty}\left(r_{v+1}-r_{v}\right) \sum_{\mu=v+1}^{\infty} x^{\mu} \sum_{k=\mu}^{\infty}\left|c_{k-v}\right| \\
& \leqq \frac{1}{q(x)} \sum_{v=0}^{\infty}\left(r_{v+1}-r_{v}\right) \sum_{\mu=v+1}^{\infty} x^{\mu} c_{\mu-v-1}^{(1)} \\
& =\frac{1}{q(x)} \sum_{v=0}^{\infty}\left(r_{v+1}-r_{v}\right) x^{v+1} \sum_{n=0}^{\infty} c_{n}^{(1)} x^{n} \\
& =\frac{1}{(1-x) p(x) q(x)} \sum_{v=0}^{\infty}\left(r_{v+1}-r_{v}\right) x^{v+1} \\
& \leqq 1
\end{aligned}
$$

Hence,

$$
N^{\prime \prime}(x)=\alpha(x)+\beta(x)=O(1)
$$

Hence by (5.7), (5.6) and (5.5)

$$
\theta(x) \leqq M(x)+N(x)=O(1)
$$

Hence (5.3) holds and this completes the proof of the theorem.
6. In this section, we now deduce some corollaries of Theorem 4.

Corollary 1. (Thorpe [9]). Suppose $p_{n} \in \mathfrak{M}$, then $\Sigma a_{n} \in$ $\left(N^{*}, p\right) \Rightarrow \Sigma a_{n} \in(A)$, where (A) is the Abel method.

Proof. Put $q_{n}=1$, for all n in Theorem 4.
Corollary 2. Let $q_{n}>0$ for all $n,\left\{q_{n}\right\}$ be increasing in n, such that $\left\{q_{n} / q_{n+1}\right\}$ is also increasing in n and,

$$
\begin{equation*}
Q_{n}\left(q_{n+1}-q_{n}\right)=O\left(q_{n+1}^{(2)}\right) \tag{6.1}
\end{equation*}
$$

Then,

$$
\Sigma a_{n} \in\left(\bar{N}^{*}, q\right) \Rightarrow \Sigma a_{n} \in(J, q)
$$

Proof. Put $p_{n}=1$ for all n, in Theorem 4. In this case we have,

$$
c_{0}=1, \quad c_{1}=-1, \quad c_{n}=0 \quad(n>2)
$$

Corollary 3. $\left(C^{*}, \alpha, \beta\right) \Rightarrow A_{\beta}$ for $0<\alpha \leqq 1 \leqq \beta$.
Proof. Set

$$
p_{n}=A_{n}^{\alpha-1}, \quad q_{n}=A_{n}^{\beta-1} \quad \text { in Theorem } 4
$$

Then $r_{n}=A_{n}^{\alpha+\beta-1}$ and condition (2.2) reduces to proving that

$$
n^{\alpha+\beta-1} n^{\beta-2}=O\left(n^{\beta-1} n^{\alpha+\beta-2}\right)
$$

which is valid in the present case. Also when $0<\alpha \leqq 1$, then $p_{n}=$ $A_{n}^{\alpha-1} \in \mathfrak{M}$ and when $\beta \geqq 1$, then $q_{n}=A_{n}^{\beta-1}$ is nondecreasing.

Lastly I would like to thank Professor G. Das for his valuable suggestions during the preparation of this paper. I would also like to thank the referee for some suggestions.

References

[^0]7. B. Kuttner, On quasi-Cesàro summability, J.I.M.S., 24 (1960), 319-341.
8. M. S. Ramanujan, Note on the quasi-Hausdorff series to series transformation, J. London Math. Soc., 32 (1957), 27-32.
9. B. Thorpe, Nörlund and related summability methods, Ph.D. Thesis, (1970) Birmingham University.
10. P. Vermes, The transpose of a summability matrix, Colloque sur la Theorie des Suttes, Centre Belge de rechroches Math., (1958) 60-86.
11. A. J. White, On quasi-Cesàro summability, Quart. J. Math. Oxford (2), 12 (1961) 81-99.

Received May 3, 1976 and in revised form July 16, 1976

Sambalpur University
tala Telenga Bazar
Cuttack 753009 Orissa
India

[^0]: D. Borwein, A logarithmic method of summability, J. London Math. Soc., 33 (1958), 212-220.

 - On products of sequences, J. London Math. Soc., 33 (1958), 352-375.
 R. G. Cooke, Infinite Matrices and Sequence Spaces, (Dover, New York 1955).
 G. Das, On some methods of summability, Quart. J. Math., Oxford (2) 17 (1966), 244-256.
 G. H. Hardy, Divergent Series, (Oxford 1949).

 6. Knopp and Lorentz, Betrage Zur absoluten Limitierung, Archiv der Math., 2 (1949), 10-16.
