ON PUNCTURED BALLS IN MANIFOLDS

Wolfgang Heil

Abstract

E. Brown showed that for any map f of a punctured disc B_{n} with n holes into a 2 -manifold M that is an embedding of ∂B_{n}, there is an embedding g of a punctured disk B_{k} into M such that $g\left(\partial B_{k}\right)$ is a subcollection of $f\left(\partial B_{n}\right)$. In this paper E. Brown's approach is extended to show that a similar result holds for maps of punctured q-balls into certain q-manifolds ($q \geqq 3$).

Let $P C(q)$ denote the collection of (topological) q-manifolds M^{q} with the property that if h is an embedding of $S^{q-1} \times[0,1]$ into M^{q} that is null homotopic, then $h\left(S^{q-1} \times \frac{1}{2}\right)$ bounds a topological q-cell in M^{q}.

Note that $P C(1)$ and $P C(2)$ consist of all 1-manifolds and 2manifolds, respectively. It is well-known that $P C(3)$ consists of all 3-manifolds provided the Poincaré conjecture is true in dimension 3. Since the generalized Poincaré conjecture holds for dimensions $\geqq 5$, [2] we are led to conjecture that $P C(q)$ consists of all (topological) q-manifolds for $q \geqq 5$, particularly since, from the proposition below, if $h: S^{q-1} \rightarrow \partial M^{q}$ is an embedding such that $h\left(S^{q-1}\right)$ is null-homotopic in M^{q}, then M^{q} is indeed a q-cell $(q \geqq 5)$. However, C. McA. Gordon, whom I would like to thank most sincerely for providing the proof of the following proposition, informs me that C. T. C. Wall and John Morgan have counter examples for $q>4$.

Proposition. Let $C \cong S^{a-1}$ be a boundary component of a compact q-manifold M. If $[C]=0$ in $\pi_{q-1}(M)$, then M is contractible.

Proof. Let $q \geqq 3$. By the Whitehead and Hurewicz Theorems it suffices to show that $\pi_{1}(M)=1$ and $H_{*}(M)=0$. Now $\partial M=C$ since otherwise $[C] \neq 0$ in $H_{q-1}(M)$. Also, M is orientable since otherwise for the orientation cover M^{\prime} of M we have $\partial M^{\prime}=C^{\prime} \cup C^{\prime \prime}$ (copies over C) and $\left[C^{\prime}\right]=0$ in $\pi_{q-1}\left(M^{\prime}\right)$, a contradiction.

There is a map $f:\left(B^{q}, S^{q-1}\right) \rightarrow(M, \partial M)$ such that $f \mid S^{q-1}$ is a homeomorphism. Orient M so that f has degree 1. Then for the fundamental classes z_{q}, w_{q} in $H_{q}\left(B^{q}, S^{q-1}\right), H_{q}(M, \partial M)$, resp., we have $f^{*}\left(z_{q}\right)=w_{q}$ and a commutative diagram

By Lefschetz duality, the vertical maps are isomorphisms. Therefore $f_{*}\left(-\cap z_{q}\right) f^{*}$ is an isomorphism. It follows that f_{*} is onto and hence that $H_{*}(M)=0$.

To show that $\pi_{1}(M)=1$, let $p: \tilde{M} \rightarrow M$ be the universal covering. Then f lifts to $\tilde{f}:\left(B^{q}, S^{q-1}\right) \rightarrow(\tilde{M}, \partial \tilde{M})$. But $1=\operatorname{deg}(f)=$ $\operatorname{deg}(p \circ \tilde{f})=(\operatorname{deg} p)(\operatorname{deg} \tilde{f})$, hence $\operatorname{deg} p= \pm 1$ and $\pi_{1}(M)=1$.

For $q \geqq 2, n \geqq 1$, let B_{n}^{q} be a punctured q-ball with $n-1$ holes, i.e., B_{n}^{q} is obtained from S^{q} by removing the interiors of n mutually disjoint q-balls.

For a bicollared $S^{q-1} \subset M^{q}$ let $N \approx S^{q-1} \times I$ be a neighborhood of S^{q-1} and let $M^{\prime}=\operatorname{cl}(M-N) \cup B^{\prime} \cup B^{\prime \prime}$, where the boundaries of the q-balls $B^{\prime}, B^{\prime \prime}$ are attached to the boundary components $S^{q-1} \times 0$ and $S^{q-1} \times 1$ of $\operatorname{cl}(M-N)$. We say M^{\prime} is obtained from M by surgery along S^{q-1}. Let X be the space obtained from M^{\prime} by identifying B^{\prime} and $B^{\prime \prime}$ under a homeomorphism. Note that X can be obtained from M^{q} by attaching a q-ball B to S^{q-1} along its boundary and $X-B=$ $M^{\prime}-\left(B^{\prime} \cup B^{\prime \prime}\right)=M-S^{q-1}$.

Lemma. Let S be a $(q-1)$-sphere in $X-B$. If $S \simeq 0$ in X, then $S \simeq 0$ in M^{\prime}.

Proof. Suppose S^{q-1} separates M into M_{1} and M_{2}; then $M^{\prime}=$ $M_{1}^{\prime} \cup M_{2}^{\prime}$, where $M_{1}^{\prime}=M_{1} \cup B^{\prime}, M_{2}^{\prime}=M_{2} \cup B^{\prime \prime}$. Let X_{1}^{\prime} be obtained from M_{t} by collapsing S^{q-1} to a point. The projection $p: X \rightarrow X_{1}^{\prime} \vee X_{2}^{\prime}$ is a homotopy equivalence which sends S into X_{1}^{\prime}, say. This can be seen as follows: Identify a neighborhood of S^{q-1} with $N=S^{q-1} \times[-1,1]$, where $S^{q-1}=S^{q-1} \times\{0\}$. Let w be the "centerpoint" of B and for $y \in S^{q-1}$ let $r(y)$ be the "radius" in B from y to w. In $X_{1}^{\prime} \vee X_{2}^{\prime}$ we identify $p(N)=\left(S^{q-1} \times I\right) /\left(S^{q-1} \times\{0\}\right)$ with the cones over $S^{q-1} \times\{-1\}$ and $S^{q-1} \times$ $\{1\}$ wedged together at their vertices to a vertex v. Let $g: X_{1}^{\prime} \vee X_{2}^{\prime} \rightarrow X$ be the map that is the identity outside $p(N)$ and which sends the join of x and v (for $x \in S^{q-1} \times\{-1\}$, respectively $S^{q-1} \times\{1\}$) linearly to $x \times$ $[-1,0] \cup r(x \times\{0\})$, resp. $x \times[0,1] \cup r(x \times 0)$. Then it is clear that g is a homotopy inverse of p. But since X_{1}^{\prime} is a retract of $X_{1}^{\prime} \vee X_{2}^{\prime}$ it follows that $S \simeq 0$ in X_{1}^{\prime} already and hence in $M_{1}^{\prime} \simeq X_{1}^{\prime}$.

If S^{q-1} does not separate M, let $\tilde{X} \rightarrow X$ be the infinite cyclic covering of X determined by B : the q-ball B lifts to q-balls $\cdots B_{-1}, B_{0}, B_{1}, \cdots$ and each component of $\tilde{X}-\bigcup_{i=-\infty}^{\infty} B_{i}$ maps homeomorphically onto $X-B$. For each i, let X^{\prime}, be obtained from M^{\prime} by collapsing B^{\prime} and $B^{\prime \prime}$ to single points. There is a projection $\tilde{X} \rightarrow \mathrm{~V}_{t=-\infty}^{\infty} X_{1}^{\prime}$ that is a homotopy equivalence and hence $\pi_{q-1}\left(X_{j}^{\prime}\right)$ injects into $\pi_{q-1}(\tilde{X})$, for each j. Let \tilde{S} be a lift of S to \tilde{X}. Then \tilde{S} lies in a component of $\tilde{X}-\cup B_{i}$ and is mapped into a factor X_{j}^{\prime} of $\vee X_{i}^{\prime}$. It follows that $\tilde{S} \simeq 0$ in X_{j}^{\prime}, hence $S \simeq 0$ in M^{\prime}.

Theorem. Let $f: B_{n}^{q} \rightarrow M^{q}$ be a map such that $f \mid \partial B_{n}^{q}$ is a bicollared embedding, $f\left(\partial B_{n}^{q}\right)=S_{1} \cup \cdots \cup S_{n} . \quad$ Suppose that the manifold M^{\prime} obtained from M^{q} by surgery along $S_{1}(i=2, \cdots, n)$ belongs to $P C(q)$. Then some subcollection of $\left\{S_{1}, \cdots S_{n}\right\}$ contains S_{1} and bounds an embedded punctured q-ball in M.

Proof. By Brown's result we can assume that $q \geqq 3$. Let X be obtained from M by attaching q-balls B_{i} to $S_{i}(i=2, \cdots, n)$ along their boundaries. Then $X-\bigcup_{i=2}^{n} B_{i}=M^{\prime}-\bigcup_{i=2}^{n} B_{i}^{\prime} \cup \bigcup_{i=2}^{n} B_{i}^{\prime \prime}$, where $B_{t}^{\prime}, B_{i}^{\prime \prime}$ are the balls used for surgery on S_{i}. Now $S_{1} \simeq 0$ in X. By the lemma, $S_{1} \simeq 0$ in M^{\prime}. Since $M^{\prime} \in P C(q), S_{1}$ bounds a q-ball B_{*} in M^{\prime}. Let E be the component of $B_{*}-\bigcup_{i=2}^{n}\left(B_{i}^{\prime} \cup B_{i}^{\prime \prime}\right)$ which has S_{1} on its boundary. If for each $i=2, \cdots, n$ only one of $\partial B_{i}^{\prime}, \partial B_{i}^{\prime \prime} \subset \partial E$, then E is the desired punctured ball in M bounded by S_{1} and some of the S_{i} 's. In fact, this is the only case that can happen. For suppose for some $i, \partial B_{i}^{\prime}$ and $\partial B_{i}^{\prime \prime} \subset \partial E$. Then let k be a simple arc in E from a point of ∂B_{i}^{\prime} to a point on $\partial B_{1}^{\prime \prime}$ such that k misses the other ∂B_{j} 's and such that k corresponds to a simple closed curve in M that intersects S_{1} in one point and misses the other S,'s. In M, the intersection numbers $\#\left(k, S_{i}\right)=$ ± 1, but $\#\left(k, \Sigma_{j \pm i} S_{j}\right)=0$, which is impossible since $S_{i} \sim \bigcup_{j \neq i} S_{j}$.

References

1. E. M. Brown, A note on punctured disks in a 2-manifold, Proc. Amer. Math. Soc., 22 (1969), 471.
2. M. H. A. Newman, The engulfing theorem for topological manifolds, Ann. of Math., 84 (1966), 555-571.

Received February 6, 1976 and in revised form July 28, 1976.
Florida State University
Tallahassee, FL 32306

