TENSOR PRODUCTS OF FUNCTION RINGS UNDER COMPOSITION

N. J. Fine

Let $C(X), C(Y)$ be the rings of real-valued continuous functions on the completely regular Hausdorff spaces X, Y and let $T=C(X) \otimes C(Y)$ be the subring of $C(X \times Y)$ generated by functions of the form $f g$, where $f \in C(X)$ and $g \in C(Y)$. If P is a real polynomial, then $P \circ t \in T$ for every $t \in T$. If $G \circ t \in T$ for all $t \in T$ and if G is analytic, then G is a polynomial, provided that X and Y are both infinite (A. W. Hager, Math. Zeitschr. 92, (1966), 210-224, Prop. 3.). In this note I remove the condition of analyticity. Clearly the cardinality condition is necessary, for if either X or Y is finite, then $T=C(X \times Y)$ and $G \circ t \in T$ for every continuous G and for every $t \in T$.

It is convenient to admit a somewhat wider class of G 's. Let $T^{*}=T+i T$, that is, the set of all functions $t_{1}+i t_{2}$ with $t_{1}, t_{2} \in T . \quad\left(T^{*}\right.$ is the tensor product of the complex-valued continuous function rings on X and Y). Define $K(X, Y)$ as the set of all continuous complex-valued functions G on R (the reals) with the property that $G \circ t \in T^{*}$ for all $t \in T$. Then the result is

Theorem. If X and Y are infinite completely regular Hausdorff spaces, then $K(X, Y)$ consists of all the polynomials with complex coefficients.

It follows from the Theorem that if $G \circ t \in T$ for all $t \in T$, then G is a polynomial with real coefficients.

The proof of the Theorem, which is rather lengthy, will be broken up into a sequence of lemmas.

Lemma 1. Let φ and ψ be continuous mappings of X and Y onto X^{\prime} and Y^{\prime} respectively. Then $K(X, Y) \subset K\left(X^{\prime}, Y^{\prime}\right)$.

Proof. Let $G \in K(X, Y), t^{\prime} \in T^{\prime}=C\left(X^{\prime}\right) \otimes C\left(Y^{\prime}\right)$.
I must show that $G \circ t^{\prime} \in T^{\prime *}$. Define t by

$$
t(x, y)=t^{\prime}(\varphi(x), \psi(y)) \quad(x \in X, y \in Y)
$$

Clearly $t \in T$, and by hypothesis $G \circ t \in T^{*}$. That is, there are continuous complex-valued functions u_{1}, \cdots, u_{n} on X, v_{1}, \cdots, v_{n} on Y, such that

$$
\begin{equation*}
\left(G \circ t^{\prime}\right)(\varphi(x), \psi(y))=\sum_{l=1}^{n} u_{l}(x) v_{l}(y) \quad(x \in X, y \in Y) \tag{1}
\end{equation*}
$$

If $y_{0}, y_{1}, \cdots, y_{n}$ are any elements of Y, then there exist complex $c_{0}, c_{1}, \cdots, c_{n}$ not all 0 such that

$$
\begin{equation*}
\sum_{j=0}^{n} c_{l}\left(G \circ t^{\prime}\right)\left(\varphi(x), \psi\left(y_{j}\right)\right)=0 \quad(x \in X) \tag{2}
\end{equation*}
$$

since (1) shows that the y-sections of $G \circ t$ are contained in an n dimensional subspace of $C(X)+i C(X)$. Let $y_{0}^{\prime}, \cdots, y_{n}^{\prime}$ be any elements of Y^{\prime}, and let x^{\prime} be any element of X^{\prime}. Then, since φ and ψ are onto, there exist y_{0}, \cdots, y_{n} and x such that

$$
\varphi(x)=x^{\prime}, \quad \psi\left(y_{j}\right)=y_{j}^{\prime} \quad(j=0,1, \cdots, n)
$$

Insert these values in (2) to get

$$
\sum_{j=0}^{n} c_{l}\left(G \circ t^{\prime}\right)\left(x^{\prime}, y_{j}^{\prime}\right)=0
$$

This means that the y^{\prime}-sections of $G \circ t^{\prime}$ are contained in an $n-$ dimensional subspace of $C\left(X^{\prime}\right)+i C\left(X^{\prime}\right)$. By Hager ${ }^{1}$, this implies that $G \circ t^{\prime} \in T^{\prime *}$. Hence $G \in K\left(X^{\prime}, Y^{\prime}\right)$.

Lemma 2. If $X^{\prime} \approx X, Y^{\prime} \approx Y$, then $K\left(X^{\prime}, Y^{\prime}\right)=K(X, Y)$.
Proof. Immediate from Lemma 1.
Lemma 3. If the conclusion of the Theorem holds for all infinite subspaces X^{\prime}, Y^{\prime} of R then the Theorem holds.

Proof. Every infinite completely regular Hausdorff space can be mapped continuously onto an infinite subset of R. Apply Lemma 1 and the hypothesis.

Lemma 4. Suppose that X_{0} and Y_{0} are C-embedded in X and Y respectively. Then $K(X, Y) \subset K\left(X_{0}, Y_{0}\right)$.

Proof. Let $G \in K(X, Y), t_{0} \in T_{0}=C\left(X_{0}\right) \otimes C\left(Y_{0}\right)$. Then there is a $t \in T$ such that $t \mid\left(X_{0} \times Y_{0}\right)=t_{0}$, obtained by extending each component of t_{0}. By assumption, $G \circ t \in T^{*}$. By restriction, $G \circ t_{0} \in T_{0}^{*}$. Hence $G \in K\left(X_{0}, Y_{0}\right)$.

[^0]Lemma 5. If X is an infinite subset of R, then there is a continuous mapping φ of X into R such that $\varphi[X]$ contains the terms of a convergent infinite sequence and its limit.

Proof. If X is unbounded, let $p \in X$ and define

$$
\varphi(x)=\frac{x-p}{1+x^{2}} \quad(x \in X)
$$

Then $\varphi[X]$ has the required property. If X is bounded, then it contains a countably infinite set $\left\{x_{n}\right\}$ such that $x_{n} \rightarrow q$ (perhaps not in X). Let $p \in X$ and define

$$
\varphi(x)=(x-q)(x-p) \quad(x \in X)
$$

Clearly $\varphi\left(x_{n}\right) \rightarrow 0=\varphi(p)$. Also the set $\left\{\varphi\left(x_{n}\right)\right\}$ is infinite. Hence $\varphi[X]$ has the required property.

Lemma 6. Let X_{0} be any one infinite set $\left\{x_{n}\right\}_{n=0}^{\infty}$, with $x_{n} \rightarrow x_{0}$. If $K\left(X_{0}, X_{0}\right)$ consists of the complex polynomials, then the Theorem holds.

Proof. Follows from Lemma 3, Lemma 5, Lemma 4, and the fact that X_{0} is compact, hence C-embedded in $\varphi[X]$, and Lemma 2.

Lemma 7. Let $X_{0}=\left\{j / n^{2}: n \geqq 1,0 \leqq j \leqq M_{n}\right\}$, where M_{n} is a sequence of positive integers satisfying $M_{n} \geqq n(n \geqq 1)$. Let $G \in K\left(X_{0}, X_{0}\right)$, with $X_{0} \subset Z(G)$, the zero-set of G. Then there exists an N such that

$$
\frac{M_{n}+1}{n^{2}} \in Z(G) \quad(n>N) .
$$

Proof. Define $t \in T_{0}=C\left(X_{0}\right) \otimes C\left(X_{0}\right)$ by

$$
t(x, y)=x+y \quad\left(x \in X_{0}, y \in X_{0}\right)
$$

Let $N=\operatorname{rank}(G \circ t)$, i.e., the dimension of the vector-space of y-sections of $G \circ t$. If $n>N$, there exist $c_{j}(j=1, \cdots, N+1)$ (possibly depending on n) not all 0 , such that

$$
\sum_{j=1}^{N+1} c_{j} G\left(x+\frac{j}{n^{2}}\right)=0 \quad\left(x \in X_{0}\right) .
$$

(Note that the arguments

$$
\frac{j}{n^{2}} \leqq \frac{N+1}{n^{2}} \leqq \frac{n}{n^{2}} \leqq \frac{M_{n}}{n^{2}}
$$

are all in X_{0}). Let M be the largest j such that $c_{l} \neq 0$, so $1 \leqq M \leqq N+1$ and

$$
\begin{equation*}
\sum_{j=1}^{M} c_{l} G\left(x+\frac{j}{n^{2}}\right)=0 \quad\left(x \in X_{0}\right) \tag{3}
\end{equation*}
$$

Choose $x=\left(M_{n}+1-M\right) / n^{2}$. Since $M \leqq N+1<n+1 \leqq M_{n}+1, x>$ 0 . Since $M \geqq 1, x \leqq M_{n} / n^{2}$. Hence $x \in X_{0}$. Therefore, from (3),

$$
\begin{equation*}
-c_{M} G\left(\frac{M_{n}+1}{n^{2}}\right)=\sum_{j=1}^{M-1} c_{l} G\left(\frac{M_{n}+1-M+j}{n^{2}}\right) \tag{4}
\end{equation*}
$$

Since $\quad M_{n}+1-M+j \geqq n+2-M>n+2-(n+1)=1, \quad$ and $M_{n}+1-M+j \leqq M_{n}+1-M+(M-1)=M_{n}$ for all j such that $1 \leqq j \leqq$ $M-1$, the arguments on the right in (4) are all in $X_{0} \subset Z(G)$. Since $c_{M} \neq 0$,

$$
G\left(\frac{M_{n}+1}{n^{2}}\right)=0 \quad(n>N)
$$

Lemma 8. Under the hypothesis of Lemma 7, but with $M_{n}=n$ $(n \geqq 1)$, there is an $\alpha>0$ such that $[0, \alpha] \subset Z(G)$.

Proof. Define

$$
\bar{M}_{n}=\sup \left\{M: G\left(\frac{j}{n^{2}}\right)=0 \quad \text { for } \quad j=0,1, \cdots, M\right\}
$$

Note that $\bar{M}_{n} \geqq n$. Suppose that $\bar{\alpha} \equiv \underline{\lim }\left(\bar{M}_{n} / n^{2}\right)=0$. Then there is an infinite sequence $n_{1}<n_{2}<\cdots$ such that

$$
\frac{\bar{M}_{n_{i}}}{n_{i}^{2}} \rightarrow 0
$$

Define $L_{n}=\bar{M}_{n}$ if $n=n_{t}$ for some $i, L_{n}=n$ otherwise. Let

$$
X^{\prime}=\left\{\frac{j}{n^{2}}: 0 \leqq j \leqq L_{n}, n \geqq 1\right\} .
$$

Then (i) $X^{\prime} \approx X_{0}$, (ii) $X^{\prime} \subset Z(G)$, (iii) X^{\prime} is of the form prescribed in Lemma 7, since $L_{n} \geqq n$. By (i) and Lemma $2, K\left(X_{0}, X_{0}\right)=K\left(X^{\prime}, X^{\prime}\right)$, so
$G \in K\left(X^{\prime}, X^{\prime}\right) . \quad$ Combining this with (ii), (iii), and Lemma 7, one finds that there is an N such that

$$
\frac{L_{n}+1}{n^{2}} \in Z(G) \quad(n>N)
$$

In particular, for $n=n_{t}>N$,

$$
\frac{\bar{M}_{n}+1}{n^{2}} \in Z(G)
$$

This contradicts the definition of \bar{M}_{n}. Hence $\bar{\alpha}>0(\bar{\alpha}=+\infty$, possibly $)$.
Clearly the set $B=\left\{j / n^{2}: 0 \leqq j \leqq \bar{M}_{n}, n \geqq 1\right\}$ is dense in $[0, \bar{\alpha})$. Since $B \subset Z(G)$, there exists an $\alpha>0$ such that $[0, \alpha] \subset \bar{B} \subset Z(G)$.

Lemma 9. Under the hypotheses of Lemma $8, G=0$.
Proof. Let $\alpha=\sup \{a:[0, a] \subset Z(G)\}$. By Lemma $8, \alpha>0$. Suppose $\alpha<\infty$. Let $\xi \geqq 0$. For

$$
t(x, y)=\alpha+\xi(x-y) \quad\left(x, y \in X_{0}\right)
$$

let $\operatorname{rank}(G \circ t)=M_{\xi}$. Define $N_{\xi}=1+\max \left(M_{\xi}, \xi M_{\xi} / \alpha\right)$. For $n \geqq N_{\xi}$, there exist $c_{j}\left(j=0,1, \cdots, M_{\xi}\right)$ not all 0 , such that

$$
\begin{equation*}
\sum_{j=0}^{M_{\xi}} c_{j} G\left(\alpha+\xi\left(x-\frac{j}{n^{2}}\right)\right)=0 \quad\left(x \in X_{0}\right) \tag{5}
\end{equation*}
$$

(Note that for $0 \leqq j \leqq M_{\xi}$,

$$
0 \leqq \frac{j}{n^{2}} \leqq \frac{M_{\xi}}{n^{2}}<\frac{N_{\xi}}{n^{2}} \leqq \frac{n}{n^{2}}
$$

so $j / n^{2} \in X_{0}$). If q is the least j such that $c_{f} \neq 0$, set $x=$ $(q+1) / n^{2}$. Since $0<q+1 \leqq M_{\xi}+1 \leqq N_{\xi} \leqq n, \quad x \in X_{0}$. For $j=q+$ $1, \cdots, M_{\xi}$, one has $\alpha+\xi\left(x-j / n^{2}\right) \leqq \alpha$ and

$$
\begin{aligned}
\alpha+\xi\left(x-\frac{j}{n^{2}}\right) & \geqq \alpha+\xi\left(\frac{q+1}{n^{2}}-\frac{M_{\xi}}{n^{2}}\right) \\
& \geqq \alpha-\frac{\xi M_{\xi}}{n^{2}} \geqq \alpha-\frac{\xi M_{\xi}}{n} \geqq \alpha-\frac{\xi M_{\xi}}{N_{\xi}} \\
& \geqq \alpha-\frac{\alpha\left(N_{\xi}-1\right)}{N_{\xi}}>0 .
\end{aligned}
$$

Hence $\alpha+\xi\left(x-j / n^{2}\right) \in Z(G)$, and from (5),

$$
G\left(\alpha+\frac{\xi}{n^{2}}\right)=-\frac{1}{c_{q}} \sum_{j=q+1}^{M_{\xi}} c_{j} G\left(\alpha+\xi\left(x-\frac{j}{n^{2}}\right)\right)=0
$$

Thus it has been proved that for each $\xi \geqq 0$, there is an N_{ξ} such that

$$
G\left(\alpha+\frac{\xi}{n^{2}}\right)=0 \quad\left(n \geqq N_{\xi}\right)
$$

For each $N=1,2, \cdots$, define

$$
S_{N}=\left\{\xi \geqq 0: n \geqq N \Rightarrow G\left(\alpha+\frac{\xi}{n^{2}}\right)=0\right\} .
$$

Clearly S_{N} is closed and $[0, \infty)=\cup_{N \geqq 1} S_{N}$. By the Baire category theorem, there is an interval $[u, v] \subset S_{N}$ for some $N \geqq 1$, with $0 \leqq u<$ v. That is,

$$
\begin{equation*}
G\left(\alpha+\frac{\xi}{n^{2}}\right)=0 \quad(u \leqq \xi \leqq v, n \leqq N) \tag{6}
\end{equation*}
$$

Thus the intervals $\left[\alpha+u / n^{2}, \alpha+v / n^{2}\right]$ are contained in $Z(G)$ for all $n \geqq N$. For sufficiently large n, these intervals overlap and fill out an interval $(\alpha, \beta]$, with $\beta>\alpha$. Hence $[0, \beta] \subset Z(G)$. This contradicts the definition of α, and shows that $\alpha=\infty$. Hence $G(x)=0$ $(x \geqq 0)$. Finally, the function G_{1} defined by $G_{1}(x)=G(1-x)(x \in R)$ belongs to $K\left(X_{0}, X_{0}\right)$ and $G_{1}(x)=0\left(x \in X_{0}\right)$. By what has just been proved, $G_{1}(x)=0 \quad(x \geqq 0)$, so $G(x)=0 \quad(x \leqq 1)$. Therefore $G=$ 0 . (There is an alternate proof that avoids the use of Baire category).

Lemma 10. Let $X_{0}=\left\{j / n^{2}: 0 \leqq j \leqq n, n \geqq 1\right\}$, and let $G \in K\left(X_{0}, X_{0}\right)$ satisfy, for some positive h and complex r,

$$
G(x+h)=r G(x) \quad\left(x \in X_{0}\right)
$$

Then G is a constant, and $r=1$ unless that constant is 0.

Proof. The function G_{1} defined by

$$
G_{1}(x)=G(x+h)-r G(x) \quad(x \in R)
$$

belongs to $K\left(X_{0}, X_{0}\right)$, and $X_{0} \subset Z\left(G_{1}\right)$. By Lemma $9, G_{1}=0$, so

$$
G(x+h)=r G(x) \quad(x \in R)
$$

Define $F(x)=G(h x)(x \in R)$. Then $F \in K\left(X_{0}, X_{0}\right)$ and

$$
\begin{equation*}
F(x+1)=r F(x) \quad(x \in R) \tag{7}
\end{equation*}
$$

Let $N=\operatorname{rank}(F \circ t)$, where $t(x, y)=x y\left(x, y \subset X_{0}\right)$. Then the $N+1$ y-sections of $F \circ t$ at $y_{j}=2^{\top}(j=0,1, \cdots, N)$ are linearly dependent (note that $2^{-j}=2^{j} /\left(2^{j}\right)^{2} \in X_{0}$). Hence there exist $c_{0}, c_{1}, \cdots, c_{N}$ not all 0 such that

$$
\begin{equation*}
\sum_{i=0}^{N} c_{j} F\left(2^{-j} x\right)=0 \quad\left(x \in X_{0}\right) \tag{8}
\end{equation*}
$$

As above, (8) holds for all $x \in R$, by Lemma 9. Let M be the least nonnegative integer for which an equation of the form (8) holds for all $x \in R$, with the sum running from 0 to M and the c_{j} not all 0 . Then $c_{M} \neq 0$. If $M=0$, then $F=0$ and therefore $G=0$. For $M>0$, let q be the least j such that $c_{j} \neq 0$. Again, if $q=M$, then $G=0$. Hence one may assume that $q<M$. Thus

$$
\begin{equation*}
\sum_{j=q}^{M} c_{j} F\left(2^{-j} x\right)=0 \quad(x \in R) \tag{9}
\end{equation*}
$$

with $c_{q} \neq 0, c_{M} \neq 0, q<M$, and M minimal. Replace x by $2^{M} x+$ 2^{M}. Then

$$
\sum_{j=q}^{M} c_{j} F\left(2^{M-j} x+2^{M-j}\right)=0 \quad(x \in R)
$$

By (7),

$$
\sum_{j=q}^{M} c_{j} r^{2^{M-j}} F\left(2^{M-j} x\right)=0 \quad(x \in R)
$$

Replacing x by $2^{-M} x$, one gets

$$
\begin{equation*}
\sum_{j=q}^{M} c_{j} r^{2^{M-i}} F\left(2^{-j} x\right)=0 \quad(x \in R) \tag{10}
\end{equation*}
$$

Combining (9) and (10), one has

$$
\begin{equation*}
\sum_{j=q}^{M-1} c_{j}\left(r-r^{2^{M-\jmath}}\right) F\left(2^{-\jmath} x\right)=0 \quad(x \in R) \tag{11}
\end{equation*}
$$

Because of the minimality of M, all the coefficients in (11) must be 0 . Since $c_{q} \neq 0$,

$$
r-r^{2^{M-q}}=0
$$

Now $r=0$ implies $G(x+h)=0(x \in R)$, that is, $G=0$. Since $q<M$, $2^{M-q} \geqq 2$, so if $r \neq 0, r^{m}=1$ with $m=2^{M-q}-1 \geqq 1$. It follows that

$$
F(x+m)=r^{m} F(x)=F(x) \quad(x \in R) .
$$

Thus F is periodic. Either F (hence G) is constant or it has a least positive period p. From (9),

$$
\sum_{j=q}^{M} c_{j} F\left(2^{M-j} x\right)=0 \quad(x \in R)
$$

Therefore

$$
F(x)=-\frac{1}{c_{M}} \sum_{j=q}^{M-1} c_{l} F\left(2^{M-1} x\right) \quad(x \in R)
$$

Hence

$$
\begin{aligned}
F\left(x+\frac{p}{2}\right) & =-\frac{1}{c_{M}} \sum_{l=q}^{M-1} c_{l} F\left(2^{M-\jmath} x+2^{M-\jmath-1} p\right) \\
& =-\frac{1}{c_{M}} \sum_{l=q}^{M-1} c_{j} F\left(2^{M-j} x\right) \\
& =F(x) \quad(x \in R)
\end{aligned}
$$

This contradicts the fact that p is the minimal period. Hence F is a constant and so is G. If $G \neq 0$, then

$$
G(x)=G(x+h)=r G(x)
$$

implies that $r=1$.

Lemma 11. Let $X_{0}=\left\{j / n^{2}: 0 \leqq j \leqq n, n \geqq 1\right\}$ and let $G \in K\left(X_{0}, X_{0}\right)$. Then G is a polynomial.

Proof. Let $N=\operatorname{rank}(G \circ t)$, where

$$
t(x, y)=x+y \quad\left(x, y \in X_{0}\right)
$$

Then, if one reasons as in Lemma 10 , there is an $M \leqq N$ and c_{0}, \cdots, c_{M}, with $c_{M}=1$, such that

$$
\begin{equation*}
\sum_{j=0}^{M} c_{i} G\left(x+\frac{j}{N^{2}}\right)=0 \quad\left(x \in X_{0}\right) . \tag{12}
\end{equation*}
$$

Equation (12) holds for all $x \in R$, by Lemma 9. Define $F(x)=$ $G\left(x / N^{2}\right)(x \in R)$. Then

$$
\begin{equation*}
\sum_{j=0}^{M} c_{j} F(x+j)=\sum_{j=0}^{M} c_{j} G\left(\frac{x}{N^{2}}+\frac{j}{N^{2}}\right)=0 \quad(x \in R) . \tag{13}
\end{equation*}
$$

One may assume that M is minimal for F in equation (13). Write

$$
\varphi(z)=\sum_{i=0}^{M} c_{y} z^{j} .
$$

Then, using the standard notation

$$
(E f)(x)=f(x+1),
$$

one has

$$
(\varphi(E) F)(x)=0 \quad(x \in R) .
$$

Let r be any zero of $\varphi(z)$, so that $\varphi(z)=(z-r) \psi(z)$. Define

$$
J(x)=(\psi(E) F)(x) \quad(x \in R) .
$$

By the minimality of $M, J \neq 0$, and

$$
\begin{aligned}
J(x+1)-r J(x) & =(E-r) J(x) \\
& =(E-r) \psi(E) F(x) \\
& =\varphi(E) F(x)=0 \quad(x \in R) .
\end{aligned}
$$

Since $J \in K\left(X_{0}, X_{0}\right)$ and $J \neq 0$, Lemma 10 yields $r=1$. Thus all zeroes of $\varphi(z)$ are 1 , and

$$
\begin{aligned}
& \varphi(z)=(z-1)^{M}, \\
& (E-1)^{M} F(x)=0 \quad(x \in R) .
\end{aligned}
$$

Note that $M=0$ implies $F=G=0$. Let $P(x)$ be the polynomial of degree $\leqq M-1$ which agrees with F at $x=0,1,2, \cdots, M-1$. Then

$$
\begin{aligned}
P(0) & =F(0) \\
(E-1) P(0) & =(E-1) F(0), \\
& \ldots \\
(E-1)^{M-1} P(0) & =(E-1)^{M-1} F(0)
\end{aligned}
$$

Also, because $\operatorname{deg} P \leqq M-1$,

$$
(E-1)^{M} P(x)=0=(E-1)^{M} F(x) \quad(x \in R) .
$$

Now

$$
G_{0}(x)=(E-1)^{M-1}(P(x)-F(x)) \in K\left(X_{0}, X_{0}\right)
$$

and

$$
(E-1) G_{0}(x)=0 \quad(x \in R)
$$

By Lemma $10, G_{0}(x)=$ constant $=G_{0}(0)=0$. Thus

$$
(E-1)^{M-1} P(x)=(E-1)^{M-1} F(x) \quad(x \in R)
$$

Continuing by induction, one obtains

$$
(E-1)^{M-I} P(x)=(E-1)^{M-i} F(x) \quad(x \in R)
$$

for $j=1,2, \cdots, M$. Thus

$$
F(x)=P(x) \quad(x \in R)
$$

Therefore F, hence G, is a polynomial.
Combination of Lemma 11 and Lemma 6 completes the proof of the Theorem.

Received May 18, 1976.
The Pennsylvania State University
University Park, PA 16802

[^0]: ${ }^{1}$ Ibid. Prop. 1

