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CONTINUITY AND COMPREHENSION IN
INTUITIONISTIC FORMAL SYSTEMS

MICHAEL J. BEESON

Two questions which are of fundamental importance in the
foundations of constructive mathematics are

(1) Are all extensional functions (say from NN to N)
continuous?

(2) What general principles for defining sets (or species)
are constructively justifiable?

This paper is concerned with metamathematical results
related to these questions.

Within the framework of a formal system, we can ask if one can find
any necessary relations between the answers to the two questions posed
above. We show that, within the language of second-order arithmetic,
one cannot find any such relations; even if one includes Church's thesis,
which says that every constructive function is recursive. In earlier work,
we have proved independence results related to question (1) in the
context of the language of arithmetic. The main tool of the present
paper is an extension of our earlier methods to second-order comprehen-
sion principles.

It is fairly easy to prove the consistency of strong principles of set
existence with the continuity of extensional functions, even in the
presence of Church's thesis (see discussion in [3]). And, as mentioned,
the case where one does not have strong set existence principles has been
dealt with in [1]. The main problem, then, is the independence of the
continuity of extensional functions from strong set existence
principles. Of course, if all the formal axioms considered are classically
true, this independence is trivial; but we are interested in the indepen-
dence in an axiomatic framework including nonclassical
principles. Foremost among such principles is Church's thesis, which (in
a suitable formulation) will reduce members of NN to recursive indices,
and functions from NN to N to effective operations, which compute the
function value recursively from an index of the argument. Thus, under
Church's thesis CT, the statement "all functions are continuous" reduces
to an arithmetical proposition about effective operations. This proposi-
tion (for the case of NN) is called KLS, after Kreisel, Lacombe, and
Shoenfield, who gave a classical proof of it [5]. It also happens that this
sentence KLS lies in a syntactic class for which CT is conservative (over
all the theories we will consider; see discussion in the text). Thus the
difficult part of our problem is to prove the independence of KLS from
various principles of set existence.
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In [1], we prove the independence of KLS from various theories
formulated in the language of arithmetic HA (and thus having no
set-existence principles). In order to extend our results to extensions of
HA with set-existence principles, we had to take a circuitous route
through the deepest part of proof theory. Namely, we were able to
extend our independence proofs to those theories which admit "proof-
theoretic treatments" (cut-elimination theorems) in a certain precise
sense. (These theories are conservative over HA + transfinite induction
on all recursive well-orderings.) The precise definition of "proof-
theoretic treatment" requires formalization of the usual results, and, for
instance for HAS, the author has not yet seen such a treatment carried
out in detail, though he has recently heard that Leivant has done so. In
this paper, we take a more direct approach.

The independence proofs in [1] proceed by introducing a "realizabil-
ity" interpretation of HA called fp-realizability (for "formal-provable"
realizability), under which KLS fails to be realized. Until now, we have
been unable to extend this realizability to other languages. In the
present paper, we show how to extend it to HAS. In addition to its use
for independence proofs, this extension is of interest for its own sake, as a
contribution to the general program (see [6]) of studying intuitionistic
formal systems by considering what interpretations, other than the
intended one, they allow.

The system HAS is of particular interest from a formal standpoint
(regardless of whether one believes it to be a constructive theory)
because it is "maximal" in the sense that other known constructive
theories can be interpreted in HAS. In particular, this applies to the
system EM (for "explicit mathematics") recently developed by Feferman
[F] and its variants. The system EM and its variants were introduced in
a (largely successful, we think) attempt to provide a simple formal system
meeting two requirements:

(A) The primitive notions of EM are quite close to the fundamen-
tal notions of informal constructive mathematics.

(B) The mathematical practice of the new school of constructivists,
especially as represented by Bishop's book [4], can be formalized in EM
by a simple process of transcription.

In [3] we have made a study of some metamathematical questions
concerning continuity and principles of continuous choice; the result that
KLS is independent of EM + CT + CA given in [3] depends on the
interpretation of EM in HAS. See the last part of this paper for
discussion, and [3] for details.

It should be pointed out that, given a formula X which defines a
(provably) complete separable metric space, we can consider effective
operations from X to the reals R and formulate the principle of
continuity KLS(X, JR). (For details see [3]). The independence of
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KLS(JR, R) in various arithmetic theories was proved in [2]. The proof
carries over easily to the case of KLS(X, R), as soon as one discusses how
to formalize complete separable metric spaces, as is done in [3]. Thus
the independence results of this paper apply equally to KLS(X, R) as to
KLS.

1. Extension of fp-realizability to HAS. The theory
HAS contains variables for integers and for sets (species) of
integers. Induction is extended to the new language, and the com-
prehension axiom is included as a schema, for all formulae B,

(CA) 3 X V n ( n G X o β ( n , y , Z ) )

For a more detailed description of HAS, see [6]. The letters HAS stand
for, Heyting's arithmetic with species. Whether or not one wishes to
admit HAS, with its impredicative comprehension axiom, as a
constructively valid theory, it remains of technical interest because every
known constructively valid theory can be interpreted in it. In this
section we show how to extend the definition of fp-realizability given in
[1] for HA to HAS, thus giving a direct proof of the independence results
of [1] and [2]. Familiarity with the definition just mentioned will be
assumed; however, none of the other work in [1] and [2] is a prerequisite
to this paper.

In arithmetic, we can write Pr("A(y)") to assert that A(y) is
provable. Here y is the numeral for y thus A (y) has no free variables;
nevertheless Pr("A (y)") has free variable y. We are enabled to do this
by the existence of a function Num(y) which produces from y the term
y. This "naming" function has no analog for species variables. There
is no way to write Pr(Ά(X)') to express that A(X) is provable for a
particular species X; and the capability to do this seems essential if
fp-realizability is to be properly defined. We surmount this difficulty by
adding a new predicate Pr to HAS, with the intended interpretation that
Pr(Ά',y, X) means that A(y, X) is "provable" (in some sense) for this
specific y, X We then axiomatize the properties of Pr needed to make
fp-realizability work; this auxiliary theory we call HAS+. The trick is to
carry out this axiomatization in such a way that HAS+ has a model in
which Pr can be interpreted as a formal provability predicate, to make
the new fp-realizability coincide with the old. It is important that the
auxiliary theory HAS+ contain the full comprehension schema for
formulae involving the new symbol Pr, because we need to form {JC : B(x)
is realized} in order to get CA realized. We now proceed to carry out
these steps.

First, some technical details. Throughout the paper, we use X, Y, Z
as abbreviations for Xl9 ,Xn, etc., where possibly n = 0. We shall
need a pairing function to pair two species X and Y into a single species
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(X, Y)\ it will be convenient to assume HAS to be augmented by function
symbols for such a pairing function and its un-pairing functions.

We now describe an auxiliary theory HAS+, which contains all the
apparatus of HAS, plus a predicate symbol Pr, which takes two number
and one species argument, so we can form expressions like
Pr(Ά', y, X). This is to be thought of as saying A (y, X) is provable, for
these specific parameters y and X. There are a couple of technical
details, in making this precise — first, A can have any number of free
variables, not just y and X, and Pr has to have only a fixed number of
arguments. Second, we may wish to substitute parameters y and X for
only some of the free variables of A. To solve this minor problem, we
Godel number the formulae of HAS+ as formulae of k free variables, of
which / are parameters. Then we write Pr(Ά', y, X), we mean that
A(y b * , ym, Xl5 ,Xn) is provable, where the integers m and n are
read from the Godel number Ά ' and y = (yu * , ym) and X =
(Xu - - ,Xn). In case A has no parameters, Pr('A',y, X) shall mean A
is provable. Note that Pr is intended to apply to all A of HAS\
including A mentioning Pr.

When no confusion should result, we will abbreviate Pr('£Γ, y, X) by
Pr('B(y, X)') If we think there is danger of confusion with the free
variables of B which are not considered as parameters, we revert to the
more formal notation. In case B has no parameters, we write Pr('B')
for Pr('B\ y, X). These conventions are especially convenient if, for
instance, B has two set parameters and no number parameters; we can
write Pr('J3\ X, W) instead of Pr('B\ y, (X, W)) where y is an irrelevant
number variable.

Let us Godel number finite sets Γ of formulae, and write Pr(T', y, X)
as an abbreviation for the conjunction of all Pr(Ά', y, X) over A in
Γ. Let Prpc(TVA') be a natural formalization of, "Γ proves A by
means of Heyting's predicate calculus."

We now can give the axioms and rules of inference of the system
HAS+. They are:

(i) PrPC(T\ Ά') & Pr(T\ y, X)-> Pr(Ά', y, X)
(ii) From B infer Pr('B')
(iii) From A -* B infer Pr('A (y, X)') -* Pr('B (y, X)')
(iv) Pr('B\ y, X)-+ ?x{'?r{'B\ y, X)', y, X)
(v) the axioms and rules of HA, plus induction extended to the

language of HAS+, plus comprehension in the form 3W(Q(W,y,Z) &
Pr('Q(W,y,X)')) where Q(W,y,Z) is \/n(nE W±*B{n,y,Z)\ and B
is any formula of HAS+.

Note that HAS+ is trivially consistent, since (ω, £^(ω)) can be made
into a model of HAS+ by interpreting Pr to be universally valid (as if it
were the proof-predicate of an inconsistent theory). We shall need a
much more informative model, however.
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We introduce the abbreviation Bp for B(y,X) & Pr(4B\y,X),
where y and X are all the free variables of B. Thus Bp has the same
free variables as B, and expresses that B is "true and provable".

If A is a formula of HAS+, and φ is a formula of HAS+ with no free
species variables and exactly one free numerical variable, we write A (φ)
for

VZ((Vn(n E Z <r> φ(n)))F -• A (Z)).

Thus if A doesn't contain Pr, A (φ) is provably equivalent to the result of
replacing n E Z in A by φ(n).

We now describe a model Jί for HAS+. The integers of M are
standard. The sets of M are all pairs (X, φ) such that X is a subset of ω
and φ is a formula of HAS+ with one free numerical variable and no free
species variables. The interpretation of Pr is the predicate Pr defined

by,

Pr(Ά',y,(X,φ)) iff HAS+hA(y,φ)

(making the natural conventions of notation in case A has more than one
species variable.)

LEMMA 1. M is a model of HAS+.

Proof. We check the axioms and rules (i) through (v), verifying by
induction on the length of proof that every theorem of HAS+ is true in M.

(i) Suppose MV Pr P C (T\Ά') & Pr(T((X, φ))') Since the inte-
gers of M are standard, in fact Γ proves A by means of predicate
calculus. Also, for each B in Γ, we have Pr('B((X, φ))'), that is,
HAS+h B(φ). One sees easily that HAS+hA(φ). Hence
Pr(Ά((X,φ))').

(ii) Suppose HAS+ \-B and M f= B. We have to show
M^ Pr('β'). Since B has no parameters, Pr('J3') iff HAS+hB, so we
are done with (ii).

(iii) Suppose HAS+ h A ^ β , and Pr(Ά ((X, φ))'); we want to show
Pr(cβ((X, φ))'); we have HAS+hA(φ); one checks easily that then
HAS+hB(φ), hence Pr(ςB((X, φ))')

(iv) Note first that if R is any formula of HAS+, then
HAS+ h Rp(Z)^Pτ('Rp(ZYl by axioms (i) and (iv). We have to verify
M\=Pτ(iB(Xy)-^?r(ίPr('B(X)y). (Any possible ambiguity in the
abbreviated notation is cleared up in the precise statement of axiom
(iv).) Suppose Pr('β((X,φ))'). Let R(Z) be
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Then we have, from the definition of Pr,

(*) HAS+h R

What we want is, Pr(Tr('B((X, φ))')'); that is, we want
HAS+hJ?p(Z)-^PrCB(Z)'). To get it, argue in HAS+ as follows:
Assume RP(Z); then Pr('i?p(Z)') as noted above; so by axiom (iii)
applied to (*), we get Pr('B(Z)'), still within HAS+. This shows
HAS + hi? p (Z)^Pr0B(Z) ') , i.e. Pr('PrOB((X, φ))')'), verifying (iv).

(v) The induction and number-theoretical axioms hold because the
integers of M are standard.

We now verify comprehension. Let B be given, and fix (Z, φ) in M,
and fix y. For simplicity we suppress mention of y. Take W =
{k: M\= B(ky(Z,φ))} and take ψ to be the formula B(k,φ) with free
variable k. We will show that M\r Q((W, ψ),(Z, φ)) and
^hPr('Q((W,ψ),(Z,φ))') where Q(X,Z) is V/c(/c E X«->B(/c,Z)).
(This will verify the comprehension axiom of HAS+ in M.) First,

since

M\= kE(W,ψ) iff fcG W iff MV B(k,(Z,ψ)).

Second, observe that Q(ψ,φ) is

which follows in HAS+ from

which is equivalent to

This latter follows in HAS+ from VZVU(Vk(k E Z ±+k E
U)^(B(Z)±+B([/))). This, however, is a theorem of HAS+, for each
fixed β, as is easily seen by induction on the complexity of B. We have
therefore shown that HAS+\-Q(ψ, φ); hence Pr('Q((W, ψ),(Z, φ))'),
verifying axiom (v) and completing the proof of Lemma 1.

We are now in a position to define fp-realizability for HAS. The
definition will associate to each formula A of HAS another formula A R,
with the same free variables. A R will be a formula of HAS+. A R (y, Z)
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is read, 4<A(y,Z) is fp-realized." The use of the abbreviation Bp

introduced above, in case B is A R, leads to the notation A RP(y, Z), which
is read "A (y, Z) is fp-realized? and provably so/' The definition is given
by the following inductive clauses, which are exactly the same as for HA
except for the added clauses dealing with species quantification, and of
course the new interpretation of Pr. The hard (new) work has been
done in the construction and modeling of HAS+.

AR is A for A prime

(A &B)R is AR &BR

(A v B f is ARP v BRP

(A->B)Λ is ARP^BR

(-ΊA)* is (A->0=l)*

βxA)R is 3xARP; similarly for (3XA)R

QfxA)R is \/xAR; similarly for (\/XA)R

Before proceeding to the soundness proof for fp-realizability, we need a
few lemmas.

LEMMA 2. HAS+hA*p(y, Y)^Pr(Ά*p(y, Y)')

Proof. Argue in HAS+ as follows: Suppose ARP(y,Y), i.e.
A*(y, Y) & Pr(4AR(y, Y)'). By axiom (iv), Pr('Pr(Ά*(y, Y)J). Then
by axiom (i), Pr(ΆΛP(y, Y)').

LEMMA 3. Let A be a formula with free variables x = xu , JCΠ,

some o/ lvfticft may be species variables. Let t be a term in (possibly) xλ

(which may be a species or number variable). Then
HAS+h AR(Ux2, • ,χn)<+(At)R (JC2, , jcn)

Fmo/. The two assertions can be proved simultaneously by induc-
tion on the complexity of A. If A is prime there is nothing to
prove. We leave the reader to use the induction hypothesis to prove
that HAS+:t- AR(t)+>(At)R (suppressing mention of x2, , JCΠ). Then,
applying axiom (iii) of HAS+, we conclude that HAS+ h A RP(t) <-> (At)R

) R P

LEMMA 4. HAS+ h A RP & (A -> B)RP -> B RP

Proof Let y, Y include the free variables of A and B. Argue in
HAS+ as follows: Suppose ARP & (A^B)RP. By Lemma 2, we have
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Pr(ΆR P(y, Y)'). Since (A-+B)R is A *p -> B*, and we have
(A -+B)RP, we have Pr(ΆRP(y, Y)-+BR(y, Y)'). Combining this with
Pr(Ά*p(y, Y)'), and applying axiom (i), we obtain
Pr('B*(y, Y)'). Combining this with £*, we have BRP.

LEMMA 5. Lβί B have only x free. Then HAS+h(V*#)*P

->VJCB* P . Similarly if B has only Y free.

Proof Argue in HAS+. (VxB)RP is VxBR & Pr('VxB*') V*BRP

is Vx(B* & Pr('B *(*)')). Thus it suffices to show Pr('VjcD')
—>VXPΓ('D(JC)'), and in the case of a species variable Y,
Pr('V YD')-»VYPr('D(Y)'); but these are special cases of axiom (i).

THEOREM 1. (Soundness of fp-realizability for HAS). //
HAShΛ, then HAS+\-AR.

Proof We prove that the universal closures of the axioms of HAS
are provably fp-realized, and that if the universal closures of the premises
of a rule of HAS are provably fp-realized, the same is true of the
universal closure of the conclusion. The logical rules and axioms and
the number-theoretical axioms, including induction for the extended
language, are handled in exactly the same way as for arithmetical
fp-realizability; the lemmas above allow the proofs in [1] to be read
verbatim, except for changing the numbers of the lemmas referred
to. This leaves only the comprehension axiom to check. Recall the
form of

(CA) Vy,Z3WVrc(nE W**B{n,y,Z))

Thus, (CA)* is Vy,Z3W(Vn(nEiyoβ(n,y,Z))) Λ P . Let us write
Q(W) for V n ( n E W β β R ( n , y , Z ) ) . Then, according to the com-
prehension axiom in HAS+, we can find W such that
Q(W) & Pr('Q(WY). We will show

(Vn(nE W±*B{n,y,Z)))RP.

We have n E W*+BR(n,y,Z); hence we have (Vn(nE
W±*B{n,y,Z)))R. Let D(W) be Vn(n e W ±* B (n, y, Z)); then we
have shown HAS+h Q(W)-+DR(W), with free variable W. Since
applying rule (iii) of HAS+, we have, in HAS+,
?r(ίQ(WY)->Pr('DR(Wy). Since we have Pr(Ό(W)'), we have
Pr(ςD*(W)'); combining this with DR(W) obtained above, we have
DRP(W), as desired, which completes the proof of the soundness
theorem.
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Having completed our extension of fp-realizability to HAS, we now
wish to point out the independence results which follow. As discussed
in the introduction, the applications of fp-realizability are to certain
statements expressing the continuity of effective operations, namely
Myhill-Shepherdson's theorem MS, and various versions of
Kreisel-Lacombe-Shoenfield's theorem, for instance KLS =
KLS(NN), KLS(2N), KLS(/?, /?), and more generally KLS(X, i?), for X a
provably complete separable metric space. For the sake of complete-
ness, we shall take the space to give these statements precisely; the
reader familiar with them can skip the next paragraph.

Let TOT(y) express that y is total, i.e. Vx3nΓ(y, x, n), where T is (a
formula expressing) Kleene's Γ-predicate. Let EXT(e) express that e is
extensional, i.e.

Vn, k, y, z (TOT(y) & TOT(z) & Teyn & Tezk-+ U{k) = U(n))9

where U is Kleene's result-extracting function. Then EO(tf), which
expresses that e is an effective operation, is given by

Vy(TOT(y)^3fcTeyfc)& EXT(β).

Let CONT(e) express the continuity of e :

Vy(TOT(y)^3mVz(TOT(z) & {z){m)

where as usual {z}(m) denotes the sequence of the first m values of
z. Then KLS is Ve(EO(e)->CONT(β)). Some variants of KLS are
discussed in [1]. KLS(2N) is similar to KLS, except that in KLS(2"),
TOT(y) is replaced by Vx3m(Tyxm& U(m)^l). KLS(i?,i?), or
more generally KLS(X, R), can be explained as follows: an element of X
is a (recursive) sequence of integers (thought of as coding a sequence of
elements of the countable dense base of X), satisfying the "convergence
condition" ρ(ym ym)= Vn 4- 1/m, where p is a certain (recursive) function
giving the metric on the countable base of X. For instance, in the case
X = R, the integers are thought of as coding rationals and p gives the
metric on the rationals. (This way of looking at the reals is worked out
in detail in Bishop's book [4].) The "convergence condition" becomes a
precise formula CC(y) if we regard yn as an abbreviation for {y}(n - 1)
and quantify over all n, m ^ 1 (thus taking care of the minor problem that
the indices in yn start from 1 while those in {y}(n) start from 0.) Then
"y E X" is the formula TOT(y) & CC(y). The relation of (extensional)
equality in X is given by y — z iff
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yEX &zEX & Vfc(p(yk, zk)ίk 21k).

We then can say e E Rx iff

Vy(y eX^3 {

where the last ~ is extensional equality in R, not in X. We let
eECONT(X,R) be the formula expressing straightforwardly that e
determines a continuous function from X to R, using rational ε and
δ. Then KLS(X, R) is Ve(eERx->eG CONT(X, R)). Myhill-
Shepherdson's continuity theorem MS concerns partial effective opera-
tions on partial functions; its exact formulation can be found in [1].

The independence results of this paper apply not only to HAS+ but
also to HAS+ augmented by "extended Church's thesis" ECT and the
schema TI of transfinite induction on all recursive well-orderings. ECT,
which is extensively studied in [6], is the following principle:

ECT: Vx(Λ(x)-^3yB(jc,y)->3eVx(Λ(x)->3n(Texn& B(x, U(n))),
A almost negative.

(A is called almost negative if it contains no disjunction, and has 3 only
immediately preceding primitive-recursive formulae.) Thus Church's
thesis CT is obtained by taking A to be some trivially true sentence; it is
easy to see that some restriction on A is needed. The principle TI( < )
of transfinite induction on a recursive relation < is the schema
Vy (Vz < yA(z)-» A(y))-> VzΛ(z). The schema TI is TI(< ) taken for
all provably linear recursive orderings < which determine actual well-
orderings. (Thus of course TI is not recursively axiomatizable.) One
reason TI is interesting is that, when added to classical arithmetic, it
proves all classically true arithmetic theorems; this theorem of Kreisel,
Shoenfield, and Wang is discussed in [1].

THEOREM 2. KLS, KLS(2"), KLS(R,R), KLS(X,£), and MS are
all underiυable in HAS + ECT + TI.

Proof. First we show the underivability in HAS. Let T be (a
natural theory giving) the arithmetical consequences of HAS+. Use the
provability predicate of T in the definition of fp-realizability given for
arithmetic in [1]; let the resulting notion of realizability be written Ar (as
distinct from AR). We claim that for arithmetic A, and with M as in
Lemma 1, MV AR iff Ar is true. Suppose this for the moment; we
show how to finish the proof. Since T is a true theory (by Lemma 1), the
main theorem of [1] shows that KLSr is false. Suppose
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HAS h KLS. Then by Theorem 1, we would have HAS+ h KLS* hence,
by Lemma 1, M\= KLS*; hence KLSΓ is true, contradiction. Hence
HAS does not prove KLS. MS and the other versions of KLS are
treated similarly, appealing to other theorems of [1], [2], and [3] to know
they are not fp-realized. It remains to check that MV AR iff Ar is
true. To do this, let S be the system formed from HAS+ by adding the
axiom schema Ϋττ(

iB')<^ΊPτ{'B') for all arithmetic B. Then M is a
model of S, since M^?rT('B') iff TVB iff HAS+hB iff
ΛH-Pr('B'). But, SVAr*->AR and S V ARP ±*Arp (where Aψ means
A Γ &Pr Γ (Ά")), as is easily checked by simultaneous induction on the
complexity of A. For instance, to go from ShAΓ<-»A* to
S h A φ *+ A *p, note that by axiom (iii), S h Pr('A τ ') +* Pr('A R'); but Ar

is arithmetic, so 5 hPr T ( 'A r ' )^PreA* ' ) ; so S h Arp +> ARP. Combining
S h Ar ** A R and the fact that M is a model of S, we obtain M (= A R iff
MY Ar\ but since A r is arithmetic, we obtain Jί \= AR iff Ar is true, as
desired.

Next we discuss the extension to TL Suppose HAS + TI proved
KLS. Then some finite number of instances of TI are involved in the
proof. Let T be the theory formed from HAS by adding the schema of
transfinite induction only for the finitely many recursive well-orderings
involved in the proof. Form Γ+ from T as HAS+ was formed from
HAS. Then all the results of this paper apply with HAS and HAS+

replaced by T and T+. In particular, the axioms of TI hold in M since
the integers of M are standard; and T+ V AR for each instance A of TI
included in T, just as in arithmetic. Hence, just as above for HAS, KLS
is not derivable in T, contradiction. MS and the other versions of KLS
are handled similarly.

As in arithmetic, we use a conservative extension result of
Troelstra's to extend the independence results to ECT. Namely, KLS
(in all versions) and MS belong to the class Γo [6, p. 250] for which ECT is
conservative. This is proved as on p. 252 of [6], using the realizability of
[6, p. 202-203] to extend the result to HAS. This completes the proof.

2. Remarks. There is an alternative approach to the extension
of fp-realizability which is worth discussion. In this approach, we also
form an auxiliary theory, called HAS°. This theory HAS° is quite
different from HAS+; it is based on the idea that in HAS° the structure of
the universe of species should be completely determined — every species
is defined by a formula of HAS°, just as every integer is given by a
numeral in HA. To arrange this, we form HAS° by adding to HAS a
function symbol F which takes species arguments and produces a
number. The value F(X) will be a term defining X (or technically a
Gδdel number of such a term). That is, HAS° also contains, for each
formula B of (at least) HAS, a function symbol cB and the axiom
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(CA°) Vn(n E cB(y, Z ) ~ JB(π, y, Z))

Note that if B has only n free, then cB is a 0-ary function, in other words
a constant term. We add to HAS° an axiom asserting that F(X) is the
Gόdel number of such a term, and F(cB)

 = ίcB'\ more generally
F(cB(y, Z))='cB(y,F(z))' (the expression on the right can be rigorously
explained.) Then Bp can be defined as B(y, Z) & Pr(y, F(Z)), where
Pr is a provability predicate in HAS; in other words, there is now no need
to axiomatize Pr.

This approach is closer in spirit to the treatment of arithmetic; the
function F plays the role for species that Num(y) = 'y' plays for
integers. Unfortunately, if fp-realizability is defined in HAS°, we get
soundness not for HAS but only for the arithmetical comprehension
axiom. The reason for this is as follows: in verifying that CA is
fp-realized, we have to be able to form {n: BR(n, y, Z)}, in HAS°. Now
BR is generally a formula of HAS°, not of HAS. Therefore we need to
extend the comprehension axiom in HAS° to formulae of HAS°. This
can be consistently done, for formulae not involving species quantifiers;
but if we allow species quantifiers in the comprehension axiom, HAS°
will founder on a Cantor-Russell paradox: we will be able to prove the
existence of {F(X): F(X)f£ X}, in other words, {y: 3X(y =
F(X)& y£X)}.

Nevertheless, an analogous approach to fp-realizability does work
for Feferman's system EM discussed in the introduction, since this system
does not include second-order comprehension. Also, an approach
analogous to that taken in the first part of this paper for HAS works for
EM. Thus there are two different ways to extend fp-realizability to
EM. However, we give details of neither, since EM can be quite simply
interpreted in HAS. This interpretation (which is more carefully dis-
cussed in [3]) allows us to extend our independence results to EM.
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