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ON THE DISTRIBUTION
OF a-POINTS OF A STRONGLY
ANNULAR FUNCTION

AKk10 OsADA

This paper gives an example of a strongly annular function
which omits 0 near an arc I on the unit circle C and which
omits 1 near the complementary arc C-I. This example
affirmatively answers the following question of Bonar: Does
there exist any annular function for which we can find two or
more complex numbers w such that the limiting set of its
w-points does not cover C?

1. Introduction. The purpose of this paper is to study the distribu-
tion of a-points of annular functions. We recall that a holomorphic
function in the open unit disk D :| z | <1 is said to be annular [1] if there
is a sequence {J,} of closed Jordan curves about the origin in D,
converging out to the unit circle C:|z|=1, such that the minimum
modulus of f(z) on J, increases to infinity as n increases. When the J,
can be taken as circles concentric with C, f(z) will be called strongly
annular. Given a finite complex number a, the minimum modulus
principle guarantees that every annular function f has infinitely many
a-points in D and hence their limit points form a nonempty closed
subset, say Z'(f,a), of C. On the other hand, by virtue of the
Koebe-Gross theorem concerning meromorphic functions omitting three
points, it follows from the annularity of f that open sets C — Z'(f, a) and
C — Z'(f, b) on the circle can not overlap if a# b and consequently that
the set of all values a for which Z'(f, a) # C must be at most countable.
Therefore we may well say such a to be singular for f.

For this reason we will be concerned with the set S(f)=
{a:Z'(f,a) # C} in this paper. We denote by | S(f)| the cardinality of
S(f) and then, from the simple fact observed above, we have that
0=|S(f)| = N,, which in turn conversely tempt us to raise the following
question: Given a cardinality N(0= N =N,), can we find any annular
function f for which |S(f)| = N? ([11, [2)).

We know many examples of strongly annular functions such that
|S(f)|=0 [4]. In particular if an annular function f belongs to the
MacLane class, i.e., the family of all nonconstant holomorphic functions
in D which have asymptotic values at each point of everywhere dense
subsets of C, the set S(f) becomes necessarily empty. As for N =1,
Barth and Schneider [3] constructed an example of an annular function f
for which |S(f)|=1. The example involved in their construction,
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however, did not appear to be strongly annular. An example of a
strongly annular f with |S(f)|=1 was constructed independently by
Barth, Bonar and Carroll [2] and the author [5]. The aim of this paper is
to give an example of a strongly annular function f for which | S(f)| = 2.

2. For this purpose we consider a class of functions holomorphic in
D. Let I, and I, be a pair of complementary open arcs on the unit circle
C and choose a Jordan arc J, connecting the end points of I, which is
contained, except for its end points, in the open sector

{z:0<|z|<1, z/|z|€ L} (G =0,1).

Further denote by G; the Jordan domain surrounded by I, and J, and
consider

S(Gy,G)={g € H(D): g is bounded away from 0 (or 1) in G, (or G,)}

where H(D) denotes the set of all functions holomorphic in D. In terms
of this notation our purpose is in amount to find a strongly annular
function which is locally a uniform limit of a sequence in S(G,, G,). To
construct such a function, we make essential use of the approximation
theorem of Runge, which asserts that if K is a compact set with
connected complement relative to the plane and a function g is
holomorphic in an open set containing K, for any p >0, there is a
polynomial P such that

|P(z)-g(z)[<p  (z€K).

We call such P an approximating polynomial with respect to the triple
(K, g p). In our arguments to follow we may restrict ourselves to the
special pair of G, and G, such that

Gy={z=x+iy:|z|<1,2x+]|y|>1} and G,={z: -z € Gy}

with no loss of generality, which serves to simplify the geometric
formulation. Then the Runge theorem, in cooperation with our previ-
ous lemma, yields the following:

LEMMA. Let there be given positive numbers € and k, numbers a and
b with 0<a <b <1, and a function f in S(G,, G,) (simply S), which is
bounded in G,. Then there exists a function g in S, which is also bounded
in Gy, such that

M lg(2)|>k  (z|=b)
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and
@) lg(z)-f(z)I<e (|z]|=a).

Proof. We first divide the circle |z|=b into 4 closed arcs as
follows:

A, =[— bie", bie "], A={z:-z€ A}
B, = [bie™", bie"], B,={z:Z € By}.

Here t(>0) should be chosen so small that we may apply our lemma [5]
to an appropriately small open annular sector R,, which is contained in

{z=x+iy:y>0,|z|>a, 2x|+]|y|<1}

and contains the arc B,. Set R, ={z:Z € R}.

Next, to make use of the Runge theorem, we prepare two triples, which
are defined, except for ¢; and p;, by the following:
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K =G UA UA, ;UD,D,={z:|z|=a}
(3) {&(2)=0 (zeG UA,UD,) (G =0,1).
g§(z)=¢(>0) (z€A.)

As for ¢, (or p,) we shall later choose positive numbers large (or small)
enough to satisfy our requirements. Obviously these definitions allow us
to apply the Runge theorem to (K, g, p,) (j =0,1) and hence we can find
an approximating polynomial P. On the other hand, if necessary,
adding a small vector we may assume that f(z)#0,1 on the circle
|z|=b. Combining these functions, define a function F holomorphic in
D by

F(z)={(f(z) — 1) exp (P«(2)) + 1} exp (P\(2)).

Then carefully observing (3) and suitably choosing values of ¢; and p;, we
can conclude that the function F is a member of S, bounded in G, and has
the following properties:

4) |F(z)|>2k (z€{z:[z|=b}~B,~B))
©) |F(z)-f(z)|<e/2  (z €D,).

In addition it may be supposed that F does not vanish on B,U B,.

Thus the last step in our construction of g is to make | F(z)| large on
the remaining arcs B, and B, without losing the properties described
above of F. Given ¢,>0 and p,>0, applying our lemma [5] to the
annular sectors R, and R, previously chosen, and successively using the
standard ‘‘pole sweeping’’ method for the resulting rational functions, we
can find a holomorphic function H, in D such that

Q) |H(z)|>c. (z €B),

) ReH,(z)>—-p, (z€RN{z:|z|=b}-B)
and

®) |H/(z)|<2p. (z€D-T))

where T, (or T)) denotes an appropriate ‘‘pole sweeping route’” ending at
=i (or —i) which is contained in

E={z=x+iy:y>0, [z|>b 2|x|+]|y|<1}
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(or E, ={z : Z € E}) (see Figure 1). Using these functions and F defined
above, set

F(z){1+ Hy(z)}{1 + Hi(2)} = g(2).

Since F does not vanish on B, U B,, if we appropriately choose a large (or
small) positive number as a value of ¢, (or p,), by virtue of (4) and (5)
together with (6), (7) and (8), we can show that the function g belongs to
the class S, is bounded in G, and further satisfies (1) and (2). This proves
Lemma.

3. The following result is immediate from Lemma in 2.

THEOREM. Let {r.} and {k,} be two sequences of positive numbers
with r, 11 and 1<k, T +». Then there exists a function f, which is
locally a uniform limit of a sequence in S and which furthermore satisfies

that |f(z)| = k, on the circle |z |=r,.

Proof. 1t is sufficient to construct a sequence {f,(z)} in S such that

©  IH@I>k it 1Sj=n (G ={z:]|z|=r))
(10) | fo(2) = fur(2) | < €0 (z|=r-, nz2)
and

(11) f. is bounded in G,

where {€,} is a preassigned sequence of positive numbers with e, < + .
In order to construct {f,} inductively, let f,(z) =2k, and suppose that
fi,* ", fa-1 have already been defined. In Lemma in 2, on setting
f=fi1, a=r.y, b=r, k =k, and € = min{e,,, m,," -+, m,_;} where
m; = min{|f,_(z)| = k; : z € C;}, we can'find a function f, in S satisfying
(9), (10) and (11). Thus we obtain a sequence {f.} in S, which, by virtue
of (10), converges uniformly on any compact subset of D. Obviously its
limit f is a desired function in Theorem. Hence our proof is complete.

The author is grateful for the valuable comments and suggestions of
the referee.
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