ON A THEOREM OF DELAUNAY
 AND SOME RELATED RESULTS

B. Gordon and S. P. Mohanty

Dedicated to the memory of Professor T. S. Motzkin
Delaunay has proved that if $\epsilon=a p \phi^{2}+b p \phi+c$ is a unit in the ring $Z[\theta]$, where $\theta^{3}-P \theta^{2}+Q \theta-R=0, p$ is an odd prime, $\phi=p^{\prime} \theta, t \geqq 0$ and $p \nmid a$, then no power ϵ^{m} (m positive) can be a binorm, i.e. $\epsilon^{m}=u+v \theta$ is impossible for m a positive integer. Hemer has pointed out that in the above situation, $\epsilon^{m}=u+v \theta$ is also impossible for m a negative integer.

In this paper the above result is extended as follows.
Theorem 1. If $\epsilon=a \theta^{2}+b \theta+c$ is a unit in $Z[\theta]$, where $\theta^{3}=d \theta^{2}+e \theta+f$ and $p^{\alpha}\left\|a, p^{\beta}\right\| b, p$ being a prime, then $\epsilon^{n}=$ $u+v \theta$ is impossible for $n \neq 0$ in the following cases:
(i) When $1 \leqq \alpha \leqq \beta$ and p is odd,
(ii) When $2 \leqq \alpha \leqq \beta$ and $p=2$,
(iii) When $\beta \leqq \alpha<2 \beta$ and p is odd,
(iv) When $\beta \leqq \alpha<2 \beta-1$ and $p=2$.

As an application of this and some other similar theorems, all integer solutions of the equation $y^{2}=x^{3}+113$ are determined.

First we prove two simple lemmas.
Lemma 2. If $p^{\alpha} \|\binom{ n}{p^{q}}$ then $p^{\alpha} \left\lvert\,\binom{ n}{i}\right.$, where the prime p satisfies $p^{q}<i<p^{q+1}$ and $p^{\alpha-1} a\binom{n}{p^{q+1}}$. Furthermore if $p \mid n$ and $p \not x i$ then $p^{\alpha+1} \left\lvert\,\binom{ n}{i}\right.$.

Proof. Let $i=p^{q}+r$. Then $0<r<p^{q+1}-p^{q}$. Hence

$$
\binom{n}{i}=\binom{n}{p^{q}}\binom{n-p^{q}}{r} \frac{r!}{\prod_{j=1}^{r}\left(p^{q}+j\right)} .
$$

Since $\Pi_{j=1}^{r}\left(p^{q}+j\right) / r$! is an integer not divisible by p and $p^{\alpha} \|\binom{ n}{p^{q}}$, we have $p^{\alpha} \left\lvert\,\binom{ n}{i}\right.$.

If $p \mid n$ and $p \nmid i$ then $p \nmid r$ for $i=p^{q}+r$. Then

$$
\binom{n-p^{q}}{r}=\left(\frac{n-p^{q}}{r}\right)\binom{n-p^{q}-1}{r-1}
$$

is divisible by p. Hence $p^{\alpha+1} \left\lvert\,\binom{ n}{i}\right.$.
Again from

$$
\binom{n}{p^{q+1}}=\binom{n}{p^{q}}\binom{n-p^{q}}{p^{q+1}-p^{q}} \frac{s!}{\prod_{j=1}^{s}\left(p^{q+1}-j\right)}\left(\frac{p^{q+1}-p^{q}}{p^{q+1}}\right)
$$

where $s=p^{q+1}-p^{q}-1$, we see that $p^{\alpha-1} \left\lvert\,\binom{ n}{p^{q+1}}\right.$, and the lemma is proved.

Lemma 3. Let $\epsilon=a \theta^{2}+b \theta+c$ be a unit in $Z[\theta]$, where $\theta^{3}=$ $d \theta^{2}+e \theta+f$, and $\epsilon^{-1}=a^{\prime} \theta^{2}+b^{\prime} \theta+c^{\prime}$. If $p^{\alpha}\left\|a, p^{\beta}\right\| b$, where p is a prime and $\alpha \beta \neq 0$, then $p^{\alpha} \| a^{\prime}$ and $p^{\beta} \| b^{\prime}$ in the following cases:
(i) $\alpha \leqq \beta<2 \alpha$
(ii) $\beta \leqq \alpha<2 \beta$

For $\alpha \leqq \beta$ we have $p^{\alpha} \| a^{\prime}$ and $p^{\alpha} \mid b^{\prime}$.
Proof. Since $\left(a \theta^{2}+b \theta+c\right)\left(a^{\prime} \theta^{2}+b^{\prime} \theta+c^{\prime}\right)=1$, we have,

$$
\begin{equation*}
a a^{\prime} d^{2}+a b^{\prime} d+a^{\prime} b d+a a^{\prime} e+a c^{\prime}+c a^{\prime}+b b^{\prime}=0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
a a^{\prime} f+a a^{\prime} d e+a b^{\prime} e+a^{\prime} b e+b c^{\prime}+b^{\prime} c=0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
a a^{\prime} d f+a b^{\prime} f+a^{\prime} b f+c c^{\prime}=1 \tag{3}
\end{equation*}
$$

From (3) it follows that $p \nmid c^{\prime}$.

Case (i). From (1) we have $c a^{\prime} \equiv 0\left(\bmod p^{\alpha}\right)$ as $\alpha \leqq \beta$. Since $p \nmid c$ we get $a^{\prime} \equiv 0\left(\bmod p^{\alpha}\right)$. From (2) we obtain $b^{\prime} c \equiv 0\left(\bmod p^{\alpha}\right)$ for $\alpha \leqq \beta$, whence $b^{\prime} \equiv 0\left(\bmod p^{\alpha}\right)$. If $\beta<2 \alpha$, then (2) gives $b^{\prime} c \equiv 0$ $\left(\bmod p^{\beta}\right)$, or $b^{\prime} \equiv 0\left(\bmod p^{\beta}\right)$. If $p^{\alpha+1} \mid a^{\prime}$, then from (1) we have $a c^{\prime} \equiv 0$ $\left(\bmod p^{\alpha+1}\right)$. Since $p \nmid c^{\prime}$ we get $a \equiv 0\left(\bmod p^{\alpha+1}\right)$, a contradiction. Hence $p^{\alpha} \| a^{\prime}$. Similarly if $p^{\beta+1} \mid b^{\prime}$, then from (2) we get $b c^{\prime} \equiv 0\left(\bmod p^{\beta+1}\right)$ when $\beta<2 \alpha$. Again we arrive at a contradiction since $p \nmid c^{\prime}$ and $p^{\beta} \| b$. Hence $p^{\beta} \| b^{\prime}$.

Case (ii). Since $\beta \leqq \alpha$, (2) yields $b^{\prime} c \equiv 0\left(\bmod p^{\beta}\right)$. Then we have $b^{\prime} \equiv 0\left(\bmod p^{\beta}\right) \quad$ for $p \nmid c$. Using $\alpha<2 \beta$, we get $a^{\prime}(b d+c) \equiv$ $0\left(\bmod p^{\alpha}\right)$ from (1). Then $a^{\prime} \equiv 0\left(\bmod p^{\alpha}\right)$ as $p \nmid(b d+c)$. If $b^{\prime} \equiv$
$0\left(\bmod p^{\beta+1}\right)$, then from (2) we see that $b c^{\prime} \equiv 0\left(\bmod p^{\beta+1}\right), \quad$ a contradiction. Hence $p^{\beta} \| b^{\prime}$. If $a^{\prime} \equiv 0\left(\bmod p^{\alpha+1}\right)$ we have from (1) $a c^{\prime}+b b^{\prime} \equiv 0\left(\bmod p^{\alpha+1}\right)$. We get a contradiction for $\alpha<2 \beta$. Hence $p^{\alpha} \| a^{\prime}$.

Proof of Theorem 1. Let $n>0$. Case (i) and (ii). Let $1 \leqq \alpha \leqq \beta$.
Since ϵ is a unit, $p \nmid c$. Moreover $\epsilon=a \theta^{2}+b \theta+c=$ $p^{\alpha}\left(r \theta^{2}+s \theta\right)+c$ where $p \nmid r$. Let $\left(r \theta^{2}+s \theta\right)^{i}=a_{i} \theta^{2}+b_{t} \theta+c_{i}$, with a_{i}, b_{t} and c_{i} rational integers. Then

$$
\begin{aligned}
\epsilon^{n}= & \left(a \theta^{2}+b \theta+c\right)^{n}=\left[c+p^{\alpha}\left(r \theta^{2}+s \theta\right)\right]^{n}=c^{n}+\binom{n}{1} c^{n-1} p^{\alpha}\left(r \theta^{2}+s \theta\right) \\
& +\binom{n}{2} c^{n-2} p^{2 \alpha}\left(a_{2} \theta^{2}+b_{2} \theta+c_{2}\right)+\cdots+p^{n \alpha}\left(a_{n} \theta^{2}+b_{n} \theta+c_{n}\right)=u+v \theta
\end{aligned}
$$

Comparing the coefficients of θ^{2}, we have

$$
\begin{equation*}
n c^{n-1} p^{\alpha} r+\binom{n}{2} c^{n-2} p^{2 \alpha} a_{2}+\cdots+p^{n \alpha} a_{n}=0 \tag{4}
\end{equation*}
$$

If p is an odd prime, we see using Lemma 2 that the first term of (4) is divisible by a lower power of p than the others. If $p=2$ and $\alpha \geqq 2$ the same conclusion holds. Hence (4) can never be satisfied. So ϵ^{n} can never be of the form $u+v \theta$ in these cases.

Cases (iii) and (iv). Now $\epsilon=p^{\beta}\left(r \theta^{2}+s \theta\right)+c$, where $p^{\alpha-\beta} \| r$.
Then the coefficient of θ^{2} in $\epsilon^{n}=\left[c+p^{\beta}\left(r \theta^{2}+s \theta\right)\right]^{n}$ is

$$
\begin{equation*}
n c^{n-1} p^{\beta} r+\binom{n}{2} c^{n-2} p^{2 \beta} a_{2}+\cdots+p^{n \beta} a_{n} \tag{5}
\end{equation*}
$$

where $\left(r \theta^{2}+s \theta\right)^{t}=a_{i} \theta^{2}+b_{i} \theta+c_{t}$ with a_{i}, b_{i} and c_{i} rational integers. Again using Lemma 2 and the fact that $\alpha<2 \beta$, we see that the first term of (5) is divisible by a lower power of p than the others if p is an odd prime.

In case $p=2$ and $\alpha<2 \beta-1$ the same conclusion holds. Hence (5) can never be zero, i.e. $\epsilon^{n}=u+v \theta$ is impossible. This proves the theorem for $n>0$.

We next consider $\epsilon^{n}=u+v$ for $n<0$.
Let $n=-m$ and $\epsilon^{-1}=a^{\prime} \theta^{2}+b^{\prime} \theta+c^{\prime}$. Then we have $\epsilon^{n}=$ $\left(\epsilon^{-1}\right)^{m}=\left(a^{\prime} \theta^{2}+b^{\prime} \theta+c^{\prime}\right)^{m}$ where $m>0$. From Lemma 3, we see that $p^{\alpha} \| a^{\prime}, p^{\alpha} \mid b^{\prime}$ for $\alpha \leqq \beta$, and $p^{\alpha}\left\|a^{\prime}, p^{\beta}\right\| b^{\prime}$ for $\beta \leqq \alpha<2 \beta-1, \alpha \leqq \beta<$ 2α and $\beta \leqq \alpha<2 \beta$. Hence $\left(a^{\prime} \theta^{2}+b^{\prime} \theta+c^{\prime}\right)^{m}=u+v \theta$ is impossible for $m>0$. Combining these results we see that $\epsilon^{n}=u+v \theta$ is impossible for $n \neq 0$, and the theorem is proved.

We note that if the conditions of Theorem 1 are not fulfilled, then $\epsilon^{n}=u+v \theta$ is possible for $n>3$; examples are given in [2, page 417].

Very often the following theorem is useful.
Theorem 4. Let $\epsilon=a_{1} \theta^{2}+b_{1} \theta+c_{1}$ be a unit in $Z[\theta]$, where $\theta^{3}-$ $p_{1} \theta-q_{1}=0$. If $p_{1} \equiv 0(\bmod 3)$, then

$$
\begin{equation*}
\epsilon^{n}=u+v \theta \tag{6}
\end{equation*}
$$

is impossible for $n \neq 0$ provided $a_{1} \not \equiv 0(\bmod 3), b_{1}^{2}+2 a_{1} c_{1} \not \equiv 0(\bmod 3)$, and $b_{1}^{2} c_{1}+a_{1} c_{1}^{2}+a_{1}^{2} b_{1} q_{1} \neq 0(\bmod 3)$.

Proof. Let $\epsilon^{n}=a_{n} \theta^{2}+b_{n} \theta+c_{n}$. Then we have

$$
\begin{aligned}
& a_{n+1}=a_{n}\left(a_{1} p_{1}+c_{1}\right)+b_{n} b_{1}+c_{n} a_{1} \\
& b_{n+1}=a_{n}\left(a_{1} q_{1}+b_{1} p_{1}\right)+b_{n}\left(c_{1}+a_{1} p_{1}\right)+c_{n} b_{1}
\end{aligned}
$$

and

$$
c_{n+1}=a_{n} b_{1} q_{1}+b_{n} a_{1} q_{1}+c_{n} c_{1}
$$

Hence we get $a_{2}=a_{1}^{2} p_{1}+b_{1}^{2}+2 a_{1} c_{1}, b_{2}=a_{1}^{2} q_{1}+2 b_{1} c_{1}+2 a_{1} b_{1} p_{1}$, and $c_{2}=$ $c_{1}^{2}+2 a_{1} b_{1} q_{1}$. Then $a_{3}=a_{1}^{3} p_{1}^{2}+3 a_{1} b_{1}^{2} p_{1}+3 a_{1}^{2} c_{1} p_{1}+3 b_{1}^{2} c_{1}+3 a_{1} c_{1}^{2}+$ $3 a_{1}^{2} b_{1} q_{1}, \quad b_{3}=2 a_{1}^{3} p_{1} q_{1}+3 a_{1} b_{1}^{2} q_{1}+3 a_{1}^{2} c_{1} q_{1}+3 a_{1}^{2} b_{1} p_{1}^{2}+b_{1}^{3} p_{1}+6 a_{1} b_{1} c_{1} p_{1}+$ $3 b_{1} c_{1}^{2}$, and $c_{3}=3 a_{1}^{2} b_{1} p_{1} q_{1}+b_{1}^{3} q_{1}+6 a_{1} b_{1} c_{1} q_{1}+a_{1}^{3} q_{1}^{2}+c_{1}^{3}$. Suppose $p_{1} \equiv 0$ $(\bmod 3)$. Then $a_{3} \equiv 0(\bmod 3), b_{3} \equiv 0(\bmod 3)$, and $c_{3} \equiv b_{1} q_{1}+a_{1} q_{1}^{2}+c_{1}$ $(\bmod 3)$.

Since ϵ^{3} is a unit, $c_{3} \not \equiv 0(\bmod 3)$ as $a_{3} \equiv b_{3} \equiv 0(\bmod 3)$.
Hence we have $c_{3} \equiv 1$ or $2(\bmod 3)$.
Suppose $n \equiv 1(\bmod 3)$, and put $n=1+3 m$ in (6). We get

$$
\epsilon \cdot\left(\epsilon^{3}\right)^{m}=u+v \theta
$$

or

$$
\left(a_{1} \theta^{2}+b_{1} \theta+c_{1}\right)(\pm 1)^{m} \equiv u+v \theta(\bmod 3)
$$

This congruence is impossible unless $a_{1} \equiv 0(\bmod 3)$. Hence if $a_{1} \not \equiv 0$ $(\bmod 3)$, then $n \neq 1(\bmod 3)$. Suppose $n \equiv 2(\bmod 3)$, and let $n=$ $2+3 m$. Then (6) gives

$$
\left(a_{2} \theta^{2}+b_{2} \theta+c_{2}\right)(\pm 1)^{m} \equiv u+v \theta(\bmod 3)
$$

This is impossible unless $a_{2} \equiv 0 \quad(\bmod 3)$, i.e. $b_{1}^{2}+2 a_{1} c_{1} \equiv 0$
$(\bmod 3)$. Hence if $b_{1}^{2}+2 a_{1} c_{1} \neq 0(\bmod 3)$, then $n \equiv 2(\bmod 3)$ is impossible. Finally suppose $n=3 m$ in (6). Then we get

$$
\begin{equation*}
\left(a_{3} \theta^{2}+b_{3} \theta+c_{3}\right)^{m}=u+v \theta \tag{7}
\end{equation*}
$$

Now $a_{3} \equiv b_{3} \equiv 0(\bmod 3)$, and $a_{3} \equiv 3 b_{1}^{2} c_{1}+3 a_{1} c_{1}^{2}+3 a_{1}^{2} b_{1} q_{1}(\bmod 9)$. If $b_{1}^{2} c_{1}+a_{1} c_{1}^{2}+a_{1}^{2} b_{1} q_{1} \neq 0(\bmod 3)$, then $a_{3} \neq 0(\bmod 9)$ and hence by Theorem 1, (7) is impossible for m an integer, positive or negative.

Therefore $n=0$ is the only solution to (6).
Lemma 5 (Delaunay [2, page 385]). If $b \theta+c$, where $b \neq 0, \pm 1$, is a positive unit of $Z[\theta]$ where $\theta^{3}-P \theta^{2}+Q \theta-R=0$, then no power >1 of $b \theta+c$ can be a binomial unit. (In other words all the positive powers of the positive unit $b \theta+c$ are of the form $L \theta^{2}+M \theta+N$, where $L \neq 0$).

We prove two theorems which are useful when $b= \pm 1$.
Theorem 6. Let $\epsilon= \pm \theta+c$ be a unit in $Z[\theta]$, where $\theta^{3}-P \theta^{2}+$ $Q \theta-R=0$. If $\theta^{3} \equiv 0\left(\bmod p^{2}\right)$, where p is a prime, then $p \nmid c$ and $\epsilon^{n}=u+v \theta$ is impossible for $n>1$.

Proof. We have $(\epsilon-c)^{3} \equiv 0\left(\bmod p^{2}\right) . \quad$ If $p \mid c$ then $\epsilon^{3} \equiv 0(\bmod p)$ where $p^{3} \mid N\left(\epsilon^{3}\right)= \pm 1$. Hence $p \nmid c$. Let $\epsilon^{n}=u+v \theta, n>1$. Then

$$
\begin{aligned}
(c \pm \theta)^{n}= & c^{n}+\binom{n}{1} c^{n-1}(\pm \theta)+\binom{n}{2} c^{n-2} \theta^{2}+\binom{n}{3} c^{n-3}(\pm \theta)^{3}+\cdots \\
& +(\pm \theta)^{n}=u+v \theta
\end{aligned}
$$

Let $\theta^{n}=r_{n} \theta^{2}+s_{n} \theta+t_{n}$. Then

$$
\begin{equation*}
\binom{n}{2} c^{n-2}+\binom{n}{3} c^{n-3}\left(\pm r_{3}\right)+\cdots+\left(\pm r_{n}\right)=0 \tag{8}
\end{equation*}
$$

As $\theta^{3} \equiv 0 \quad\left(\bmod p^{2}\right)$, we have $r_{i} \equiv 0 \quad\left(\bmod p^{2[i / 3]}\right)$. Since $p \nmid c$, $p \left\lvert\,\binom{ n}{2}\right.$. Suppose $p^{k} \|\binom{ n}{2}$. If $p=2$ then $2^{k} \|\binom{ n}{2}$. If $p \neq 2$ then $p^{k} \|\binom{ n}{2},\binom{n}{3} \cdots\binom{n}{p-1}$ and $p^{k-1} \|\binom{ n}{p}$. Using Lemma 2, we see that each term of (8) except the first is divisible by at least p^{k+1}. Hence $p^{k+1} \left\lvert\,\binom{ n}{2}\right.$, a contradiction.

Theorem 7. Let $\epsilon= \pm \theta+c_{1}$ be a unit of the ring $Z[\theta]$, where $\theta^{3}-3 P \theta^{2}+3 Q \theta-R=0$. If $c_{1}+P \neq 0(\bmod 3)$ and $c_{1}^{2}+2 c_{1} P+Q \neq 0$ $(\bmod 3)$, then $\epsilon^{n}=u+v \theta$ is impossible for $n>1$.

Proof. Let $\varepsilon=\theta+c_{1}$. Then $\theta=\epsilon-c_{1}$. So from

$$
\theta^{3}-3 P \theta^{2}+3 Q \theta-R=0
$$

we get

$$
\left(\epsilon-c_{1}\right)^{3}-3 P\left(\epsilon-c_{1}\right)^{2}+3 Q\left(\epsilon-c_{1}\right)-R=0
$$

or

$$
\epsilon^{3}=3\left(c_{1}+P\right) \epsilon^{2}-3\left(c^{2}+2 c_{1} P+Q\right) \epsilon+\left(c_{1}^{3}+3 c_{1}^{2} P+3 c_{1} Q+R\right) .
$$

Now $N(\epsilon)=c_{1}^{3}+3 c_{1}^{2} P+3 c_{1} Q+R= \pm 1$.
For convenience we write $\epsilon^{3}=3 r \epsilon^{2}-3 s \epsilon \pm 1$. Now by hypothesis $3 \nmid r$ and $3 \nmid s$. Let $\epsilon^{n}=u+v \theta$. Then $\epsilon^{n}=u+v\left(\epsilon-c_{1}\right)=u_{1}+v_{1} \epsilon$, say. Suppose $n \equiv 2(\bmod 3)$. Then $\epsilon^{2}\left(\epsilon^{3}\right)^{m}=u_{1}+v_{1} \epsilon$, where $n=$ $2+3 m$. As $\epsilon^{3} \equiv \pm 1(\bmod 3)$, we have $\pm \epsilon^{2} \equiv u_{1}+v_{1} \epsilon(\bmod 3)$, which is impossible. Let $n \equiv 0(\bmod 3)$ and $n \neq 0$. Putting $n=3 m$, we get

$$
\begin{equation*}
\left(3 r \epsilon^{2}-3 s \epsilon \pm 1\right)^{m}=u_{1}+v_{1} \epsilon \tag{9}
\end{equation*}
$$

But this is impossible by Theorem 1, whether m is a positive or a negative integer, for $3 \nmid r$. Hence if $n \neq 0$, the only possibility is $n \equiv 1(\bmod 3)$.

Let $n=1+3 m$, where $m>0$. Then

$$
\epsilon\left(3 r \epsilon^{2}-3 s \epsilon \pm 1\right)^{m}=u_{1}+v_{1} \epsilon
$$

or

$$
\left(3 r \epsilon^{2}-3 s \epsilon \pm 1\right)^{m}=v_{1} \pm u_{1}\left(\epsilon^{2}-3 r \epsilon+3 s\right) .
$$

Let $\left(r \epsilon^{2}-s \epsilon\right)^{i}=r_{i} \epsilon^{2}+s_{i} \epsilon+t_{i}$, where r_{i}, s_{i}, t_{i} are rational integers. Then

$$
\begin{aligned}
(\pm 1)^{m} & +\binom{m}{1}(\pm 1)^{m-1} 3\left(r \epsilon^{2}-s \epsilon\right)+\binom{m}{2}(\pm 1)^{m-2} 3^{2}\left(r_{2} \epsilon^{2}+s_{2} \epsilon+t_{2}\right) \\
& +\cdots+3^{m}\left(r_{m} \epsilon^{2}+s_{m} \epsilon+t_{m}\right)= \pm u_{1} \epsilon^{2} \mp 3 r u_{1} \epsilon+\left(v_{1} \pm 3 s u_{1}\right)
\end{aligned}
$$

On equ: ing coefficients of ϵ^{2} and ϵ, we obtain
(10) $(\pm 1)^{m-1} 3 m r+(\pm 1)^{m-2} 3^{2}\binom{m}{2} r_{2}+(\pm 1)^{m-3} 3^{3}\binom{m}{3} r_{3}+\cdots+3^{m} r_{m}$

$$
= \pm u_{1}
$$

and

$$
\begin{align*}
& -(\pm 1)^{m-1} 3 m s+(\pm 1)^{m-2} 3^{2}\binom{m}{2} s_{2}+(\pm 1)^{m-3} 3^{3}\binom{m}{3} s_{3}+\cdots+3^{m} s_{m} \tag{11}\\
& \quad=\mp 3 r u_{1}
\end{align*}
$$

Multiplying both sides of (10) by $3 r$ and then adding to (11), we obtain

$$
\begin{aligned}
& (\pm 1)^{m-1} 3 m\left(3 r^{2}-s\right)+(\pm 1)^{m-2} 3^{2}\binom{m}{2}\left(3 r_{2} r+s_{2}\right) \\
& \quad+(\pm 1)^{m-3} 3^{3}\binom{m}{3}\left(3 r_{3} r+s_{3}\right)+\cdots+3^{m}\left(3 r_{m} r+s_{m}\right)=0 .
\end{aligned}
$$

We see from this that $3 \mid m\left(3 r^{2}-s\right)$. As $3 \nmid s$, we have $3 \mid m$. Suppose $3^{k} \| m$. Using Lemma 2, we easily see that all the terms except the first are divisible by 3^{k+2}, while the first is exactly divisible by 3^{k+1}, which is impossible. Hence $m=0$, i.e. $n=1$.

So if n is a nonnegative integer and $\epsilon^{n}=u+v \theta$, then $n=0$ or $n=1$. The proof for $\epsilon=-\theta+c$, is completely analogous.

Theorem 8. If $\epsilon=b_{1} \theta+c_{1}$ is a positive unit in $Z[\theta]$, where $\theta^{3}-$ $P \theta^{2}+Q \theta-R=0$ with $D(\theta)$ negative and $\neq-23$, then $\epsilon^{n}=u+v \theta$ implies that $n \geqq 0$.

To prove this theorem we need the following well-known result.
Lemma 9 (Nagell [8]). If η is a unit, $D(\eta)<0,0<\eta<1$, then $\eta^{n}=x+y \eta$ implies that $n \geqq 0$, except in the case when $\eta^{3}+\eta^{2}-1=0$. In this case $\eta^{-2}=1+\eta$ and $D(\eta)=-23$.

Proof of Theorem 8. Let $\epsilon=b_{1} \theta+c_{1}$ be a positive unit in $Z[\theta]$. Then $0<\epsilon<1$. Since ϵ is contained in $Z[\theta]$, we get $D(\epsilon)=$ $\delta^{2} \cdot D(\theta)$. Hence $D(\epsilon)<0$ and $\neq-23$.

Let $\epsilon^{n}=u+\theta$. Since $\epsilon=b_{1} \theta+c_{1}$ we have

$$
\left(b_{1} \theta+c_{1}\right)^{n}=u+v \theta
$$

Then $b_{1} \mid v$ when n is a positive integer. In case n is negative, we put $n=-m$ where m is positive. Let $\epsilon^{-1}=a^{\prime} \theta^{2}+b^{\prime} \theta+c^{\prime}$. Then $\theta^{3}=$ $P \theta^{2}-Q \theta+R$ and $\epsilon \epsilon^{-1}=1$ imply

$$
\begin{gather*}
b_{1} a^{\prime} P+b_{1} b^{\prime}+c_{1} a^{\prime}=0 \tag{12}\\
-b_{1} a^{\prime} Q+b_{1} c^{\prime}+c_{1} b^{\prime}=0 \tag{13}
\end{gather*}
$$

and

$$
\begin{equation*}
b_{1} a^{\prime} R+c_{1} c^{\prime}=1 \tag{14}
\end{equation*}
$$

Since $\left(b_{1}, c_{1}\right)=1, \epsilon=b_{1} \theta+c_{1}$ being a unit, we conclude that $b_{1} \mid a^{\prime}$ and $b_{1} \mid b^{\prime}$ from (12) and (13) respectively. Then from

$$
\left(b_{1} \theta+c_{1}\right)^{n}=\left(a^{\prime} \theta^{2}+b^{\prime} \theta+c^{\prime}\right)^{m}=u+v \theta
$$

we see that $b_{1} \mid v$.
Since $\epsilon=b_{1} \theta+c_{1}$, we have $\theta=\left(\epsilon-c_{1}\right) / b_{1}$, and hence $\epsilon^{n}=u+v \theta$ can be written as

$$
\epsilon^{n}=u+\frac{v\left(\epsilon-c_{1}\right)}{b_{1}}=\left(u-v c_{1} / b_{1}\right)+v \epsilon / b_{1}=x+y \epsilon
$$

where x and y are rational integers. Then by Lemma $9, n \geqq 0$. For binorms in fields of degree higher than three, one can see [9]. Recently Bernstein [1] has shown that units of the form $\epsilon=1+x w+y w^{2}, x, y \in Q$ exist for infinitely many algebraic number fields $Q(w)$ of degree $n \geqq 4$.

Now we solve $y^{2}-113=x^{3}$ to show the application of some of the above theorems. The above equation is a special case of the well-known Mordell Equation $y^{2}-k=x^{3}$, which has interested mathematicians for more than three centuries, and has played an important role in the development of number theory. In the range $0<k \leqq 100$ it is known that $y^{2}-k=x^{3}, k=17$ has the maximum number of solutions. In the range $100<k \leqq 200$ it is found [6] that $y^{2}-k=x^{3}, k=113$ has the maximum number of solutions. The complete solution of this equation is given below.

The fundamental unit of $Q(\sqrt{113})$ is $\eta=776+73 \sqrt{113}$, and $h(Q \sqrt{113})=1$. 2 splits into two different prime ideals in the field $Q(\sqrt{113})$. Hence by Theorem 5 of Hemer [4], all the integral solutions of $y^{2}-113=x^{3}$ can be obtained from the following equations:

$$
\begin{gathered}
\pm y+\sqrt{113}=\left(\frac{a+b \sqrt{113}}{2}\right)^{3}, \quad x=\frac{a^{2}-113 b^{2}}{4} \\
\pm y+\sqrt{113}=(776+73 \sqrt{113})\left(\frac{a+b \sqrt{113}}{2}\right)^{3}, \quad x=\left(113 b^{2}-a^{2}\right) / 4 \\
\frac{1}{2}(\pm y+\sqrt{113})=\left(\frac{11+\sqrt{113}}{2}\right)\left(\frac{a+b \sqrt{113}}{2}\right)^{3}, \quad x=\left(a^{2}-113 b^{2}\right) / 2
\end{gathered}
$$

$$
\begin{aligned}
& \frac{1}{2}(\pm y+\sqrt{113})=\left(\frac{11+\sqrt{113}}{2}\right)(776+73 \sqrt{113})\left(\frac{a+b \sqrt{113}}{2}\right)^{3} \\
& x=\left(113 b^{2}-a^{2}\right) / 2 \\
& \frac{1}{2}(\pm y+\sqrt{113})=\left(\frac{11+\sqrt{113}}{2}\right)(776-73 \sqrt{113})\left(\frac{a+b \sqrt{113}}{2}\right)^{3} \\
& x=\left(113 b^{2}-a^{2}\right) / 2
\end{aligned}
$$

On equating irrational parts we have respectively

$$
\begin{gather*}
73\left(a^{3}+3 \cdot 113 a b^{2}\right)+776\left(3 a^{2} b+113 b^{3}\right)=8 \tag{16}\\
\left(a^{3}+3 \cdot 113 a b^{2}\right)+11\left(3 a^{2} b+113 b^{3}\right)=8
\end{gather*}
$$

$$
\begin{gather*}
1579\left(a^{3}+3 \cdot 113 a b^{2}\right)+16785\left(3 a^{2} b+113 b^{3}\right)=8 \tag{18}\\
-27\left(a^{3}+3 \cdot 113 a b^{2}\right)+287\left(3 a^{2} b+113 b^{3}\right)=8
\end{gather*}
$$

Clearly (15) has no solution in integers. From (16) it is easily seen that a and b are both even. Putting $a=2 u_{1}, b=2 v_{1}$ in (16), we obtain

$$
\begin{equation*}
73\left(u_{1}^{3}+3 \cdot 113 u_{1} v_{1}^{2}\right)+776\left(3 u_{1}^{2} v_{1}+113 v_{1}^{3}\right)=1 \tag{20}
\end{equation*}
$$

The substitution $u_{1}=21 u-52 v, v_{1}=-2 u+5 v$ in (20) yields

$$
\begin{equation*}
F(u, v)=u^{3}-33 u v^{2}+76 v^{3}=1 \tag{21}
\end{equation*}
$$

This corresponds to the ring $Z[\theta]$, where $\theta^{3}-33 \theta-76=0$. In this ring the fundamental unit is $\epsilon=4 \theta^{2}-16 \theta-71$. By Theorem 1,

$$
\left(4 \theta^{2}-16 \theta-71\right)^{n}=u+v \theta
$$

is only possible for $n=0$. Then $u=1, v=0$, and so $a=42, b=-4$. Hence $x=11, y= \pm 38$.

The substitution $a=u_{1}-11 v_{1}, b=v_{1}$ in (17) gives

$$
\begin{equation*}
u_{1}^{3}-24 u_{1} v_{1}^{2}+176 v_{1}^{3}=8 \tag{22}
\end{equation*}
$$

Hence $u_{1} \equiv 0(\bmod 2)$. Putting $u_{1}=2 u, v_{1}=v$ in (22), we get

$$
\begin{equation*}
F(u, v)=u^{3}-6 u v^{2}+22 v^{3}=1 \tag{23}
\end{equation*}
$$

This corresponds to the ring $Z[\theta]$, where $\theta^{3}-6 \theta-22=0 ; Z[\theta]$ has fundamental unit $\epsilon=2 \theta-7$.

Now we consider

$$
\begin{equation*}
(2 \theta-7)^{n}=u+v \theta \tag{24}
\end{equation*}
$$

By Theorem $8, n \geqq 0$ and by Lemma $5, n \leqq 1$. Therefore (24) has only the two solutions $n=0, n=1$. These solutions correspond to $x=2, y= \pm 11$ and $x=422, y= \pm 8669$ respectively.

Substituting $a=-21 u_{1}+53 v_{1}, b=2 u_{1}-5 v_{1}$ in (18), we get

$$
\begin{equation*}
8 v_{1}^{3}+12 v_{1}^{2} u_{1}-42 v_{1} u_{1}^{2}+27 u_{1}^{3}=8 \tag{25}
\end{equation*}
$$

We put $u_{1}=2 v, v_{1}=u-v$ in (25), since $u_{1} \equiv 0(\bmod 2)$. This gives

$$
\begin{equation*}
F(u, v)=u^{3}-24 u v^{2}+50 v^{3}=1 \tag{26}
\end{equation*}
$$

This corresponds to the ring $Z[\theta]$, where $\theta^{3}-24 \theta-50=0$, with the fundamental unit $\epsilon=-3 \theta^{2}+10 \theta+41$. We see that $\epsilon \equiv 2 \theta^{2}+1(\bmod 5)$ and $\epsilon^{2} \equiv 1(\bmod 5)$ while $\epsilon^{2} \equiv-5 \theta^{2}+5 \theta+6(\bmod 25)$. Hence $\epsilon^{2}=$ $a_{1} \theta^{2}+b_{1} \theta+c_{1}$ implies that $5\left\|a_{1}, 5\right\| b_{1}$. Hence, by Theorem $1, \epsilon^{n}=$ $u+v \theta$ is impossible for an even integer $n \neq 0$. When n is odd we have

$$
2 \theta^{2}+1 \equiv u+v \theta(\bmod 5)
$$

This is impossible. So we have $n=0$. Then $u=1, v=0$ and hence $x=8, y= \pm 25$.

The substitution $a=111 u_{1}+10 v_{1}, b=11 u_{1}+v_{1}$ in (19) yields

$$
\begin{equation*}
v_{1}^{3}-312 v_{1} u_{1}^{2}-2128 u_{1}^{3}=8 \tag{27}
\end{equation*}
$$

Since (27) implies $v_{1} \equiv 0(\bmod 2)$, we put $v_{1}=12 u+10 v, u_{1}=-u-v$ and get

$$
\begin{equation*}
F(u, v)=v^{3}+12 v u^{2}+14 u^{3}=1 . \tag{28}
\end{equation*}
$$

The fundamental unit of the ring $Z[\theta]$, where $\theta^{3}+12 \theta-14=0$, is $\epsilon=\theta-1$, satisfying $\epsilon^{3}+3 \epsilon^{2}+15 \epsilon-1=0$.

Then by Theorems 8 and 6 ,

$$
\epsilon^{n}=\left(\theta^{\prime}-1\right)^{n}=v+u \theta
$$

has only two solutions, viz. $n=0$ and 1 .

Incidentally, we cannot reach this conclusion by using the standard criterion of Hemer [4], which is as follows:

Let $\epsilon= \pm \theta+c$ be a unit in a cubic ring, and let the odd prime p be a divisor of $N\left(\epsilon^{\prime}+\epsilon^{\prime \prime}\right)$. Suppose further that $\epsilon^{m}=a_{m} \epsilon^{2}+b_{m} \epsilon+c_{m}$ is the least power of ϵ with $m>0$ such that $a_{m} \equiv b_{m} \equiv 0(\bmod p)$. Then $\epsilon^{n}=u+v \epsilon$ has no even solution except $n=0$ if $a_{m} \neq 0\left(\bmod p^{2}\right)$, and no odd solution except $n=1$ if $c_{m+2} \neq 0\left(\bmod p^{2}\right)$.

Now $N\left(\epsilon^{\prime}+\epsilon^{\prime \prime}\right)=N(-3-\epsilon)=-46$ has only the odd prime divisor $p=23$. The least exponent m such that $a_{m} \equiv b_{m} \equiv 0(\bmod 23)^{\prime}$ is $m=22$, and $a_{m} \not \equiv 0\left(\bmod 23^{2}\right)$. But unfortunately $c_{24} \equiv 0\left(\bmod 23^{2}\right)$.

When $\quad n=0, u=0, v=1 ; a=-11, b=-1 ; x=-4, y= \pm 7$.
When $\quad n=1, u=1, v=-1 ; a=20, b=2 ; x=26, y= \pm 133$.
Hence the Diophantine equation $y^{2}-113=x^{3}$ has exactly 6 solutions in integers. They are $(x, y)=(11, \pm 38),(8, \pm 25),(2, \pm 11),(-4, \pm 7)$, ($422, \pm 8669$) and $(26, \pm 133)$.

Acknowledgement. We are thankful to the referee for comments for the improvement of the paper.

References

1. Leon Bernstein, Truncated units in infinitely many algebraic number fields of degree $n \geqq 4$, Math. Ann., 213 (1975), 275-279.
2. B. N. Delaunay and D. K. Faddeev, The theory of irrationalities of the third degree, Amer. Math. Soc., Providence, Rhode Island (1964).
3. R. Finkelstein and H. London, On Mordell's Equations $y^{2}-k=x^{3}$, Bowling Green State University Press.
4. O. Hemer, On the Diophantine equation $y^{2}-k=x^{3}$, Diss. Uppsala (1952).
5. L. J. Mordell, Diophantine equations, Pure and Appl. Math., 30, Academic Press, New York, (1969), 238-254.
6. S. P. Mohanty, On the Diophantine equation $y^{2}-k=x^{3}$, Diss. UCLA (1971).
7. -_, On consecutive integer solutions for $y^{2}-k=x^{3}$, Proc. Amer. Math. Soc., 48 (1975), 281-285.
8. T. Nagell, Darstellung ganzer Zahlen durch binäre kubische Formen mit negativer Diskriminante, Ibid Bd. 28 (1928).
9. Hans-Joachim Stender, Lösbare Gleichungen $a x^{n}-b y^{n}=C$ and Grundeinheiten für einige algebraische Zahlkörper vom Grade $n, n=3,4,6$; Habilitation paper, University of Cologne (1975).

Received November 3, 1975. The preparation of this paper was partly supported by NSF grant GP-23113.

University of California, Los Angeles
AND
I. I. T. Kanpur, Kanpur-16, India

