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ON A THEOREM OF DELAUNAY
AND SOME RELATED RESULTS

B. GORDON AND S. P. MOHANTY

Dedicated to the memory of Professor T. S. Motzkin

Delaunay has proved that if e = apφ2 + bpφ + c is a unit in
the ring Z[θ], where θ'- Pθ2 + Qθ - R = 0, p is an odd prime,
φ = p'θ, ί = 0 and p X a, then no power em (m positive) can be
a binorm, i.e. em = u + vθ is impossible for m a positive integer.
Hemer has pointed out that in the above situation, em = u + vθ
is also impossible for m a negative integer.

In this paper the above result is extended as follows.

THEOREM 1. // e = aθ2 + bθ + c is a unit in Z[θ], where

θλ = dθ2 + eθ + / and pa || a, pβ || b, p being a prime, then en =
u + vθ is impossible for n^ 0 in the following cases:

(i) When 1 ̂  a ^ β and p is odd,
(ii) W/ien 2 ̂  α ^ β and p = 2,
(iii) W/zeπ β ^a <2β and p is odd,
(iv) W/zen β^a <2β-\ and p - 2.

As an application of this and some other similar theorems,
all integer solutions of the equation y2 = x 1 + 1 1 3 are de-
termined.

First we prove two simple lemmas.

LEMMA 2. // pa \\ ί q) then pa \ I . ), w/iβre ί/iβ prime p satisfies

pq<i<pq+ι and p a ~ ι a ( ^ . Λ Furthermore if p\n and p X i then

Proof. Let i = p" + r. Then 0< r <pq+ι-p". Hence

/ = 1

Since ΐlr

}=ι(pq + j)/rl is an integer not divisible by p and p α | | ί q ), we

have p°

If p\n and p X i then p /f r for / = p g 4- r. Then

r - 1
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is divisible by p. Hence pa+1\ ί . ).

Again from

n\( n-p" \ s\ (pq+ι-p"

w h e r e s=pq+1 — p q — l, w e s e e t h a t p a ~ ι \ ( q + ι ) , a n d t h e l e m m a is

p r o v e d .

LEMMA 3. Let e = aθ2+bθ + c be a unit in Z[θ]> where θ3 =
dθ2+eθ+f, ande~λ = a'θ2+b'θ + c'. Ifpa | |α, pβ\\b, where p is a prime
and aβ^ 0, then pa\\af and pβ\\br in the following cases:

(i) a^β<2a
(ii) /3^α<2)β

For a ^ β we have pa\\ar and pa \ b'.

Proof Since (aθ2+bθ + c)(a'θ2+b'θ + c')=Λ, we have,

(1) aa'd2+ ab'd + a'bd + aa'e + ac' + ca'+bb' = 0,

(2) aa'f+aa'de + ab'e + a'be + bc' + b'c = 0,

and

(3) aa'df + ab'f + a'bf + cc' = 1.

From (3) it follows that p Jf c'.

Case (i). From (1) we have cα' = 0 (modp α ) as α ^ β. Since
/? )( c we get α' = 0 (modp α ) . From (2) we obtain b'c = 0 (mod/;") for
α S β, whence ft' = 0 (modp α ) . If jS<2α, then (2) gives b'c=0
(modp β ) ? or b' = 0 (modp β ) . If p α + 1 | α ' , t h e n from (1) we have ac' = 0
(modpα + 1). Since p X c' we get a = 0 (modpα + 1), a contradiction. Hence
p α | | α r . Similarly if pβ+ι\b\ then from (2) we get k:' = 0 (modpβ + 1)
when β <2a. Again we arrive at a contradiction since p X c' and
pβ\\b. Hence p*31| b'.

(ii). Since 0 ^ a, (2) yields 6'c = 0 (modpβ). Then we have
ft' = 0(modpβ) for p Jf c. Using α<2/3, we get α'(6d + c) =
0(modpα) from (1). Then α' = 0(modpα) as pX{bd + c). If b1 =
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0(mod/?β+1), then from (2) we see that ί>c' = 0 (modpβ + 1), a
contradiction. Hence pβ\\b'. If a' = 0 (modpα + 1) we have from (1)

ac'+ bbf = O (mod/?α+1). We get a contradiction for a<2β. Hence
p«Wa>.

Proof of Theorem 1. Let n > 0. Case (i) and (ii). Let 1 ̂  a ^ β.
Since e is a unit, p X c. Moreover e = aθ2+ bθ + c =

p α (r0 2 + 50) + c where p J" r. Let (r02 + 5(9)' = afi2 + &,0 + c, , with αt, 6f

and Cι rational integers. Then

en = (aθ2+bθ + c)n = [c+pa(rθ2+sθ)]n = cn 4- ( ^ cn-χpa(rθ2+ sθ)

+ (2) cn-2p2a{a2θ
2+b2θ + c 2)+ + pna{anθ

2+bnθ + cn) = u + vθ.

Comparing the coefficients of 02, we have

(4) n c ^ p - r + W c " ' 2 p 2 α α 2 + + p^fln = 0.

If /? is an odd prime, we see using Lemma 2 that the first term of (4) is
divisible by a lower power of p than the others. If p = 2 and a ^ 2 the
same conclusion holds. Hence (4) can never be satisfied. So e" can
never be of the form u + υθ in these cases.

Cases (iii) and (iv). Now e = pβ(rθ2+ sθ)+ c, where p a~β | |r.
Then the coefficient of θ2 in e" = [c + p β ( r 0 2 + s0)]π is

(5) ncn-ιpβr+ (£j cn~2p2βa2+ + p n β a n ,

where (rθ2 + sθ)1 = afi2 + bβ + cι with ai5 fcf- and ct rational integers.
Again using Lemma 2 and the fact that a < 2/3, we see that the first
term of (5) is divisible by a lower power of p than the others if p is an odd
prime.

In case p = 2 and α < 2/3 - 1 the same conclusion holds. Hence (5)
can never be zero, i.e. en = u + vθ is impossible. This proves the
theorem for n > 0 .

We next consider en = u + v for n < 0.
Let n=-m and e"1 = α ' 0 2 + b'θ + c\ Then we have en =

(e-1)"1 = {arθ2+b'θ + c')m where m > 0 . From Lemma 3, we see that
p β | | α ' , pa\bf for α ^ j S , a n d p α | | α ' , p β ||ft' for β ^ α < 2β - 1, a ^ j8 <
2a and β g a < 2/3. Hence (α r 0 2 + b'θ + c')m = u + υθ is impossible
for m > 0. Combining these results we see that en = u + υθ is impossi-
ble for n ^ 0 , and the theorem is proved.
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We note that if the conditions of Theorem 1 are not fulfilled, then

en = u 4 υθ is possible for n > 3 ; examples are given in [2, page 417].

Very often the following theorem is useful.

T H E O R E M 4. Let e = aιθ
2+ bxθ + cλ be a unit in Z[θ], where Θ3~

pxθ -qx = 0. If pι=0 ( m o d 3 ) , then

(6) en = u + vθ

is impossible for n ̂  0 provided a{ψ^0 (mod 3), b\ 4 2aλcλ ψ^ 0 (mod 3), and

b2cx + axc
2

x + a2

xbxqx^0 (mod3).

Proof. Let en = α n 0 2 4 6n0 + cπ. Then we have

an+λ = ^ ( α ^ j + cO+fe^! !- c n α b

and

cn + 1 = απfei(?i + bna1qί 4- QCJ.

Hence we get α2 = a?/?! + b\ + 2fliC1? fe2

 = o\q\ + 26^1 + 2axbλpu and c2 =

c? + 2axbxqx. Then α 3 = a\p\ + 3axb\px

Jr 3a2

xcxpx + 3b2

xcx + 3axc\ +

3a2

xbλqu b3 = 2a\pλqx + 1>axb\qλ + *ia\cιqλ + 3a\bxp\ + fe?p! 4- 6axbxcxpx +

3&iC?, and c3 = 3a2bxpxqx + b\qx 4- 6axbxcxqx + a3

xq
2

x + c\. Suppose pi = 0

(mod3). Then α3 = 0 (mod3), fe3 = 0(mod3), and c3 = bxqx + axq
2

x + cx

(mod 3).

Since e3 is a unit, c 3 ^ 0 (mod 3) as α3 = b3 = 0 (mod 3).

Hence we have c3 = 1 or 2 (mod 3).

Suppose n = 1 (mod 3), and put n = 1 4- 3m in (6). We get

or

(α1(924-&1(9 4 c 1 ) ( ± l ) m =u + vθ (mod 3).

This congruence is impossible unless ^ = 0 (mod 3). Hence if ax^

(mod3), then nψ^l (mod3). Suppose n = 2 (mod3), and let n

2 4 3m. Then (6) gives

( α 2 θ 2 4- b2θ + c2) ( ± l ) m Ξ ii 4- υθ (mod 3).

This is impossible unless a2 = 0 (mod 3), i.e. b2

x + 2axcx =
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(mod3). Hence if b\-\-2aγcλ^^ (mod3), then n=2 (mod3) is

impossible. Finally suppose n = 3m in (6). Then we get

(7) (a3θ
2 + b3θ + c3)

m = u + υθ.

Now α3 = &3 = 0 (mod3), and a3 = 3b\cι + 3a1c\ + 3a\bιqι (mod9). If
b\cλ + axc\+ a\bλqλ^Q (mod3), then α 3 ^ 0 (mod9) and hence by
Theorem 1, (7) is impossible for m an integer, positive or negative.

Therefore n ~ 0 is the only solution to (6).

LEMMA 5 (Delaunay [2, page 385]). Ifbθ + c, where b^ 0, ± 1, is
a positive unit ofZ[θ] where θ3 - Pθ2 + Qθ - R = 0, then no power > 1 of
bθ + c can be a binomial unit. (In other words all the positive powers of
the positive unit bθ + c are of the form LΘ2 + Mθ + N, where L/ 0).

We prove two theorems which are useful when b = ± 1 .

THEOREM 6. Let e = ±θ + c be a unit in Z[0], where Θ3-PΘ2 +
Qθ - R = 0. 1/ 03 = O (modp2), w/tere p is α prime, then p )( c and
en = u + υθ is impossible for n> 1.

Proof. We have (e - cf = 0 (modp2). If p | c then e3 = 0 (modp)
where p3 |iV(e3)= ± 1 . Hence p Jί c. Let en = u + υθ, n > 1. Then

(c ± 0)" = cn + (") cn~\±θ)+ (") cn~202+ (3) cn'\± 0)3+

+ (± 0)" = w + ^0

Let 0" = rn0
2 + snθ + ίn. Then

(8)

As 03 = O (modp2), we have r ,=0 (modp2[l/3]). Since p ^ c,

). Suppose p M l Q I f P = 2 t h e n ^ l l Q I f P ^ 2 t h e n

P I ( ? ) ' ( ^ ) *# v - 1 ) a n ( ^ Pkl\ ( ) ' U s i n g L e m m a 2, w e s e e t h a t

II \£ J \3' \p -»-/ II \p /
each term of (8) except the first is divisible by at least pk+\ Hence

Λk + 1 , a contradiction.

THEOREM 7. Lei e = ±Θ + Cι be a unit of the ring Z[θ], where
Θ3-3PΘ2 + 3QΘ-R=O. If d + P^0 (mod3) and c2 + 2dP
(mod3), then en = u + υθ is impossible for n>\.
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Proof. Let ε = θ + cx. Then θ = β - cx. So from

Θ3-3PΘ2 + 3QΘ-R = 0,

we get

(6 - c 1 ) 3 - 3 P ( e - c 1 ) 2 + 3 O ( € - C l ) - l ? = 0 ,

or

β3 = 3(d + P)e2 - 3(c2 + 2dP + Q)e + (c\ + 3c?P + 3dQ + Λ).

Now N(e) = c3 + 3cjP+ 3dQ + R = ± 1.
For convenience we write e3 = 3re2-3se ± 1 . Now by hypothesis

3 | r and 3^5. Let e" = M + vθ. Then en = u + υ(e - cι) = uλ + u2e,
say. Suppose n = 2 (mod3). Then €2(€3)m =«!+ i^e, where n =
2 +3m. As€ 3 = ±1 (mod3), we have ± β 2 = MI + UI€ (mod3), which is
impossible. Let n = 0 (mod 3) and n^O. Putting n = 3m, we get

(9) (3re2- 356 ± l)m = uί+υ1€.

But this is impossible by Theorem 1, whether m is a positive or a negative
integer, for 3 )( r. Hence if n ̂  0, the only possibility is n = 1 (mod 3).

Let n = 1 + 3m, where m > 0. Then

β(3re2 - 3^6 ± l ) m = uλ + Uiβ,

or

(3r62 - 356 ± l)m = v,± uλ{e2 - 3r6 + 3s).

Let (re2 - sej = r,62 + 5,6 + ί, where rh sh tx are rational integers. Then

± ir- !3(r6 2 - 56) + (£} (± ir"232(r26
2 + 526 + ί2)

+ + 3m (rm€2 + 5m6 + ίm) = ± MJ62 + 3ΓM!6 + (ϋ! ± 35M0.

On equ< ing coefficients of 62 and 6, we obtain

(10) ( ± i r

and
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(11) - (± iy-^ms + (± l)m"232 (£j s2 + (± l)"-333 (™) s3 + + 3msm

Multiplying both sides of (10) by 3r and then adding to (11), we obtain

( ± l)m~l3m (3r2 - s) + ( ± l) m ~ 2 3 2 (™) (3r2r + 52)

(3r3r + s3) + . . . + 3- (3rmr + sm) = 0.

We see from this that 3 |ra(3r 2 -s). As 3Jίs, we have
31 m. Suppose 3k \\m. Using Lemma 2, we easily see that all the terms
except the first are divisible by 3fe+2, while the first is exactly divisible by
3k+1, which is impossible. Hence ra = 0, i.e. n = 1.

So if n is a nonnegative integer and en = u + υθ, then n - 0 or n = 1.
The proof for e = - 0 4- c, is completely analogous.

THEOREM 8. // 6 = fejfl + cx is a positive unit in Z[θ], where θ3-
PΘ2+QΘ-R=0 with D(θ) negative and έ -23, then en = u + vθ
implies that n ^ 0.

To prove this theorem we need the following well-known result.

LEMMA 9 (Nagell [8]). // η is a unit, D(τj)<0, 0 < 77 <l,then
ηn = x + yη implies that n ^ 0, except in the case when η3 + η2 - 1 = 0. In
this case η~2 = 1 4- η and D(η)= - 23.

Proof of Theorem 8. Let e = bγθ + Ci be a positive unit in
Z[θ]. Then 0 < e < 1. Since β is contained in Z[0], we get D(β) =
S2-D(θ). Hence D ( e ) < 0 and / -23.

Let en = w + 0. Since e = Z>!0 + Ci we have

( M + d) n = u + vθ.

Then ί>! 11? when n is a positive integer. In case n is negative, we put
n= -m where m is positive. Let e~ι = a'θ2+b'θ + c'. Then 03 =
PΘ2-QΘ + JR and ββ"1 = 1 imply

(12)

(13)
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and

(14) M ' £ + C i c ' = l .

Since (buc{)= 1, e = bλθ + cι being a unit, we conclude that bλ\a' and
bι\bf from (12) and (13) respectively. Then from

(bxθ + cx)
n = (afθ2+b'θ + c')m =>u+υθ,

we see that bλ \ υ.
Since e = b{θ + Ci, we have 0 = (e - cx)/fei, and hence en = u + υθ can be
written as

ye,

where JC and y are rational integers. Then by Lemma 9, n ̂  0. For
binorms in fields of degree higher than three, one can see [9]. Recently
Bernstein [1] has shown that units of the form e = l + xw + y w 2 , x , y G θ
exist for infinitely many algebraic number fields Q(w) of degree n ̂  4.

Now we solve y 2 - 113 = x3 to show the application of some of the
above theorems. The above equation is a special case of the well-known
Mordell Equation y 2 - k = x3, which has interested mathematicians for
more than three centuries, and has played an important role in the
development of number theory. In the range 0 < k ̂  100 it is known
that y 2 - f c = j c 3 , fc = 17 has the maximum number of solutions. In the
range 100<fc^200 it is found [6] that y2-k=x\ fc = 113 has the
maximum number of solutions. The complete solution of this equation
is given below.

Thejfundamental unit of Q ( V l l 3 ) is η = 776+ 73V113, and
Λ ( Q V l l 3 ) = l . 2 splits into two different prime ideals in the field
O(Vl l3) . Hence by Theorem 5 of Hemer [4], all the integral solutions
of y2— 113 = jc3 can be obtained from the following equations:

± y +

V I Ϊ 3 = (776 + 73Vll3) I ^ ) > x =

χ=(a2-ll3b2)/2,
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ΊΪ3N1 , /11 +V113\ , la

2 (± y + VTΪ3) = [ j (776 + 73VTΪ3) (— 2
x = (113ft2-α2)/2,

1 , /11 + VΪΪ3\ , /α + ftVΪDy
2 (±y + VTΪ3)= ( 2 ) (776-73V113) ( ) ,

x = (113ft2-α2)/2.

On equating irrational parts we have respectively

(15) 3α2ft

(16) 73(α3 + 3 113αft2) + 776(3a2b + U3b3) = 8,

(17) (α3 + 3 113αfe2) + ll(3α2ί> + 11363) = 8,

(18) 1579(α3 + 3 113α62)+ 16785(3α26 + 113ft3) = 8,

(19) - 27(α3 + 3 U3ab2) + 287(3a2b + 113ft3) = 8.

Clearly (15) has no solution in integers. From (16) it is easily seen that a
and b are both even. Putting a = 2uu ft = 2υ, in (16), we obtain

(20) 73(M3 + 3 113u,υ2) + 776(3«2u, + 113υ3) = 1.

The substitution uί = 2\u- 52υ, υι= -2u+5v in (20) yields

(21) F ( κ , u ) = u 3

This corresponds to the ring Z[θ], where θ3 - 330 - 76 = 0. In this ring
the fundamental unit is e = 4 0 2 - 160 - 71. By Theorem 1,

(40 2-160-71) n = u + vθ

is only possible for n = 0. Then w = 1, v = 0, and so a = 42, ft = - 4.
Hence x = 11, y = ±38.

The substitution a = uγ- l l ϋ b ft = vx in (17) gives

(22) u\

Hence ux = 0 (mod 2). Putting «j = 2M, D, = υ in (22), we get

(23) F(u,t;)= w3-
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This corresponds to the ring Z[0], where 0 3 - 60 -22 = 0; Z[0] has
fundamental unit 6 = 2 0 - 7 .

Now we consider

(24) (20-7)n = u + υθ.

By Theorem 8, n S 0 and by Lemma 5, n ^ 1. Therefore (24) has
only the two solutions n = 0, rc = 1. These solutions correspond to
x = 2, y = ± 11 and JC = 422, y = ±8669 respectively.

Substituting α = — 21i*i + 53ϋi, 6 = 2^-5^1 in (18), we get

(25) 8t>?

We put Uι = 2υ9 υλ = u - υ in (25), since Mi = 0 (mod2). This gives

(26) F(w, ϋ) = u3- 24uv2 + 501>3 = 1.

This corresponds to the ring Z[0] , where 0 3 - 2 4 0 - 5 0 = 0, with the
fundamental unit e = - 302 + 100 + 41. We see that € = 202 + 1 (mod 5)
and e2 = l (mod5) while e 2 = - 5 0 2 + 50 + 6 (mod25). Hence e2 =
α10

2+fei0 + c1 implies that 5||αi, 51|Z>!- Hence, by Theorem 1, en =
w + ι?0 is impossible for an even integer n ^ 0. When n is odd we have

2 0 2 + l ^ w + u0 (mod5).

This is impossible. So we have n = 0. Then « = 1, t? = 0 and hence
x = 8 , y = ±25.

The substitution a = 111MX+ lOi^, b = 1 1 M I + t>i in (19) yields

(27) I ; ? - 3 1 2 U 1 W 2 - 2 1 2 8 M ? = 8.

Since (27) implies vx = 0 (mod 2), we put υλ = 12w + 10ϋ, ux = - w - ϋ and
get

(28) F ( u , ι ; ) = ι > 3 + 1 2 ι ; u 2 + 1 4 w 3 = l .

The fundamental unit of the ring Z[0] , where 0 3 +120 - 1 4 = 0, is
e = 0 - l , satisfying 63 + 3e2 + 156 - 1 = 0.

Then by Theorems 8 and 6,

has only two solutions, viz. n = 0 and 1.
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Incidentally, we cannot reach this conclusion by using the standard
criterion of Hemer [4], which is as follows:

Let € = ± 0 + c b e a unit in a cubic ring, and let the odd prime p be
a divisor of ΛΓ(e' + e"). Suppose further that em = ame2 + bme + cm is the
least power of e with m > 0 such that am =bm = 0 (mod/?). Then
en = u + ϋ6 has no even solution except n = 0 if am Φ 0 (modp2), and no
odd solution except n = 1 if c m + 2 ^ 0 (mod/?2).

Now JV(β' + β") = N ( - 3 - e) = - 46 has only the odd prime divisor
p = 23. The least exponent m such that am=bm=0 (mod 23)ls m = 22,
and am^0 (mod232). But unfortunately c24 = 0 (mod232).

When n = 0, ii = 0 , 0 = 1; α = - 1 1 , 6 = - 1 ; x = - 4 , y = ± 7 .

When n = 1, M = 1, ι> = - 1; α = 20, 6 = 2; JC = 26, y = ± 133.

Hence the Diophantine equation y 2 - 113 = x3 has exactly 6 solutions in
integers. They are (jc,y) = ( l l ,±38) , (8, ±25), (2, ±11), ( - 4 , ± 7 ) ,
(422, ±8669) and (26, ±133).
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