ON A THEOREM OF DELAUNAY AND SOME RELATED RESULTS

B. GORDON AND S. P. MOHANTY

Dedicated to the memory of Professor T. S. Motzkin

Delaunay has proved that if $\epsilon = ap\phi^2 + bp\phi + c$ is a unit in the ring $Z[\theta]$, where $\theta^3 - P\theta^2 + Q\theta - R = 0$, p is an odd prime, $\phi = p'\theta$, $t \ge 0$ and $p \nmid a$, then no power ϵ^m (*m* positive) can be a binorm, i.e. $\epsilon^m = u + v\theta$ is impossible for *m* a positive integer. Hemer has pointed out that in the above situation, $\epsilon^m = u + v\theta$ is also impossible for *m* a negative integer.

In this paper the above result is extended as follows.

THEOREM 1. If $\epsilon = a\theta^2 + b\theta + c$ is a unit in $Z[\theta]$, where $\theta^3 = d\theta^2 + e\theta + f$ and $p^{\alpha} || a, p^{\beta} || b, p$ being a prime, then $\epsilon^n = u + v\theta$ is impossible for $n \neq 0$ in the following cases:

- (i) When $1 \leq \alpha \leq \beta$ and p is odd,
- (ii) When $2 \leq \alpha \leq \beta$ and p = 2,
- (iii) When $\beta \leq \alpha < 2\beta$ and p is odd,
- (iv) When $\beta \leq \alpha < 2\beta 1$ and p = 2.

As an application of this and some other similar theorems, all integer solutions of the equation $y^2 = x^3 + 113$ are determined.

First we prove two simple lemmas.

LEMMA 2. If $p^{\alpha} \| \binom{n}{p^{q}}$ then $p^{\alpha} | \binom{n}{i}$, where the prime *p* satisfies $p^{q} < i < p^{q+1}$ and $p^{\alpha-1} = a \binom{n}{p^{q+1}}$. Furthermore if p | n and $p \nmid i$ then $p^{\alpha+1} | \binom{n}{i}$.

Proof. Let $i = p^q + r$. Then $0 < r < p^{q+1} - p^q$. Hence

$$\binom{n}{i} = \binom{n}{p^{q}} \binom{n-p^{q}}{r} \frac{r!}{\prod_{j=1}^{r} (p^{q}+j)}$$

Since $\prod_{j=1}^{r} (p^{q} + j)/r!$ is an integer not divisible by p and $p^{\alpha} \| \binom{n}{p^{q}}$, we have $p^{\alpha} \| \binom{n}{i}$.

If $p \mid n$ and $p \nmid i$ then $p \nmid r$ for $i = p^{q} + r$. Then

$$\binom{n-p^{q}}{r} = \binom{n-p^{q}}{r} \binom{n-p^{q}-1}{r-1}$$

is divisible by p. Hence $p^{\alpha+1} \mid {n \choose i}$.

Again from

$$\binom{n}{p^{q+1}} = \binom{n}{p^{q}} \binom{n-p^{q}}{p^{q+1}-p^{q}} \frac{s!}{\prod_{j=1}^{s} (p^{q+1}-j)} \left(\frac{p^{q+1}-p^{q}}{p^{q+1}}\right),$$

where $s = p^{q+1} - p^q - 1$, we see that $p^{\alpha-1} | \binom{n}{p^{q+1}}$, and the lemma is proved.

LEMMA 3. Let $\epsilon = a\theta^2 + b\theta + c$ be a unit in $Z[\theta]$, where $\theta^3 = d\theta^2 + e\theta + f$, and $\epsilon^{-1} = a'\theta^2 + b'\theta + c'$. If $p^{\alpha} ||a, p^{\beta}||b$, where p is a prime and $\alpha\beta \neq 0$, then $p^{\alpha} ||a'|$ and $p^{\beta} ||b'|$ in the following cases:

(i) $\alpha \leq \beta < 2\alpha$

(ii) $\beta \leq \alpha < 2\beta$

For $\alpha \leq \beta$ we have $p^{\alpha} || a'$ and $p^{\alpha} || b'$.

Proof. Since $(a\theta^2 + b\theta + c)(a'\theta^2 + b'\theta + c') = 1$, we have,

(1)
$$aa'd^2 + ab'd + a'bd + aa'e + ac' + ca' + bb' = 0,$$

(2)
$$aa'f + aa'de + ab'e + a'be + bc' + b'c = 0,$$

and

(3)
$$aa'df + ab'f + a'bf + cc' = 1.$$

From (3) it follows that $p \nvDash c'$.

Case (i). From (1) we have $ca' \equiv 0 \pmod{p^{\alpha}}$ as $\alpha \leq \beta$. Since $p \nmid c$ we get $a' \equiv 0 \pmod{p^{\alpha}}$. From (2) we obtain $b'c \equiv 0 \pmod{p^{\alpha}}$ for $\alpha \leq \beta$, whence $b' \equiv 0 \pmod{p^{\alpha}}$. If $\beta < 2\alpha$, then (2) gives $b'c \equiv 0 \pmod{p^{\alpha}}$, or $b' \equiv 0 \pmod{p^{\alpha}}$. If $p^{\alpha+1} \mid a'$, then from (1) we have $ac' \equiv 0 \pmod{p^{\alpha+1}}$. Similarly if $p^{\beta+1} \mid b'$, then from (2) we get $bc' \equiv 0 \pmod{p^{\beta+1}}$ when $\beta < 2\alpha$. Again we arrive at a contradiction since $p \nmid c'$ and $p^{\beta} \parallel b$. Hence $p^{\beta} \parallel b'$.

Case (ii). Since $\beta \leq \alpha$, (2) yields $b'c \equiv 0 \pmod{p^{\beta}}$. Then we have $b' \equiv 0 \pmod{p^{\beta}}$ for $p \neq c$. Using $\alpha < 2\beta$, we get $a'(bd+c) \equiv 0 \pmod{p^{\alpha}}$ from (1). Then $a' \equiv 0 \pmod{p^{\alpha}}$ as $p \neq (bd+c)$. If $b' \equiv 0 \pmod{p^{\alpha}}$

0 (mod $p^{\beta+1}$), then from (2) we see that $bc' \equiv 0 \pmod{p^{\beta+1}}$, a contradiction. Hence $p^{\beta} || b'$. If $a' \equiv 0 \pmod{p^{\alpha+1}}$ we have from (1) $ac' + bb' \equiv 0 \pmod{p^{\alpha+1}}$. We get a contradiction for $\alpha < 2\beta$. Hence $p^{\alpha} || a'$.

Proof of Theorem 1. Let n > 0. Case (i) and (ii). Let $1 \le \alpha \le \beta$. Since ϵ is a unit, $p \nmid c$. Moreover $\epsilon = a\theta^2 + b\theta + c = p^{\alpha}(r\theta^2 + s\theta) + c$ where $p \nmid r$. Let $(r\theta^2 + s\theta)^i = a_i\theta^2 + b_i\theta + c_i$, with a_i , b_i and c_i rational integers. Then

$$\epsilon^{n} = (a\theta^{2} + b\theta + c)^{n} = [c + p^{\alpha}(r\theta^{2} + s\theta)]^{n} = c^{n} + {n \choose 1} c^{n-1}p^{\alpha}(r\theta^{2} + s\theta)$$
$$+ {n \choose 2} c^{n-2}p^{2\alpha}(a_{2}\theta^{2} + b_{2}\theta + c_{2}) + \dots + p^{n\alpha}(a_{n}\theta^{2} + b_{n}\theta + c_{n}) = u + v\theta$$

Comparing the coefficients of θ^2 , we have

(4)
$$nc^{n-1}p^{\alpha}r + {n \choose 2}c^{n-2}p^{2\alpha}a_2 + \cdots + p^{n\alpha}a_n = 0$$

If p is an odd prime, we see using Lemma 2 that the first term of (4) is divisible by a lower power of p than the others. If p = 2 and $\alpha \ge 2$ the same conclusion holds. Hence (4) can never be satisfied. So ϵ^n can never be of the form $u + v\theta$ in these cases.

Cases (iii) and (iv). Now $\epsilon = p^{\beta}(r\theta^2 + s\theta) + c$, where $p^{\alpha-\beta} || r$. Then the coefficient of θ^2 in $\epsilon^n = [c + p^{\beta}(r\theta^2 + s\theta)]^n$ is

(5)
$$nc^{n-1}p^{\beta}r + {n \choose 2}c^{n-2}p^{2\beta}a_2 + \cdots + p^{n\beta}a_n$$

where $(r\theta^2 + s\theta)^i = a_i\theta^2 + b_i\theta + c_i$ with a_i , b_i and c_i rational integers. Again using Lemma 2 and the fact that $\alpha < 2\beta$, we see that the first term of (5) is divisible by a lower power of p than the others if p is an odd prime.

In case p = 2 and $\alpha < 2\beta - 1$ the same conclusion holds. Hence (5) can never be zero, i.e. $\epsilon^n = u + v\theta$ is impossible. This proves the theorem for n > 0.

We next consider $\epsilon^n = u + v$ for n < 0.

Let n = -m and $\epsilon^{-1} = a'\theta^2 + b'\theta + c'$. Then we have $\epsilon^n = (\epsilon^{-1})^m = (a'\theta^2 + b'\theta + c')^m$ where m > 0. From Lemma 3, we see that $p^{\alpha} || a', p^{\alpha} || b'$ for $\alpha \leq \beta$, and $p^{\alpha} || a', p^{\beta} || b'$ for $\beta \leq \alpha < 2\beta - 1, \alpha \leq \beta < 2\alpha$ and $\beta \leq \alpha < 2\beta$. Hence $(a'\theta^2 + b'\theta + c')^m = u + v\theta$ is impossible for m > 0. Combining these results we see that $\epsilon^n = u + v\theta$ is impossible for $n \neq 0$, and the theorem is proved.

We note that if the conditions of Theorem 1 are not fulfilled, then $\epsilon^n = u + v\theta$ is possible for n > 3; examples are given in [2, page 417]. Very often the following theorem is useful.

THEOREM 4. Let $\epsilon = a_1\theta^2 + b_1\theta + c_1$ be a unit in $Z[\theta]$, where $\theta^3 - p_1\theta - q_1 = 0$. If $p_1 \equiv 0 \pmod{3}$, then

(6)
$$\epsilon^n = u + v\theta$$

is impossible for $n \neq 0$ provided $a_1 \neq 0 \pmod{3}$, $b_1^2 + 2a_1c_1 \neq 0 \pmod{3}$, and $b_1^2c_1 + a_1c_1^2 + a_1^2b_1q_1 \neq 0 \pmod{3}$.

Proof. Let $\epsilon^n = a_n \theta^2 + b_n \theta + c_n$. Then we have

$$a_{n+1} = a_n (a_1 p_1 + c_1) + b_n b_1 + c_n a_1,$$

$$b_{n+1} = a_n (a_1 q_1 + b_1 p_1) + b_n (c_1 + a_1 p_1) + c_n b_1,$$

and

$$c_{n+1} = a_n b_1 q_1 + b_n a_1 q_1 + c_n c_1.$$

Hence we get $a_2 = a_1^2 p_1 + b_1^2 + 2a_1c_1$, $b_2 = a_1^2 q_1 + 2b_1c_1 + 2a_1b_1p_1$, and $c_2 = c_1^2 + 2a_1b_1q_1$. Then $a_3 = a_1^3p_1^2 + 3a_1b_1^2p_1 + 3a_1^2c_1p_1 + 3b_1^2c_1 + 3a_1c_1^2 + 3a_1^2b_1q_1$, $b_3 = 2a_1^3p_1q_1 + 3a_1b_1^2q_1 + 3a_1^2c_1q_1 + 3a_1^2b_1p_1^2 + b_1^3p_1 + 6a_1b_1c_1p_1 + 3b_1c_1^2$, and $c_3 = 3a_1^2b_1p_1q_1 + b_1^3q_1 + 6a_1b_1c_1q_1 + a_1^3q_1^2 + c_1^3$. Suppose $p_1 \equiv 0 \pmod{3}$. Then $a_3 \equiv 0 \pmod{3}$, $b_3 \equiv 0 \pmod{3}$, and $c_3 \equiv b_1q_1 + a_1q_1^2 + c_1 \pmod{3}$.

Since ϵ^3 is a unit, $c_3 \neq 0 \pmod{3}$ as $a_3 \equiv b_3 \equiv 0 \pmod{3}$. Hence we have $c_3 \equiv 1$ or 2 (mod 3).

Suppose $n \equiv 1 \pmod{3}$, and put n = 1 + 3m in (6). We get

$$\boldsymbol{\epsilon} \cdot (\boldsymbol{\epsilon}^3)^m = \boldsymbol{u} + \boldsymbol{v}\boldsymbol{\theta},$$

or

$$(a_1\theta^2 + b_1\theta + c_1)(\pm 1)^m \equiv u + v\theta \pmod{3}.$$

This congruence is impossible unless $a_1 \equiv 0 \pmod{3}$. Hence if $a_1 \not\equiv 0 \pmod{3}$, then $n \not\equiv 1 \pmod{3}$. Suppose $n \equiv 2 \pmod{3}$, and let $n \equiv 2 + 3m$. Then (6) gives

$$(a_2\theta^2 + b_2\theta + c_2)(\pm 1)^m \equiv u + v\theta \pmod{3}.$$

This is impossible unless $a_2 \equiv 0 \pmod{3}$, i.e. $b_1^2 + 2a_1c_1 \equiv 0$

402

(mod 3). Hence if $b_1^2 + 2a_1c_1 \neq 0 \pmod{3}$, then $n \equiv 2 \pmod{3}$ is impossible. Finally suppose $n \equiv 3m$ in (6). Then we get

(7)
$$(a_3\theta^2 + b_3\theta + c_3)^m = u + v\theta.$$

Now $a_3 \equiv b_3 \equiv 0 \pmod{3}$, and $a_3 \equiv 3b_1^2c_1 + 3a_1c_1^2 + 3a_1^2b_1q_1 \pmod{9}$. If $b_1^2c_1 + a_1c_1^2 + a_1^2b_1q_1 \neq 0 \pmod{3}$, then $a_3 \neq 0 \pmod{9}$ and hence by Theorem 1, (7) is impossible for *m* an integer, positive or negative.

Therefore n = 0 is the only solution to (6).

LEMMA 5 (Delaunay [2, page 385]). If $b\theta + c$, where $b \neq 0, \pm 1$, is a positive unit of $Z[\theta]$ where $\theta^3 - P\theta^2 + Q\theta - R = 0$, then no power > 1 of $b\theta + c$ can be a binomial unit. (In other words all the positive powers of the positive unit $b\theta + c$ are of the form $L\theta^2 + M\theta + N$, where $L \neq 0$).

We prove two theorems which are useful when $b = \pm 1$.

THEOREM 6. Let $\epsilon = \pm \theta + c$ be a unit in $Z[\theta]$, where $\theta^3 - P\theta^2 + Q\theta - R = 0$. If $\theta^3 \equiv 0 \pmod{p^2}$, where p is a prime, then $p \nmid c$ and $\epsilon^n = u + v\theta$ is impossible for n > 1.

Proof. We have $(\epsilon - c)^3 \equiv 0 \pmod{p^2}$. If $p \mid c$ then $\epsilon^3 \equiv 0 \pmod{p}$ where $p^3 \mid N(\epsilon^3) = \pm 1$. Hence $p \nmid c$. Let $\epsilon^n = u + v\theta$, n > 1. Then

$$(c \pm \theta)^n = c^n + {n \choose 1} c^{n-1} (\pm \theta) + {n \choose 2} c^{n-2} \theta^2 + {n \choose 3} c^{n-3} (\pm \theta)^3 + \cdots + (\pm \theta)^n = u + v \theta.$$

Let $\theta^n = r_n \theta^2 + s_n \theta + t_n$. Then

(8)
$$\binom{n}{2} c^{n-2} + \binom{n}{3} c^{n-3} (\pm r_3) + \cdots + (\pm r_n) = 0.$$

As $\theta^3 \equiv 0 \pmod{p^2}$, we have $r_i \equiv 0 \pmod{p^{2[i/3]}}$. Since $p \neq c$, $p \mid \binom{n}{2}$. Suppose $p^k \parallel \binom{n}{2}$. If p = 2 then $2^k \parallel \binom{n}{2}$. If $p \neq 2$ then $p^k \parallel \binom{n}{2}$, $\binom{n}{3} \cdots \binom{n}{p-1}$ and $p^{k-1} \parallel \binom{n}{p}$. Using Lemma 2, we see that each term of (8) except the first is divisible by at least p^{k+1} . Hence $p^{k+1} \mid \binom{n}{2}$, a contradiction.

THEOREM 7. Let $\epsilon = \pm \theta + c_1$ be a unit of the ring $Z[\theta]$, where $\theta^3 - 3P\theta^2 + 3Q\theta - R = 0$. If $c_1 + P \neq 0 \pmod{3}$ and $c_1^2 + 2c_1P + Q \neq 0 \pmod{3}$, then $\epsilon^n = u + v\theta$ is impossible for n > 1.

Proof. Let $\varepsilon = \theta + c_1$. Then $\theta = \epsilon - c_1$. So from

$$\theta^3 - 3P\theta^2 + 3Q\theta - R = 0,$$

we get

$$(\boldsymbol{\epsilon}-\boldsymbol{c}_1)^3 - 3P(\boldsymbol{\epsilon}-\boldsymbol{c}_1)^2 + 3Q(\boldsymbol{\epsilon}-\boldsymbol{c}_1) - R = 0,$$

or

$$\boldsymbol{\epsilon}^{3} = 3(c_{1}+P)\boldsymbol{\epsilon}^{2} - 3(c^{2}+2c_{1}P+Q)\boldsymbol{\epsilon} + (c_{1}^{3}+3c_{1}^{2}P+3c_{1}Q+R).$$

Now $N(\epsilon) = c_1^3 + 3c_1^2P + 3c_1Q + R = \pm 1$.

For convenience we write $\epsilon^3 = 3r\epsilon^2 - 3s\epsilon \pm 1$. Now by hypothesis $3 \nmid r$ and $3 \nmid s$. Let $\epsilon^n = u + v\theta$. Then $\epsilon^n = u + v(\epsilon - c_1) = u_1 + v_1\epsilon$, say. Suppose $n \equiv 2 \pmod{3}$. Then $\epsilon^2(\epsilon^3)^m = u_1 + v_1\epsilon$, where n = 2 + 3m. As $\epsilon^3 \equiv \pm 1 \pmod{3}$, we have $\pm \epsilon^2 \equiv u_1 + v_1\epsilon \pmod{3}$, which is impossible. Let $n \equiv 0 \pmod{3}$ and $n \neq 0$. Putting n = 3m, we get

(9)
$$(3r\epsilon^2 - 3s\epsilon \pm 1)^m = u_1 + v_1\epsilon.$$

But this is impossible by Theorem 1, whether m is a positive or a negative integer, for $3 \nmid r$. Hence if $n \neq 0$, the only possibility is $n \equiv 1 \pmod{3}$.

Let n = 1 + 3m, where m > 0. Then

$$\epsilon (3r\epsilon^2 - 3s\epsilon \pm 1)^m = u_1 + v_1\epsilon,$$

or

$$(3r\epsilon^2 - 3s\epsilon \pm 1)^m = v_1 \pm u_1(\epsilon^2 - 3r\epsilon + 3s).$$

Let $(r\epsilon^2 - s\epsilon)^i = r_i\epsilon^2 + s_i\epsilon + t_i$, where r_i , s_i , t_i are rational integers. Then

$$(\pm 1)^m + \binom{m}{1} (\pm 1)^{m-1} 3(r\epsilon^2 - s\epsilon) + \binom{m}{2} (\pm 1)^{m-2} 3^2 (r_2\epsilon^2 + s_2\epsilon + t_2)$$

+ \dots + 3^m (r_m\epsilon^2 + s_m\epsilon + t_m) = \pm u_1\epsilon^2 \pm 3ru_1\epsilon + (v_1 \pm 3su_1).

On equ: ing coefficients of ϵ^2 and ϵ , we obtain

(10)
$$(\pm 1)^{m-1} 3mr + (\pm 1)^{m-2} 3^2 \binom{m}{2} r_2 + (\pm 1)^{m-3} 3^3 \binom{m}{3} r_3 + \dots + 3^m r_m$$

= $\pm u_1$,

and

(11)
$$-(\pm 1)^{m-1}3ms + (\pm 1)^{m-2}3^{2} \binom{m}{2} s_{2} + (\pm 1)^{m-3}3^{3} \binom{m}{3} s_{3} + \dots + 3^{m}s_{m}$$

= $\mp 3ru_{1}$,

Multiplying both sides of (10) by 3r and then adding to (11), we obtain

$$(\pm 1)^{m-1}3m(3r^2 - s) + (\pm 1)^{m-2}3^2 \binom{m}{2} (3r_2r + s_2) + (\pm 1)^{m-3}3^3 \binom{m}{3} (3r_3r + s_3) + \dots + 3^m (3r_mr + s_m) = 0$$

We see from this that $3|m(3r^2-s)$. As $3 \nmid s$, we have 3|m. Suppose $3^k || m$. Using Lemma 2, we easily see that all the terms except the first are divisible by 3^{k+2} , while the first is exactly divisible by 3^{k+1} , which is impossible. Hence m = 0, i.e. n = 1.

So if *n* is a nonnegative integer and $\epsilon^n = u + v\theta$, then n = 0 or n = 1. The proof for $\epsilon = -\theta + c$, is completely analogous.

THEOREM 8. If $\epsilon = b_1\theta + c_1$ is a positive unit in $Z[\theta]$, where $\theta^3 - P\theta^2 + Q\theta - R = 0$ with $D(\theta)$ negative and $\neq -23$, then $\epsilon^n = u + v\theta$ implies that $n \ge 0$.

To prove this theorem we need the following well-known result.

LEMMA 9 (Nagell [8]). If η is a unit, $D(\eta) < 0$, $0 < \eta < 1$, then $\eta^n = x + y\eta$ implies that $n \ge 0$, except in the case when $\eta^3 + \eta^2 - 1 = 0$. In this case $\eta^{-2} = 1 + \eta$ and $D(\eta) = -23$.

Proof of Theorem 8. Let $\epsilon = b_1\theta + c_1$ be a positive unit in $Z[\theta]$. Then $0 < \epsilon < 1$. Since ϵ is contained in $Z[\theta]$, we get $D(\epsilon) = \delta^2 \cdot D(\theta)$. Hence $D(\epsilon) < 0$ and $\neq -23$.

Let $\epsilon^n = u + \theta$. Since $\epsilon = b_1\theta + c_1$ we have

$$(b_1\theta+c_1)^n=u+v\theta.$$

Then $b_1 | v$ when *n* is a positive integer. In case *n* is negative, we put n = -m where *m* is positive. Let $\epsilon^{-1} = a'\theta^2 + b'\theta + c'$. Then $\theta^3 = P\theta^2 - Q\theta + R$ and $\epsilon \epsilon^{-1} = 1$ imply

(12)
$$b_1 a' P + b_1 b' + c_1 a' = 0,$$

(13)
$$-b_1a'Q + b_1c' + c_1b' = 0,$$

and

(14)
$$b_1 a' R + c_1 c' = 1.$$

Since $(b_1, c_1) = 1$, $\epsilon = b_1\theta + c_1$ being a unit, we conclude that $b_1 | a'$ and $b_1 | b'$ from (12) and (13) respectively. Then from

$$(b_1\theta+c_1)^n=(a'\theta^2+b'\theta+c')^m=u+v\theta,$$

we see that $b_1 | v$.

Since $\epsilon = b_1\theta + c_1$, we have $\theta = (\epsilon - c_1)/b_1$, and hence $\epsilon^n = u + v\theta$ can be written as

$$\epsilon^n = u + \frac{v(\epsilon - c_1)}{b_1} = (u - vc_1/b_1) + v\epsilon/b_1 = x + y\epsilon,$$

where x and y are rational integers. Then by Lemma 9, $n \ge 0$. For binorms in fields of degree higher than three, one can see [9]. Recently Bernstein [1] has shown that units of the form $\epsilon = 1 + xw + yw^2$, $x, y \in Q$ exist for infinitely many algebraic number fields Q(w) of degree $n \ge 4$.

Now we solve $y^2 - 113 = x^3$ to show the application of some of the above theorems. The above equation is a special case of the well-known Mordell Equation $y^2 - k = x^3$, which has interested mathematicians for more than three centuries, and has played an important role in the development of number theory. In the range $0 < k \le 100$ it is known that $y^2 - k = x^3$, k = 17 has the maximum number of solutions. In the range $100 < k \le 200$ it is found [6] that $y^2 - k = x^3$, k = 113 has the maximum number of solutions. The complete solution of this equation is given below.

The fundamental unit of $Q(\sqrt{113})$ is $\eta = 776 + 73\sqrt{113}$, and $h(Q\sqrt{113}) = 1$. 2 splits into two different prime ideals in the field $Q(\sqrt{113})$. Hence by Theorem 5 of Hemer [4], all the integral solutions of $y^2 - 113 = x^3$ can be obtained from the following equations:

$$\pm y + \sqrt{113} = \left(\frac{a+b\sqrt{113}}{2}\right)^3, \quad x = \frac{a^2 - 113b^2}{4},$$
$$\pm y + \sqrt{113} = (776 + 73\sqrt{113}) \left(\frac{a+b\sqrt{113}}{2}\right)^3, \quad x = (113b^2 - a^2)/4,$$

$$\frac{1}{2}(\pm y + \sqrt{113}) = \left(\frac{11 + \sqrt{113}}{2}\right) \left(\frac{a + b\sqrt{113}}{2}\right)^3, \quad x = (a^2 - 113b^2)/2,$$

406

$$\frac{1}{2} (\pm y + \sqrt{113}) = \left(\frac{11 + \sqrt{113}}{2}\right) (776 + 73\sqrt{113}) \left(\frac{a + b\sqrt{113}}{2}\right)^3,$$

$$x = (113b^2 - a^2)/2,$$

$$\frac{1}{2} (\pm y + \sqrt{113}) = \left(\frac{11 + \sqrt{113}}{2}\right) (776 - 73\sqrt{113}) \left(\frac{a + b\sqrt{113}}{2}\right)^3,$$

$$x = (113b^2 - a^2)/2.$$

On equating irrational parts we have respectively

(15)
$$3a^2b + 113b^3 = 8,$$

(16)
$$73(a^3 + 3 \cdot 113ab^2) + 776(3a^2b + 113b^3) = 8,$$

(17)
$$(a^3 + 3 \cdot 113 a b^2) + 11(3 a^2 b + 113 b^3) = 8,$$

(18)
$$1579(a^3 + 3 \cdot 113ab^2) + 16785(3a^2b + 113b^3) = 8,$$

(19)
$$-27(a^3+3\cdot 113ab^2)+287(3a^2b+113b^3)=8.$$

Clearly (15) has no solution in integers. From (16) it is easily seen that a and b are both even. Putting $a = 2u_1$, $b = 2v_1$ in (16), we obtain

(20)
$$73(u_1^3 + 3 \cdot 113u_1v_1^2) + 776(3u_1^2v_1 + 113v_1^3) = 1.$$

The substitution $u_1 = 21u - 52v$, $v_1 = -2u + 5v$ in (20) yields

(21)
$$F(u, v) = u^3 - 33uv^2 + 76v^3 = 1.$$

This corresponds to the ring $Z[\theta]$, where $\theta^3 - 33\theta - 76 = 0$. In this ring the fundamental unit is $\epsilon = 4\theta^2 - 16\theta - 71$. By Theorem 1,

$$(4\theta^2 - 16\theta - 71)^n = u + v\theta$$

is only possible for n = 0. Then u = 1, v = 0, and so a = 42, b = -4. Hence x = 11, $y = \pm 38$.

The substitution $a = u_1 - 11v_1$, $b = v_1$ in (17) gives

(22)
$$u_1^3 - 24u_1v_1^2 + 176v_1^3 = 8.$$

Hence $u_1 \equiv 0 \pmod{2}$. Putting $u_1 = 2u$, $v_1 = v$ in (22), we get

(23)
$$F(u, v) = u^3 - 6uv^2 + 22v^3 = 1.$$

This corresponds to the ring $Z[\theta]$, where $\theta^3 - 6\theta - 22 = 0$; $Z[\theta]$ has fundamental unit $\epsilon = 2\theta - 7$.

Now we consider

$$(24) \qquad (2\theta-7)^n = u + v\theta.$$

By Theorem 8, $n \ge 0$ and by Lemma 5, $n \le 1$. Therefore (24) has only the two solutions n = 0, n = 1. These solutions correspond to x = 2, $y = \pm 11$ and x = 422, $y = \pm 8669$ respectively.

Substituting $a = -21u_1 + 53v_1$, $b = 2u_1 - 5v_1$ in (18), we get

(25)
$$8v_1^3 + 12v_1^2u_1 - 42v_1u_1^2 + 27u_1^3 = 8.$$

We put $u_1 = 2v$, $v_1 = u - v$ in (25), since $u_1 \equiv 0 \pmod{2}$. This gives

(26)
$$F(u, v) = u^3 - 24uv^2 + 50v^3 = 1.$$

This corresponds to the ring $Z[\theta]$, where $\theta^3 - 24\theta - 50 = 0$, with the fundamental unit $\epsilon = -3\theta^2 + 10\theta + 41$. We see that $\epsilon \equiv 2\theta^2 + 1 \pmod{5}$ and $\epsilon^2 \equiv 1 \pmod{5}$ while $\epsilon^2 \equiv -5\theta^2 + 5\theta + 6 \pmod{25}$. Hence $\epsilon^2 = a_1\theta^2 + b_1\theta + c_1$ implies that $5||a_1, 5||b_1$. Hence, by Theorem 1, $\epsilon^n = u + v\theta$ is impossible for an even integer $n \neq 0$. When *n* is odd we have

$$2\theta^2+1\equiv u+v\theta \pmod{5}.$$

This is impossible. So we have n = 0. Then u = 1, v = 0 and hence x = 8, $y = \pm 25$.

The substitution $a = 111u_1 + 10v_1$, $b = 11u_1 + v_1$ in (19) yields

(27)
$$v_1^3 - 312v_1u_1^2 - 2128u_1^3 = 8$$

Since (27) implies $v_1 \equiv 0 \pmod{2}$, we put $v_1 = 12u + 10v$, $u_1 = -u - v$ and get

(28)
$$F(u, v) = v^{3} + 12vu^{2} + 14u^{3} = 1.$$

The fundamental unit of the ring $Z[\theta]$, where $\theta^3 + 12\theta - 14 = 0$, is $\epsilon = \theta - 1$, satisfying $\epsilon^3 + 3\epsilon^2 + 15\epsilon - 1 = 0$.

Then by Theorems 8 and 6,

$$\epsilon^{n} = (\theta - 1)^{n} = v + u\theta$$

has only two solutions, viz. n = 0 and 1.

Incidentally, we cannot reach this conclusion by using the standard criterion of Hemer [4], which is as follows:

Let $\epsilon = \pm \theta + c$ be a unit in a cubic ring, and let the odd prime p be a divisor of $N(\epsilon' + \epsilon'')$. Suppose further that $\epsilon^m = a_m \epsilon^2 + b_m \epsilon + c_m$ is the least power of ϵ with m > 0 such that $a_m \equiv b_m \equiv 0 \pmod{p}$. Then $\epsilon^n = u + v\epsilon$ has no even solution except n = 0 if $a_m \neq 0 \pmod{p^2}$, and no odd solution except n = 1 if $c_{m+2} \neq 0 \pmod{p^2}$.

Now $N(\epsilon' + \epsilon'') = N(-3 - \epsilon) = -46$ has only the odd prime divisor p = 23. The least exponent *m* such that $a_m \equiv b_m \equiv 0 \pmod{23}^{1/2}$ is m = 22, and $a_m \neq 0 \pmod{23^2}$. But unfortunately $c_{24} \equiv 0 \pmod{23^2}$.

When n = 0, u = 0, v = 1; a = -11, b = -1; x = -4, $y = \pm 7$. When n = 1, u = 1, v = -1; a = 20, b = 2; x = 26, $y = \pm 133$.

Hence the Diophantine equation $y^2 - 113 = x^3$ has exactly 6 solutions in integers. They are $(x, y) = (11, \pm 38)$, $(8, \pm 25)$, $(2, \pm 11)$, $(-4, \pm 7)$, $(422, \pm 8669)$ and $(26, \pm 133)$.

ACKNOWLEDGEMENT. We are thankful to the referee for comments for the improvement of the paper.

REFERENCES

1. Leon Bernstein, Truncated units in infinitely many algebraic number fields of degree $n \ge 4$, Math. Ann., 213 (1975), 275–279.

2. B. N. Delaunay and D. K. Faddeev, *The theory of irrationalities of the third degree*, Amer. Math. Soc., Providence, Rhode Island (1964).

3. R. Finkelstein and H. London, On Mordell's Equations $y^2 - k = x^3$, Bowling Green State University Press.

4. O. Hemer, On the Diophantine equation $y^2 - k = x^3$, Diss. Uppsala (1952).

5. L. J. Mordell, *Diophantine equations*, Pure and Appl. Math., **30**, Academic Press, New York, (1969), 238–254.

6. S. P. Mohanty, On the Diophantine equation $y^2 - k = x^3$, Diss. UCLA (1971).

7. ——, On consecutive integer solutions for $y^2 - k = x^3$, Proc. Amer. Math. Soc., 48 (1975), 281–285.

8. T. Nagell, Darstellung ganzer Zahlen durch binäre kubische Formen mit negativer Diskriminante, Ibid Bd. 28 (1928).

9. Hans-Joachim Stender, Lösbare Gleichungen $ax^n - by^n = C$ and Grundeinheiten für einige algebraische Zahlkörper vom Grade n, n = 3, 4, 6; Habilitation paper, University of Cologne (1975).

Received November 3, 1975. The preparation of this paper was partly supported by NSF grant GP-23113.

UNIVERSITY OF CALIFORNIA, LOS ANGELES AND

I. I. T. KANPUR, KANPUR-16, INDIA