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ON A REPRESENTATION THEORY
FOR IDEAL SYSTEMS

PAUL EZUST

In widely divergent branches of mathematics, objects
emerge which bear sufficient formal resemblance to the ideals of
rings for them to be called "ideals". In a series of papers, Karl
E. Aubert developed an axiomatic theory of ideal systems which
subsumes most of the existing "ideal" theories. The goal of this
paper is a representation theory for ideal systems in com-
mutative monoids which will allow the formation of a cohomol-
ogy theory for these systems. One of the results is a theorem
which gives at once a monadic (co)homology for each ideal
system. The base category in the monad includes PTOP, the
category of pointed topological spaces and basepoint-preserving
continuous maps, as a full subcategory and, for each ideal
system, the category of algebras associated with the monad
consists of the module systems over the ideal system. It is the
module systems which are the principal objects of this study.

Described below are some of the basic notions of Aubert's theory of
ideal systems. For simplicity in connection with our own work we
assume that 5 is a commutative monoid (written multiplicatively) with an
annihilating zero element (denoted 0).

DEFINITION. A closure operation x on a set W is a function which
assigns to each subset A C W a unique subset Ax C W subject to the
following conditions:

(i) A C Ax for all A C W
(ii) A C Bx φ Ax C Bx for all A, B C W

NOTE. We do not assume that a closure operation x satisfies the
(topological) condition: (A U B)x = Ax U Bx. In general this condition
will not be satisfied.

DEFINITION. A pair (5, x) is an ideal system if S is a commutative
monoid with zero and x is a closure operation on S which satisfies the
following axioms.

x.l {0}x={0}
x.2 ABX C Bx for all A,B CS ["multiplicative ideal property"]
x.3 ABX C (AB)X for all Λ,B C S ["continuity axiom"].
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TERMINOLOGY. The sets Ax C S are called the x-ideals of S.
NOTATION. A + B = (A U B)X

A: B ={s<ES I sb<ΞA VfcEB}
a ^b(Ax) iff At + {α} = A, + {/>}.

Several examples of particular ideal systems are discussed in Aubert's
extensive survey paper [2] and the reader is referred to that paper for
definitions, etc.

In a brief note [8], Aubert and Hansen introduced the notion of
"module system" over an ideal system as an ancillary device to the theory
of ideal systems. Despite the pessimism expressed in that paper, it is
our purpose to show that the theory of module systems over ideal systems
yields a representation theory analogous to the theory of modules over
rings.

Throughout this paper the terminology and notations of category
theory have been used as are found in such standard texts as Herrlich and
Strecker [14] and Mitchell [22]. The author originally became in-
terested in the problems discussed herein during a course given by
Professor Karl E. Aubert at Tufts University during the academic year,
1969-70.

2. Axioms for module-systems.

DEFINITION. Let (5, x) be a fixed ideal system. A left S-set is a set
M together with a map S x M -> M, denoted by (s, m) -> sm, satisfying

(i) s{tm) = (st)m Vs, t£S,Vm(ΞM
(ii) Ira = ra Vra E M (where 1 denotes the identity element of the

monoid S).

DEFINITION. A pair (M, y), where M is a (left) S-set and y is a
closure operation on M, is a module-system over (S, x) if the following
are satisfied:

y.l 3Θ(ΞM such that Ora = θ Vra G M, and {θ}y = {θ}. We shall
denote θ = 0.

y.2 AUy CUy VA CS, V[/CM
y.3 AUy C (AU)y VA C S, VC/ C M
y.4 Axί7 C (A[/)y VA C S, Vt/ C M.

NOTATION. Let (M, y) be a module-system, let U, V C M, A C 5,
w, u, w E M, and s E S1. Then,

[/: v = { s e s I sue c/
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U: A = {m E M | am E U Vα E A)

Ann(w) = 0: u ( = {0}: {u}) in S

Ann(α) = 0: α (-{0}: {a}) in M

w = ϋ(f/y)iff £/y+{w} = Uy+{υ}.

OBSERVATION. Frequent use shall be made of the following two
equivalences which were established by Aubert and Hansen [8].
1. Axiom y.3 is equivalent to the following statement:

(Uy: s)y = Uy: s VC/CM, VsES.

2. Axiom y.4 is equivalent to the following statement:

(Uy: v)x = Uy: υ V[/CM, VvEM.

DEFINITION. Let (S, x) be a fixed ideal system. The category MS
consists of objects which are module systems (M,y) over (S, x) and
morphisms ξ: (Ml5yi)—»(M2,y2) which are set functions that satisfy the
following conditions:

(i) ξ(su) - sξ(μ) Vs ES,Vu<Ξ Mλ

(ii)

REMARK. Morphism condition (ii), above, is equivalent to:

EXAMPLES.

1. For any fixed ideal system (S, x), let M = Ax for some A C S ,
and y = x. Thus, for B CM, By = Bx, and (M, y) is an object of MS.

2. Let S be the multiplicative semigroup of a commutative ring
with identity, and let x be the classical ideal closure, Ax = Ad = (A)
VΛ C 5. Then any module M over the ring, with the classical sub-
module closure, Uy = (17), is an object of MS.

3. Let S be a commutative monoid with 0 and for each ACS, let
Ax = SΛ [this closure is called the s-closure]. For any S-set, M, and any
U C M, define [/y = St/ [this closure will be referred to as the s-closure
also]. Then (M, y) is an object of MS.

4. Let (S1, x) be an ideal system and let M be an 5-set. For any
U CM, define Uy = U U {0} [this closure will be referred to as the
discrete closure on M]. Then (M, y) is an object of MS.

5. Let S = {l/n\ n E Z, rc>0}U{0}. For each ACS, define
Ax = {s E S I 5 ^ sup A}; i.e., Λx = [0, α], where α=supA. Then
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(S, JC) is an example of an ideal system for which the inclusion x.3 is
proper.

3. The morphisms of MS.

DEFINITION. An S-set M with 0 is called an (S, x)-set provided
(0: u)x = 0: u for all uEM. A map φ: Mi—>M2 from one S-set to
another is called an S-map if it satisfies (i) above.

PROPOSITION 1. Let M be an (S, x)-set and {f: M-> My | y E /} a
family of S-maps, where {(My, y y ) | jEJ} is a family of objects of
S/. Then there exists a closure operator y such that (M, y) is an object and
f: M —> Mj is a morphism for allj E J. The coarsest such system y is said
to be induced in M by the family {f: M—> My | j E J}.

Proof Let M be an (S, jc)-set and F = {f: M - * Mϊ, | j E J} be a
family of S-maps into objects (My , yy ), for jEJ. Let Q = {f]\Uj

y)\
Ui CMh y'EJ}U{0}. For any VCM define V y = n { W 6 Q |
V C W}.

DEFINITION. Let M be an (S, x)-set and G = {gy: My —> M | y E /}
be a family of S-maps from objects (My, yy) to M. The finest closure
system, y, on M (if one exists) such that (M, y) is an object of MS and
such that each gy is a morphism, will be called the closure system which is
coinduced in M by the family G. Let P = {U C M | (gj\U))yj = gj\U)
for all j E J}. G is called a covering family of S-maps into M if (1) for
each UEP,3jEJ such that g}(gj\U)) = U; and (2) OEP.

PROPOSITION 2. Let M be an (S, x)-set and let G = {gy: Λf, -> Λί |
y E J} be a covering family of S-maps from objects (My, yy) to M. Then
there exists a coinduced closure system y for M (with respect to G).

Proof. Let M and G be as described above and let P be as defined
above. Let Q = {U E P \ (U: m)x = U: m VmEM} and, for each
VCM, define Vy=Γ){UEQ \ VCU}.

DEFINITION. An equivalence relation ~ on an object (M,y) is a
congruence if u ~ v Φ su ~ sυ Vs E S. Let [v] = {u E M \ u ~ v}. A
congruence ~ is admissible if [0]y = [0].

PROPOSITION 3. Let (M, y) be an object of MS and ~ an admissi-
ble congruence on M. 7/ιen (M/ ~ , y) is an object of MS, where Ml ~ is
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the set of ~ classes in M and y is coinduced by the map π: M—> Ml ~
defined by π(u)= [u] Vw E M.

Proof. By Proposition 2, one need only show that for any admissi-
ble congruence ~ on an object (M, y), the set Ml ~ is an (S, x)-set and
the map π : M-+M/~ is a covering 5-map.

PROPOSITION 4. Le/ (M, y) be an object and Uy CM. Then
(a) Uy determines an admissible congruence on Mrgiven by the rule:

u = v (Uy) iff Uy + {u} = Uy +{υ}. Denote the set of congruence classes
"modulo Uy" by M/Uy.

(b) The inclusion map i: £/y —» M induces a system y' on Uy given by
the rule: Vr= VyΠUy = Vy VVCUy. Thus, Uy is a subobject of
M. The prime is generally omitted.

PROPOSITION 5. The Zero object, M = {0}, is both initial and termi-
nal in MS and will be denoted, simply, 0.

THEOREM 6. Let φ: (Mί,y1)^(M2,y2) be a morphism. Then
(a) φ is a monomorphism iff ψ is infective.
(b) φ is an epimorphism iff φ is surjective.
(fc) // φ is monic then (ψ-\U))yι C φ-\Uy2) V [ / C M 2 .

Proof, (a) Suppose φ is a monomorphism such that φ(u) = φ(v) for
some u, v E Mλ. Define (M3, y3) by: M 3 = S v 5, the disjoint union of
two copies of S (labeled with u and v, respectively) with the zero
elements identified, and Uy3 = (U Π Su)x U (17 Π Sv)x V(7 C M3. In fact,
this construction is a special case of the more general construction of the
coproduct of S with itself, which is discussed in §4. Let ψι'. M3-> Mλ be
defined by the rule: ψ1(su)=su and φι(sv)=sv VsEίS. Define
φ2: M3-> Mi by the rule: ψ2(su) = sv and ψ2(sΌ) = su Vs E S. ^ and φ2

are morphisms such that φψι = φψ2. Since φ is monic, it follows that
ψi = ψ2; i.e., u = v.

(b) Suppose φ is an epimorphism. Then φ(M1) is an S-set.
Claim. φ(Mx) = M2. Let M3 = M2/φ(Mι) be the S-set of congru-

ence classes in M2 modulo the S-set ψ(Mι)\ i.e., for u,vEM2, u =
v (φ(M1)) means Su U φ(Mx) = Sv U ^(MΊ). For any U C M3, define
Uy,= SU. Let π:M2^>M3 be the S-map τr(w) = [w] and let M =
{(u,[u])\ uEM2}U{(u,[0])\ uEM2}. For each s E S, φ,[κ]) =
(5W, 5[w]) = (5W, [5w]) and s(u, [0]) = (sw, [0]). Also, for each u E M2,
5(w,[0]) = (0,[0]) iff 5w=0 and S(K,[M]) = (0,[0]) iff 5w = 0, so that
(0,[0]):(u,[0]) = 0: u = (0: u) x. Hence, M is an (S,jc)-set. Define
Γ̂. M2->M by the rule: ^(w) = (u, [u]) Vw E M2. Define ξ2: M2-+ M
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by the rule: ξ2(u) = (w, [0]) Vw G M2. Then {ξu ξ2} is a covering family of
5-maps into M. Let y be coinduced on M by {ξ\,ξ2} and note that
ξiψ = ξi<ρ; hence, & = ξ2. Thus, π(w) = [0] Vw G M2; i.e., φ(Mι) = M2.

(c) Suppose φ is a monomorphism. Then, by (a) above, φ is
injective. Thus, φ((φ'x(U))yί)C Uy2; hence, {φ-\U))yιQφ-\Un).

THEOREM 7. MS /zαs (a) Kernels, (b) Images, (c) Cokernels, and (d)

Proof. Let φ: (Ml9 y^—>(M2, y2) be a morphism. (a) Kerφ =
φ~ι(0). (b) Im<p = (φ(Mί),yφ), where the closure operator yφ is coin-
duced by the (surjective) map φ'\ Mi-> φ{Mx) defined by the rule:
φ\u) = φ(u)Vu G Mλ. (c) Define the congruence ~ by the rule: u ~ u
VUELM2 and, for u^ v, u ~ υ iff {w, f} C (φ(Mi))y2. In forming M2/~ ,
the S-set of ~ classes, (φ (Mι))y2 is compressed down to [0] and the rest of
M2 remains, unchanged. Let τr:M 2 -»M 2 /~ be the projection
u -»[«]. Note that [w] = [0] for w G ̂ (MO)^ and [w] = w for
w^ίφίMi))^. Also note that M2/~ is an (S, x)-set and let y be
coinduced by {π}. Then Coker φ = (M2/~ , y). (d) For each w G M l5

let w = φ~\φ(u)) and let Mi/φ = {U \ u G MJ. Let TΓ: M{-^> MJφ be
the projection, M —> w. For each subset π(t/) C Mi/φ, define (π(U))φy =
^^(^(ίy))^), where φ: MJφ -> M2 is the map, <£(ΰ)=φ(u), for all
w G MJφ. Then Coimφ = (MJφyφy).

REMARKS. (1) <p monic Φ Im<p =Mλ.
(2) In any exact category (e.g., the category of modules over a

commutative ring with unity), for any morphism φ: Mλ-*M2, \mφ =
Coimcp. The following example shows that this is not generally true in
MS.

EXAMPLE. Let M = {0, α, b, c}, S = {0,1}, with the obvious
multiplication. Let (Mx,y{) and (M2, y2) be defined as follows. Mx =
M2 = M. y! is the s-system on M b and y2 is the indiscrete system on M2:
{0}y2 = {0}, and l/^{0}Φ Un = M2. Let φ:Mι-*M2 be the identity
map. Then (M2, y<p) = λv&φΦ Coimφ =(Muφy).

PROPOSITION 8. Let φ: Mv—> M2 be a morphism. If φ{Uy) =

y2 for all U QMλ then Im φ = Coim φ.

OBSERVATION. The example which precedes Proposition 8 also
illustrates the fact that a morphism in MS might be both monic and epic
and yet fail to be an isomorphism; i.e., MS is not balanced. Another
way of characterizing this situation is to note that the forgetful functor
F: MS -» SET does not reflect isomorphisms. It follows (Proposition
32.5 [14]) that MS is not an algebraic category.
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4. Categorical constructions in ΛfS.

THEOREM 9. MS has Products.

Proof. Let {(Mh yy) | j G /} be a family of objects of MS. Let ΠM ;

denote the cartesian product of the sets My (/' G / ) . For each (m;) G ΠM ;

and each 5 E S , define s(m ;) = (sm;). Let 0 denote (0; ) and observe that,
for all (nίj)E. ΠM;, 0: (ra;) = Π {0: m} | / G /}, the latter being an intersec-
tion of x-ideals in S. Thus, ΠMy, is an (S, x)-set. For each k G /, define
TΓ/c: ΠM, —> Mk by the rule, π k ((my)) = mk (this is the canonical projection
map from the cartesian product to its factors). Let Πy; be the system
induced in ΠM, by the family of projections, {τr; | / G /}. Then, for each
U C ΠM, UΠy, = Π WdiΓiiU))*) I / e /} = x {(π,(t/))y/ I / G /}. It is
easy to verify that (ΠM;, Πy,) is the product.

NOTATION. MX X M2 will frequently be used to denote the product,
Tί{Mj I / = 1,2}, of two objects of MS. The corresponding closure
system will be denoted, yx x y2.

THEOREM 10. MS has Coproducts.

Proof. Let {(Mh y}) \ j G /} be a family of objects of MS and let ΣM,
denote the disjoint union, v {M} | / G /} with all zeros identified. For
each k G J, let δfc: Mfc -» SM ; be the natural inclusion map. Let Xyy be
defined on ΣM, as follows. For any U CXMh Uly, = v{(S^iU))^
k G /}. Note that Ulyj = U{(U Γ) Mk)yk \ k <ΞJ} it we identify Mk with
its set-theoretic image, δk(Mk) in ΣM ;. Clearly (ΣΛζ , Σy ;) is an object of
MS and each map δk is a morphism. Note that Σyy is the closure system
coinduced in ΣM, by the family of inclusions, {δ; | j G J}. It is not hard
to verify that (ΣΛfJ ,Σyy ) is the coproduct.

DEFINITION. An object of MS is free if it is of the form ΣMy (/ G /) ,
where for each j G /, (M;, y,) = (S, x). We denote such an object (F(/),
y *) and refer to the index set / as the basis for the free object (F(/), y *).

REMARK. In particular, (S, JC) is free with basis {1}.

PROPOSITION 11. [Universal Mapping Property of Free Objects].
(F([/), y *) is a free object with basis U iff for any object (M, y) and any set
map σ: [/->M, there is a unique morphism φ: F(U)-> M such that
φη = σ, where η: U"-> F(J7) is f/ie inclusion, u —> l u /or α// u E U.

DEFINITION. The morphism φ described above is called the lift
of σ.
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PROPOSITION 12. Let (M, y) be an object of MS and let
φ: F(M)—>M be the epimorphism that lifts the identity morphism
1: M-+M. Then M = Coim(φ).

DEFINITION. An object (M, y) is projective if for any morphism
Θ:M-*M2 and any epimorphism ψ: M1->M2 [where (Muy1) and
(M2, y2) are objects] there exists a morphism ξ: M—> AίΊ such that ψξ = θ.

REMARK. It follows immediately from the above definition that if
(M, y) is projective, then (M, y') is projective for any closure system y'
(on M) which is finer than y. Thus, since the s-system is the finest
possible closure system for M, each projective object in the category
ENS-S of all S-sets determines a family of projective objects of MS and,
conversely, each projective object of MS determines a projective object
of ENS-S,

PROPOSITION 13. Let (M,y) be an object of MS. Then M is
projective iff M is a retract of a free object of MS [In particular, each free
object of MS is projective.]

REMARK. In the category R -Mod, of left R -modules, an object is a
retract of a free iff it is a direct summand of a free. The following
example demonstrates that this is not the case in general in MS.

EXAMPLE. Let S = {0,1, a, b} with multiplication defined as fol-
lows: aa = bb = ab = ba = a. Let M = {0, a) and let 5 and M each
have the 5-system closure. Then (M, y) is a projective object of MS and
M is not a direct summand of S since (S - M)y ^ (S - M) U {0}. Since a
free object of MS must be a coproduct of copies of S it follows that M is
not a direct summand of any free object.

PROPOSITION 14. Let {(Mhy})\ y'E/} be a family of objects of
MS. Then (ΣM,,Σyy) is projective iff (Mh yy) is projective Vy E /.

REMARK. In view of Theorems 9 and 10, it is clear that MS is not
an additive category since finite products are not isomorphic to finite
coproducts.
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5. Completeness and cocompleteness of MS.

PROPOSITION 15. MS is locally and colocally small.

PROPOSITION 16. MS has Intersections.

Proof. Let {α;: (Mh y;)—> (M, y) | / E /}be a family of subobjects of
(M,y). Since αy monic Φ Λf, = I m α ; , for each jEJ we take M' =
Π {Im αy I / E /}, a set-theoretic intersection of subsets of M. For each

/ E/, let βj\ M'-^Imα y be the natural inclusion map. Then M' is an
(S, x)-set and βi is an S-map for each jEJ. Let y1 be the system
induced on M' by the family {β} \ j E /}. Let α: M ' ^ M b e the natural
inclusion map. Then a: (M\ y')—>(M, y) is the intersection of the
subobjects {αy | / E /}.

PROPOSITION 17. MS fiαs Equalizers.

Proof. Let φ,θ:M1->M2 be morphisms, and let JB = {w E M2 |
φ(w)= θ(w)}. Then Equ(φ,θ) - (E,ye), where ye is induced by the
inclusion η: E-^MX.

The following Theorem follows from Theorem 23.8 [14].

THEOREM 18. MS has the following properties:
(a) MS is complete (in particular, MS has inverse limits).
(b) MS has (multiple) pullbacks.
(c) MS has inverse images.

From Theorems 10 and 18 and Proposition 15 we obtain the
hypotheses of Theorem 23.12 [14], and using the dual of Theorem 23.8
[14] we obtain the following

THEOREM 19. MS has the following properties:
(a) MS is cocomplete (in particular, MS has direct limits).
(b) MS has (multiple) pushouts.
(c) MS has direct images.
(d) MS has coequalizers.
(e) MS has cointersections.

6. Properties of the horn functor MS —> MS.

THEOREM 20. For each pair of objects (Mu y^, (M2, y2) of MS,
(homs (Mi, M2), y) is an object of MS, where, for φ E homs (M1? M2) and
s ES, sφ is defined by the rule: (sφ)(u)= s(φ(u)) Vw E M l9 and, for any
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W C h o m s ( M b M 2 ) , W9 = ΓΊ {[m, i y | W C [ m , l/J}, where [m, C/J =
{ξ E horns ( M b M2) \ξ(m)e Un}.

PROPOSITION 21. For any object (M, y) 0/ MS, (M, y) =
(hom s (S, M), y), where (S, x) is considered as an object of MS.

THEOREM 22. MS has an internal Horn functor, Horn: MS o p x
MS -» MS.

Proof. By Theorem 20 it will suffice to verify that
hom5 (φ, θ): hom5 (Mu M2)—> hom 5 (MI, MJ) is a morphism for all φ E
hom s (Af ί, MO and all θ E hom5 (M2, M 2).

hom s (M2, M2)

(,p, (9)

hom s (Mi, Mi)

= homs(φ9θ)(f)

Indeed, it is true in any category that the corresponding construction
yields a well defined set map. Thus, with hom s (φ, θ)(f) = θfφ> we have
the following equations:

hom s (φ, θ)\[u7 t/yJ) = {/ E hom s (M1 ? M2) | θfφ (u) E

= {/e horns (M,,M2)

NOTATION. Since MS has an internal Horn functor, we will follow
the practice of Herrlich and Strecker [14] and others and write it with
a capital H. Also, we will suppress the subscript S when no confusion
will result.

PROPOSITION 23. For any family {{Mh y7) | / E /} of objects of MS,
H o m ( Σ M , , M ) s Π H o m ( M y , M ) for any object (M,y).

PROPOSITION 24. The functor Horn (M, _ ): MS -» MS (for fixed
object (M, y)) preserves products; i.e., for any family {{Mh y;) | / E /} o/
ofe/βcίs, Horn (M, ΠM ;) = ΠHom (M, M7).

PROPOSITION 25. 77ιe .functor Horn (M, _ ): MS -» MS preserves
equalizers.

Proof. Let /, g E Hom(M 1 ? M2).
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I M2
g

— o i

a

Then, by Prop. 1.17, η: E^>MX is the equalizer of / and g, where
E = {u E M1 I /(«) = g(u)} and ye, the closure on E, is induced by the
canonical inclusion, η: E->Mλ.

To prove that Hom(M, ___) preserves equalizers we shall show that
Hom(M, E) = Equ(/, g), where £ = Hom(M,/) and g = Hom(M, g), and
Equtf, g) = {ξ G Hom(M, M1) | /(f) = g(ξ)l

> Horn(M, MO > Horn (MM,)

cr

Let A: Equ(/, g ) ^ Hom(M,Mi) be the canonical inclusion and
ή =Hom(M,η): Hom(M,£)-^Hom(M,M1); i.e., η(k) = ηk. Then
fy ~ 8V1 hence there exists a morphism, σ: Hom(M, £)-^Equ(/, g)
such that rj = λtr. σ is tlie required isomorphism.

The next Proposition follows from Theorem 24.3 [14].

PROPOSITION 26. Horn(M, _ ): MS —> MS preserves pullbacks,
multiple pullbacks, terminal objects, inverse images, finite intersections,
and limits.

THEOREM 27. Hom(M, __ ): MS -> MS has a left adjoint.

Proof. Consider the functor diagram, where G=Hom(M, _ ) ,
U = homs (M, _ ), and V = Forgetful.

G
MS >MS

U V
SET

Clearly this diagram commutes. By Propositions 15, 18, and 19, MS is
complete, cocomplete, locally small, and colocally small. By Proposi-
tion 26, G preserves limits. By Theorem 30.20 [14], U has a left
adjoint. Clearly V is faithful. The result follows from Theorem 28.12
[14].
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7. The tensor product in MS.

DEFINITION. We denote the left adjoint of Hom(M, __): MS -> MS
_ 0 M, and we refer to M'(g)M as the tensor product of M' and
M. The closure system on Λ f ' ® M is denoted y ' 0 y .

REMARKS. The adjoint situation, (η, δ): _$ζ)M -\ Horn (M, __ ),
gives, for each object Mx of MS a morphism
r/Aft: Mι -» Horn (M2, M t (g) M2). Define ι̂ : Mx x M2 ̂ > Mj 0 M 2 by the
rule, ψ((uu u2)) = (T/MI(WI))(M2) and denote φ((uι,u2)) = Wi0w2. Note
that S(MI 0 w2) = swi 0 w2 = Wi 0 sw2, for all 5 E 5. In fact, ι/f is bilinear,
in the sense that both ψ(uu _ ) : M 2 - > M i 0 M 2 and ψ(__,u2):
M ! - > M i 0 M 2 are morphisms (defined in the obvious ways). Indeed,
«A(wi, _ ) = r/ M l (M 1 )GHom(M 2 ,Mj0M 2 ) by definition. To see that
Ψ( _ , W2) G Hom(M 1 ? Mi 0 M2), note that

= {MI G Mλ I ̂ r(Mi, w2)G (7y i 0 )J

= {M! G Mi I (TJM I(WI))(M2)G C/yi(g)y2}

= {MJ G M I I TJAA(MI) G [M2, t/yi(8)y2]}

DEFINITION. Let G: Λ —> B be a functor and let M be an object of
B a pair (μ,, N), where N is an object of A and μ: M —> G(N), is called a
universal map for M with respect to G (or a G-universal map for M)
provided that for each N_' (object of Λ ) and each /: M-> G{N'\ there is
a unique A-morphism / : N^>N' such that the triangle commutes.

NOTATION. Given objects (M,, y;), for / = 1,2,3, let
Bihom(Mj x M2, M3), denote the set of all bilinear maps M^ M2-+ M3.

PROPOSITION 28. The map θ: Bihom (Mi x M2, M 3 ) ^
Horn (M1 ? Horn (M2,M3)) given by, θ(σ)=σ, where (σ(uι))(u2) =
σ(uu u2), is a bijection.

THEOREM 29. Let a G Bihom (Mi x M2, M3). Then there exists a
unique σ G Horn (M1(^)M2,M3) such that σψ = σ [where
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ψ: Mi x M2—>M!<g)M2 is the canonical map, (mu m2)-»mi(g)m2; i.e.,
) = T)MI\-

Proof.

M1 x M2

\
σ
 \ M 3 ^

 σ

To complete the first diagram with a morphism σ, we make use of the fact
that, by Theorem 27.3 [14] (ηMl, M1 (g) M2) is a universal map for M! with
respect to Hom(M 2, _ ).

Λf! — > Horn (M2, M t ® M2) Mι ® M2

σ

Horn (M 2,M 3) M3

Thus, there exists a unicjue σ E Horn (M2_® M2, M3) such that <τ =
Hom(M2, σ)i7Ml i.e., σ = σηMι. Note that σ makes the first diagram
commute.

PROPOSITION 30. Mι (g)M2 = {mi ® m21 m i 6 Mi, m2 E M2} αnrf
yi®y2 is the closure operation coinduced on M i ® M 2 fey ίfie family,

Proof. Let M = {mi(g)m2| m i E M b m2EM2}. Then M C
Mj(g)M2. Although F is not a covering family, we can form the
coinduced closure, y as follows: Let Q1 = {UCM\ (T?MI('WI)"1([7))J)2 =

T Ϊ M I W W ) Vmt G MJ (Ί {£/ C M | {r]Mlm2y\U))yι = ^ ( m ^ ί / )
Vm2EM2}. Let Q = {C/EQi| (C/: (iii® M2))X = 17: (ii!® u2),
Vw!(g)w2EM} and note that Q1 = Q. For each VCM, let Vy =
Π {U E O I V C 17}. Then (M, y) is an object of M5 and y is the finest
closure system on M which permits all the S-maps in F to be morphisms
into M. Define ξ\MxxM2-^M by the rule: ξ(mum2) =
mi(g)m2. Then ξ is bilinear and surjective.

σ
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Let σ\_MιX M2^>M3 be a bilinear maj}. Define σ: M —»M3 by
the rule: σ ( m 1 ® m 2 ) = σ ( m b m 2 ) . _Then σ is a morphism and the
diagram commutes. In fact, σ is the identity morphism,
rrii 0 m2-* mx 0 m2 and, by Theorem 29, its inverse is also a morphism;
hence, Mi 0 M2 = M and yi 0 y2 = y.

PROPOSITION 31. For any objects (Mu yi), (Λί2, y2) MS,

PROPOSITION 32. For any ofe/βcί (M, y) o/ MS, S ® M = M =
M 0 S .

Proo/. Let μ: S ®M—>M be the map given by μ(s 0 m ) =
5m. Note that μ = ^( l)" 1 . μ is the required isomorphism.

PROPOSITION 33. is associative.

Proof. By Theorem 10 [17] it is enough to show that
Horn{MX®M2,M3) = Horn(MbHorn(M2,M3)). By Theorem 27.9 [14],
the adjoint situation, (T/, δ): _ ®MH Horn (M, _ ) , gives a bijection
α: Hom(M! 0 M2, M3)—> Horn (M1? Horn (M2,M3)) defined by the rule,
(α(/)(m1))(m2) = /(m1(g)m2), for all /G Horn(Afj0M2,M3). α is the
required isomorphism since, for all nti 0 m2 E Mx 0 M2 and all U^ C M3,

2, t7y3]].

PROPOSITION 34.

preserves coproducts.
_ (g)M preserves colimits. In particular, _

PROPOSITION 35. Lei <p E Horn (Mi, M2). Then, for any object
(M, y) in MS < p ® M : M 1 ® M ^ M 2 ® M is the map,

Proof.

Mι

φ

M2

Hom(M,(p®JV)

1?M2

> Horn (M,M2(g)M)

The adjoint situation (77, δ): __ 0 M H Horn (M, _ ) makes the diagram
commute for each object M. Thus, for each mx E M1?

Hom(M,<p 0M)(η M l (m 1 ))= ηM2(φ(m1)); i.e., for all m E M,
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NOTATION, φ (g) 1 will sometimes be written instead of φ (g) M in
cases where no confusion will result.

PROPOSITION 36. For any object (M, y), ί/iβ functor _(&M pre-
serves epimorphisms.

DEFINITION. An object (m,y) is Flat if the functor _ ® M pre-
serves monomorphisms.

PROPOSITION 37. S is a flat object of MS.

PROPOSITION 38. Let {{Mh yy ) \ j EJ} be a family of objects of
MS. Then (ΣM,, Σy, ) is flat iff (M,, y, ) is flat for each j € /.

PROPOSITION 39. Every projective object of MS is flat.

8. Restriction and extension of scalars.

REMARKS. Let φ: (S, x)-» (5', JC') be a morphism of ideal systems;
i.e., φ(st)=φ(s)φ(t), for all s,tES, and φ(Ax)C(φ(A))x, for all
A C S . Then any object (M', y') of MS' can be considered as an object
of MS in the following manner: for each s E S, w ' E M ' , define SM' =
<p(s)w'. It is easy to verify that, with this S-set structure, (Λf', y') is an
object of MS (the closure system yf does not change). This process is
usually referred to as restriction of scalars. Let ξ' E Hom s (Mί, M'2). If
we restrict scalars as described above, we can consider both objects M[
and M2 as objects of MS and then ξf becomes an S-morphism with its
S-map structure defined by the rule, ξ'(su') = ξ'(φ(s)u') for all s E S.

PROPOSITION 40. Let φ: (S,x)^>(S',xr) be a morphism of ideal
systems. Then the process of restriction of scalars determines a faithful,
covariant functor, Rφ: MS'^> MS, which preserves monomorphisms and
epimorphisms.

DEFINITION. A functor which preserves monomorphisms and
epimorphisms shall be called exact.

PROPOSITION 41. Let φ: (5, JC)—>(S", x') be a morphism of ideal
systems. Then the functor Rφ: MS'-*MS has a left adjoint
Eφ:MS-+MS' given by the rule, Eφ(M) = M ®RφS' for all objects
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(M, y) of MS [Eφ(M) is given S'-set structure by defining for each s' E S'
and each u ®f' E Eφ(M), s'(u(g)t') = «(g)s7'] and Eφ(δ) = δ®RφS'
for any morphism δ E Homs (Mi, M2).

Proof By Theorem 27.9 [14], it is sufficient to show that the two
set-valued bifunctors, homs (Eφ ___ , _ ) and homs (__ , Rφ _ ) are naturally
isomorphic. Thus, let (M, y) be an object of MS and (M', y') be an
object of MS', and define β: horn(EφM,M')-> horn(M,RφM

f) by the
rule: β(f)(m) = f(m (g)Γ) Vm E M. Then β is a bijection.

REMARK. The functor Eψ: MS->MS' is usually referred to as
extension of scalars.

PROPOSITION 42. Let φ: (S,x)-^(S',xf) fee α morphism of ideal
systems. Then the functor Rφ: MSr'—>MS has a right adjoint
Hφ:MS^MS' given by the rule: Hφ(M) = Homs(RφS',M) V objects
(M,y) of MS [HΨ(M) becomes an object of MS' by defining for each
s' E S' and each σ E Hφ(M), (s'σ)(tf) = σ(s't') \ft' E RφS'] and Hφ(λ) =
Homs (RφS', A) Vλ E Homs (Mu M2).

Proof. By Theorem 27.9 [14], it is sufficient to show that the two
set-valued bifunctors, homs (Rφ __, _ ) and hom s (_ , Hψ _) are naturally
isomorphic. Thus, let (M, y) be an object of MS and (M', y') be an
object of MS', and define γ: hom(i?φM',M)->hom(M/,fίpM) by the
rule: (γ(g)(m'))(s') = g(s'm)Vs'<Ξ S' and Vg Ehorn(RφM\M). Then
γ is a bijection.

REMARK. Let φ: (5, x)—•(£', JC') be a morphism of ideal
systems. Then for any object (M, y) of MS and any object (M', y') of
MS', M (g) i?φM' may be regarded as an object of MS' if it is given S'-set
structure in the following manner: s'(m (g)m')= m (g)s'm' Vs'E S' and

PROPOSITION 43. Ler φ: (5,x)-*(S',x') be a morphism of ideal
systems. Let (M, y) be an object of MS and let (Mf, yf) be an object of
MS'. Then (in MS) M <g) RφM' = Rφ{EφM®' M;) [where (g)' indicates
that the tensor product is formed in MS'].

Proof. Let a: Mx RφM
f-> Rφ{EφM&M') be defined by the rule:

O!(M,M') = ( M 0 Γ ) 0 ' M ' . Then a is 5-bilinear; hence, there exists an
S-morphism ά: M®RφM'^>Rφ(EφM®'M') such that the diagram
commutes; i.e., ά(m 0 m ' ) = a(m,m')=(wi^Γ)0'm' [ψ is the cano-
nical bilinear map]. Note ά(m (g)s'm1) = (m (̂ )
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Rφ{EφM®'M')

a

Let ά: M (g) RφM' -> EφM<g)' M' denote a regarded as an S '-
morphism. Now, for each m'Eί RφM\ define m':Mx
RφS'^>M(g)RφM' by the rule: m'(m,s') = m (&s'mf. Then m' is
S-bilinear; hence, there exists an S-morphism m'\ M(g)RφS

f-+
M(g)RφM' such that m'(m (g)s')=m (g)s'm'.

m'

MxRwS'

Actually, rh1 is an S '-morphism with domain EφM and codomain
M(&RφM\ the latter regarded as an object of MS'. Let jS: EφM x
M'-+M®RΨM' be defined by the rule: β(m (g)s',m') =
m ®j 'm' . Note that β is well defined since, for each fixed m' E RφM\
β ( _ > Ή ') = ώ ' and, hence, does not depend upon the choice of represen-
tative of m(g)sf. Since β is 5'-bilinear, it follows that there is an
S'-morphism β: (M 0 KφS')<g>M'-+ M <g> l?φM' such that
/3((m <g>s')®'m')=m ®s'm\

(M($RφS')(g)'M

Ψ

(M®RφS')xMf

β

Thus, we have produced S'-morphisms,
a: M(g)i?,M'-> JS^Af®'M' and /8: £ ^ M ® ' M ' ^ M ® RφM' which are
inverses of one another; i.e., M (g) RΨM' = £φM (g) M' in MS'. It fol-
lows that M®RφM' = Rψ(EφM(g)tMt) in MS.

PROPOSITION 44. Lei φ: (S, x)—»(S', x') fee α morphism of ideal
systems. Then the two MS-valued bifunctors, _ ®RΨ _ MS x
MS'-* MS and Rφ(Eψ _ (g)' _ ) : MSxMS'-^MS are naturally isomor-
phic.

PROPOSITION 45. Let φ: (S, JC)^(S ' , JC ' ) 6e α morphism of ideal
systems. Suppose that RφS' is a flat object of MS. Then RφM' is flat in
MS for all flat objects (M',y') in MS'.
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Proof. The functor _(g)RφM': MS-+MS preserves monomor-
phisms whenever (M',yf) is a flat object of MS'.

PROPOSITION 46. Let φ: (S,jt)—»(S',x') be a morphism of ideal
systems. Suppose that (M, y) is a flat object of MS. Then EφM is flat in
MS'.

Proof Let ξ: MJ—>M2 be an S'-monomorphism. Then by Prop-
osition 40, Rφξ: RφM[—> RφM'2 is an S-monomorphism; hence, since M
is flat in MS, M (g)Rφξ: M <g)RφM'1-+M ®RφM2 is an S-
monomorphism. By Proposition 44, we have that Rφ(EφMζZ)' ξ):
Rφ(fϊφM®' M[)—> Rφ(EφM(&' M'2) is an S-monomorphism; hence,
EφM(&' ξ: EφM(&' M[-> EφM(g)f M'2 is an S'-monomorphism (since Rφ

is faithful).

9. Monads and algebras in Λί{0,1}.

NOTATION. We shall denote the category M{0,1}, simply, 93. For
any ideal system, (S, x), T: {0,1}—>S will denote the map, τ(0) = 0,
τ ( l ) = 1. Clearly τ is a morphism of ideal systems [{0,1} is given the
obvious (s-system) closure system]. In the sequel we will denote RTS,
simply, S.

THEOREM 47. For any ideal system (S,JC), Ks = (Ks,η,μ) is a
monad in 93, where Ks: 93—>93 is the functor, _ ® S, and η: 1®—> Ks is
the natural transformation given by, τ/M(m) = m ® 1, and μ: X siίs ~^ ^s
ί5 ί/ie natural transformation, μM: ( M ® S ) ( g ) S - ^ M ( g ) S g/uerc 6y

Proo/. The "unit," η, and the "multiplication," μ, make the
following diagrams commute:

LLK

^ KsKs

where

(ηKs)M = η M ^ s : M

Ksμ

κsκs

(M(g)S)(g) 5

μ

> Ks

μ

: ((M (g) 5 ) <8) 5 ) <g> S -> (M (g> 5 ) (g) 5



ON A REPRESENTATION THEORY FOR IDEAL SYSTEMS 365

THEOREM 48. For any ideal system, (S,x), Hs = (Hs,e,δ) is a
comonad in 93, where H s:93^>93 is the functor, Hom(S, _ ) , and
e: Hs —> 1« is the natural transformation, eM: Horn(5, M)-*M, given by,
eM(f) = /(I), and δ: Hs -»HSHS is the natural transformation,
δ M : Hom(S, M)^Horn (S,Horn (S,M)) , given by, (δM(f){s))(t) = (sf)(t)
for all t G S.

• One must verify here that the following diagrams commute:

eHs Hse δHs

- HSHS > Hs HSHSHS < HSHS

where

(eHs)M = eHoMSM}: Horn(5, Horn(5, AT))-* Horn(S, M)

(Hse)M = Horn (5, eM): Horn (5, Horn (5, M))-* Horn (5, M)

(SHS)M = δHomiSM): Horn(5,Horn(5, M))

-» Horn (S, Horn (5, Horn (5, M)))

(H sδ)M = Horn (S, δM): Horn (S, Horn (5, M))

-»• Horn (S, Horn (S, Horn (S, M))).

REMARKS. Let (5, x) be an ideal system and let 93s denote the
category of ^-algebras. Let G: MS—>S8S be defined as follows: For
each object (M, y) of MS, G(M) = (J?TM, h), where /ι: i?τM <g>S -• i?τM
is the S-morphism m (g)s->sm. For each S-morphism /: M-*M',
G(f) = Rτf: RTM-* RM'. Then G(f) is a 23s-morphism and, hence, G
is a (covariant) functor.

Now let F: 93s -> M5 be defined as follows: For each object (M, h)
of 93s (where (M,y) is an object of 53), F((M, h )) = (M,y), where
M = M, equipped with the 5-multiplication, sm = h(s(g)m) for all
s ES, mGM. For any 23s-morphism g: <M,Λ>-*<M',Λ'>, F(g) = g,
where g = g, converted into an 5-map by taking g(sm) = g(h(s(g)m))
for all s G S, m G M.

THEOREM 49. [Monadicity]. For any ideal system, (S,x), 93s is
isomorphic to MS.

Proof. With notation as in the remarks above we need only show
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that FG - 1MS and GF - 1^. To show FG - 1M S: since for any object
(M,y) of MS, FG(M) = F((RτM,h)) = (RτM,y), where RTM= RM,
endowed with an 5-multiplication which is derived from the map h i.e.,
(#τM,y) = (M,y). For each_ object <M,Λ> jof 33s, GF((M,h)) =
G((M,y)) = (RJM,h), where h: RTM<g) S -»1?TM is defined by the rule,
h{m §ϊ)s)=: sm = h(m ®s) . Thus, h — h, and, since it is clear that
#TM = M, it follows that GF({M,h)) = (M, Λ>.

Concluding r e m a r k s . The monads and comonads constructed
above provide the tools with which resolutions and derived functors can
be constructed which, in turn; lead to a (co)homology theory for 93. The
category of pointed topological spaces and basepoint preserving maps,
PTOP, can be found in 93. In fact, the inclusion functor PTOP-» 93 is a
full, faithful embedding.
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