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GAUGE GROUPS AND CLASSIFICATION OF
BUNDLES WITH SIMPLE STRUCTURAL GROUP

W. D. CURTIS AND F. R. MILLER

Suppose 7τ, ϊ = l,2 are principal K-bundles which are
Cr-isomorphic in the sense that there exists a K-equίvariant
Cr-diffeomorphism /:0\—•ί^ If h belongs to the gauge
group H2 of ^ 2 then h °f lies in Hi and we have a group
isomorphism H2-+ Hλ which is C°°. It is the purpose of this
paper to investigate the converse in the case where K is a simple
Lie group. (If K is abelian the gauge group of every K bundle
over X is Cr(X, K) so there is no hope of a converse. However
for simple groups the situation is much better).

0. Introduction. Let K be a compact connected Lie group
with Lie algebra JC. Let π : ^ - ^ X b e a principal IC-bundle of class C00

where X is a compact, connected C°°-manifold.
Throughout this paper r will be a positive integer which is chosen at

this time and remains unchanged from here on.
We denote by H the subgroup of C r (^, K) consisting of all those h

for which h(pk)= k~ιh(p)k for all p in $P and k E K. H is naturally
isomorphic to the group of all Cr-bundle automorphisms of 2P which
cover the identity on X [1, 2]. The group H will be called the gauge
group of π the terminology being motivated by current usage in
theoretical physics. Cr(3P,K) is a Banach Lie group and H is a
sub-manifold and so H is a Banach Lie group [2]. The Lie algebra of H
can be identified as % = {h: 9>-*%\h is Cr and h(pk) = Ad(kι)h(p)
for p E 0>, fee K}.

The bracket in 2£ and the exponential map exp: $f-*H are the
natural pointwise operations.

1. Ideals in S€. Suppose ^C$? is an ideal. For p E &
ep: %-*% is defined by ep(h)=h{p) for h E X. ep is a Lie algebra
epimorphism so ep(J>) is an ideal in JC.

LEMMA 1.1. / /p E <3> and k E K then ep($)= epk($).

Proof. epk(h)= h(pk)= Ad(kι)h(p)= Ad(kι)ep(h). Thus
= Ad(k'1)ep(J). But ep($) is an ideal in % so Ad(fc-

DEFINITION 1.2. If JC E X let 3ίΓx = ep{#) where p E T Γ ^
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DEFINITION 1.3. If ^ is an ideal in $f we say 3 has property s if
[f, X] = Λ

We recall that \$, X] is the Lie subalgebra of X generated by all
elements of the form [a, b] where a E 3, b E Sίf. [3, $?] consists exactly
of all finite sums Σ, [α,, bx\ α, £$, ke %.

We denote by ^(X) the algebra of C% real valued functions on
X. X is a module over ^(X) for if / E ^(X) and Λ e 3ff define
fh : 0> -> % by (/fe)(p) = f(π(p))h(p). One easily sees //ι lies in $? so
we have a module.

LEMMA 1.4. // the ideal 3 Cffl has property s then 3 is a 2F{X)-
submodule of dK.

Proof. Let h E J?, φ E ^(X). We show φh E J>. 3 has property
5 so we may write h = Σ, [/*„/] where Λ, E ^ and /t E X. Then <̂/ι =
Σjφf/ii, f] = Σ, [ft,, φ/J E i> where we used the pointwise nature of the
bracket to get the last equation.

LEMMA 1.5. // $?i and ffl2 correspond to bundles πx and π2 and
ψ: ffli —̂  ffl2 is a Lie algebra isomorphism then if $ has property s in %CX then

) has property s in $?2

Before proving the final lemma of this section we make a prelimi-
nary construction. Suppose U is open in X and ξ is a section of π over
U. Suppose h E ^ and h has support in π~\U). Define h: X-»3ίf

by,

r h(ξ(x)) xEC/
h(x) =

I 0 x £ U.

h E Cr(X, X) has support in U. Conversely if we start with h: X-» 9K"
having support in U we can define h E $f as follows. There is a unique
C°°-map 0: T Γ ^ I / ) - * X such that ξ(rr(p))θ(p) = p for p E π ^ t / ) . We
define

p e π

It is easily checked that
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If x0E. X we have:

HXC) = {fGH\f(p) = e for all peπ'^Xo)}.

%Ά) = {h(ΞW\h(p) = 0 for all p 6 ir" 1^)}.

LEMMA 1.6. Assume % is semisimple. Then fflm has property s.

Proof. Let (φ,-),- be a finite partition of unity on X subordinate to an
open cover (£7,),. such that π is trivial over each [/,. Then if h E Sifw we
have ft = Σ, φ,-Λ and each φfft E Sίf̂ . Therefore the problem is reduced
to proving the following: If U CX is open such that π has a local section
ξ defined on U and if h E $?*, has support in ir~\U) then h can be
written aŝ  h = Σ, [#„, </>„] where gv E #f%, <£„ E Sff.

Let ft: X->% correspond to h using the section ξ as above. Let
(£,), be a basis for X Write h = ΣιhΈι where ft' are real valued. Since
X is semisimple we may write E, =Σj[FφGij] where Fih Gί; are in
X. Therefore h =Σwjh

i[Fil9G^ = Σkί[hlFii9Gij] = Σv[gV9φv] where gv

and φj,: X-^3ί are Cr with gi,(x0) = 0. We can easily arrange that gv

and φv have support in U. Then let g^ φv be the corresponding
functions on 9. Then if p E έP with τr(p) = x we have,

= Σ [Ad(θ(pΓ)gv(x),Ad(θ(pΓ)φv(x)]

2. A classif ication t h e o r e m . In this section, in addition to
the assumptions made in the introduction, we assume K is a simple Lie
group with trivial center. We first make some observations.

Given a principal K-bundle π: 2P-* X we construct the associated
fiber bundle si—>X with fiber X where K acts on X via the adjoint
representation of K. Each p E. $P with π(p)=x gives a linear
isomorphism φp: 3Γ—> sέx. Since Ad: If —> Lis(3Γ) actually takes values
in A u t ( ^ ) we see si is a bundle of Lie algebras. Therefore Γ Γ (^), the
space of CΓ-sections of sέ, is a Lie algebra with pointwise
bracket. There is a natural isomorphism %->Γr(sί) given by ft—» ft
where h(x)= φp(h(p)) for each Λ: E AT where p E π " 1 ^ ) [3]. This
isomorphism is an isomorphism of ^(X)-modules and is a homeomor-
phism with respect to the Cr-topologies.

Now suppose πt: ί?,-—>X are principal K-bundles, / = 1,2, with
gauge groups Hi and ̂  the Lie algebra of H{. For x0 E X the ideal $flXo
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is closed. Let ψ: Hλ->H2 be a C^-group isomorphism. There is an
induced Lie algebra isomorphism φ*\ (XX-^<M2 given by

[ψ(cxp(th)))(p)

φ* is a topological isomorphism and so for each J C 0 E X ^*($fiχo) is a
closed ideal having property s in ffl2. If we write 3 = φ*(fflXxo) and refer
to the discussion of section 1 we have ideals 3fCxC3( for each xE
X. There are apparently two possible cases.

Case 1. Xx = % for all x E X.

We argue this cannot occur. Since 3 is an ideal with property s 3 is
an ^(X)-submodule. If 3ίfx = % for all x in X we shall show 3 = $?2

which is impossible since XXxoj^ Xx. To show 3 = #f2 we regard ^ as a
closed ^(X)-submodule of Γ r (^ 2 ) . Then for x E X, D £ ̂ 2 j t there is
Λ E ί for which h{x) = υ. One now uses the ̂ (X)-module structure to
show for any x E X and for any r-jet ξ E /χ^/2 there is an h E ^ for which
jr

xh = £ Since 3 is a closed submodule we conclude 3 =Yr{sd2) by
applying a "global" version of a well-known theorem of Whitney. We
refer to [5], Corollary 1.6, p. 25.

Case 2. Xx = % for some x.

In this case there is some xx for which Xxx = (0) since K is
simple. We claim there cannot be an x2 φ xu for which %X2 = 0. For if
there were then we would have 3 C 3€2x, ΓΊ $f2x2. But the codimension of
3 in 2C2 equals the codimension of ί%Xxo in %x which equals the
codimension of X2xx in %t2 so 3 C 3ίf2χ, Π ̂ f2X2 is not possible. Therefore
in the present case we see there is a unique xx E X for which i1 = ^ 2 x i .

Thus ^ve see that a C 1 isomorphism ψ: HX^H2 gives rise to a
bijection φ: X^>X defined by

\lf %\(/L \χ I — <7L 2ψ(x)

Now let he%uf(Ξ 9(X). We have φ: X -> X and we write ψ *(/) =

LEMMA 2.1. ^

Proof. Let p 2 E 0>2x let λ = ψ*(f)(x). Then

= ψ*(β -λh)(p2)+ψ*(λh)(p2)
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Let x' = φ-'(x) and let p, G 0>,,, Then (/- λ)/ι(p,) = (f(x')- λ)Λ(p,) =
0 by choice of λ. Thus (/- λ)h G #fu. and so ψ*((/- λ)Λ)ε $?2* so

= 0. Thus

as desired.

LEMMA 2.2. The map ψ: X-+X is a C-diffeomorphism.

Proof. We need only show φ~ι is C\ It is enough to show that if
/ E &(X) then /° ψ"1 is Cr. Choose x0 E X, [/a neighborhood of JC() 0>2

trivial over [/. Then let V be a neighborhood of x0 with V C U. Let k
be a section of J^2 over U which in the local trivialization has constant
principal part. We can then cut k down to get a new section, again
called /c, defined on all of X and agreeing with the original k on
V. Then choose h E P ( ^ i ) such that ψ*(h) - k. (We are identifying
^ and Γ(^)). Now by Lemma we have ψ*(flι) = (/°ψ~ι)ψ*(h) =
(f°ψ~ι)k. When we view the Cr-section (f°ψ~ι)k in our local trivializa-
tion we conclude f°ψ~ι is C r on V. So we conclude f°ψ~ι is C r and
hence ψ"1 is CΓ.

We now define a bundle isomorphism ψ such that the following
commutes:

Φ

X—+ X

Let ax E sέλx. Choose a section h E P(jrfi) such that h{x) = α*. Define
ψ(αx) by (/ί(αx)= ψ*(h)(ψ(x)). This is independent of the choice of /ι
for if /ii were another section with hι(x)=ax then h - hλ vanishes at
x. Hence ψ*(h-hλ) vanishes at ψ(x) so ψ*(h)(ψ(x)) =
Ψ*(hi)(ψ(x))- It is clear that the diagram commutes and that ψ map-
ping sΛXx to sέ2ψ(X) is a Lie algebra isomorphism.

LEMMA 2.3. ψ is Cr.

We work locally trivializing sέx. Let t/ be open in X,
VCί/ also open, γ: J 7 x J f ? m ^ ^ i | ί 7 be a trivialization of ^ over
U. Using this we see there are Cr-sections hu - - -,hm E r r ( ^ ) such that
for each x in the subset V, hλ(x), /ιm(x)give a basis for the fiber over x
which corresponds to the standard basis of Rm under γ. We claim
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ψoγ: Vx Rm ->s$2 is given by

If so then ψ is Cr. But given ξ\'-,ξm choose /' 6
f'(x)= ξι. Then by Lemma 2.1 we see

(
m

Σf%

Let p E 0\x. Then φ^: 3Γ—> sίlx is a Lie algebra isomorphism. If
q E ^2^(x) then we have a Lie algebra isomorphism
φ\\ 31 -» jtf2«Kx). (Note the superscripts tell which bundle is being used).

Now (φ2

q)
ι°φ o φl: %-+% lies in Aut(3ίΓ). Let % = {(p, <?)|p E ̂ l x

and q E ^ 2 ^ ) for some x E X}. & is the total space of the fiber product
of 9X and ψ*$P2. We have a map p : »-> Aut(3T), p(p,q) =
(φ2q)~ι°Ψ ° Φp P is continuous and <£ is connected so p takes values in
one of the connected components of Aut (3fC). Since K is a simple group
the identity component of Aut(3Γ) is Aut°(3ί) = Ad(JRΓ). Suppose
σ£Aut(3ίr) and that p(JB)CAut°(3SΓ)σ = Ad{K)σ. Let q E ̂ 2 ,
fcEK T h e n φ 2

q k = φ2

qoAd(k). So p(pyqk) = Ad ( k ι ) op (pyq). W e
conclude that for each p E $PU there is a unique μ(p) in ^2^)_for which
ρ(p, μ(p))= <r. We then have a map μ: <g>

ι-^><g>

2 covering φ. K acts
freely on the right of both &x and £P2- We now show there is an
automorphism σ of Ky induced by σ, such that if a new action of K on Ŝ 2

is defined by q * /c = qσ(k)y (the right side being the original action) then
μ becomes K-equivariant. We have σ 6 A u t ( f ) . τ->στσ~ι is an
automorphism of Aut(3£") and hence restricts to an automorphism of
Aut°(3Γ) = Ad (K). Using the isomorphism Ad: X -»Ad{K) we see a
unique automorphism σ is induced, cr satisfies the equation
Ad(σ(k))= σAd(k)σ~\ Now we show μ(pk)= μ(p)*k for p E 0\,
k E. K. We need only show p(pfe, μ ( p ) * fe) = σ. But

so we are done.
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DEFINITION 2.4. Let π : 3P-+X be a principal K-bundle, r an
automorphism of K. The principal If-bundle π τ : 0>τ —> X is defined by
introducing the new action ^ ^ x K ^ P , ^ ^ Pr(k)> We say τττ is
conjugate to π by r.

Considering the previous discussion we have now proved

THEOREM 2.5. Under the assumptions made above ifφ: Hi-» H2 is
a C1 isomorphism then there is a Cr 'diffeomorphism φ: X—»X and an
automorphism σ of K such that ττx = ψ*(πt).

REMARK. Of course if σ is an inner automorphism we get πf = π2

and σ can be dropped.

3. Classical groups. We apply the results of §2 to the groups
SO(2rc + 1) n ^ 1, U(n) n ^ 2, and SO(2π) n ^ 3. Since the center of
SO(2n 4-1) is trivial and the automorphism group of its Lie algebra is
connected [6, pages 285-6] we get

THEOREM 3.1. Let TΓ,: 0>

I --»X be principal SO(2n + l) bundles
with gauge groups Hh i = 1,2. Suppose φ: Hι-^H2 is a C1 (local)
isomorphism. Then there is a Cr-diffeomorphism ψ:X->X so that

Now let K be SO (2n) n ^ 3 or U(n) n^2, ΊT, : 0> -» X be principal
K bundles with gauge groups Ht and ψ: Hx-^H2 a Cr local
isomorphism. Let Z denote the center of K. Now Φι = ΦX\Z is a
principal K/Z bundle over X. Let H, be the gauge group of Φt. In
both cases (SO(2/t) and U{n)) one can show that the Lie algebra
isomorphism ψ*: $Ί—> ffl2 gives Lie algebra isomorphism ψ*: $Cx-> $2

and also that the center of K/Z is trivial. Thus the results of §2 give a
Cr diffeomorphism φ: X-^X and an automorphism σ of K/Z so that
TΓI = φ*(τ7^). Note that if σ is an inner automorphism π ^ = π2 so that σ
can be dropped. The form of σ not inner is given in [6, page 287]. It
can be seen that σ lifts to σ: K -» K and that (&JZ)σ = ^σ

x/Z. We thus
get

THEOREM 3.2. Let K be SO(2n) n^3 or U(n) n ^ 2, TΓ,: 0>, -»X
fee principal K bundles with gauge groups Hn / = 1,2. Suppose
φ: HX^>H2 is a (local) C r isomorphism. Then there is a Cr diffeomor-
phism φ:X^X and automorphism σ:K^K, so that SPJZ =
φ*($P2\Z)σ = ψ*(&ϊ)/Z where Z is the center of K.

One can show that 0\ is a "tensor product" of $*(&%) with a
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principal Z-bundle over X. One way to see this is to use the classifica-
tion for bundles as given in [4]. We state the result in terms of
associated vector bundles.

THEOREM 3.3. Let TT : ^ - > X be principal SO(2n) n ^ 3 (U(n)
n ^ 2) bundles with gauge groups Hh i = 1,2. Let £ be the real (complex)
vector bundle associated with SPi using the usual representation of
SO(2n)(ί7(n)). Suppose ψ: Hλ-^_H2 is a (local) Cι-isomorphism then
there is a Cr diffeomorphism ψ:X->X, σ an automorphism of
SO(2n)([/(rc)), and η a real (complex) line bundle so that ξ1 is
SO(2n)(U(n)) isomorphic to ψ*(ξϊ)<S>V'

Final remark. We need not have assumed that 0\ and *3>2 were
bundles over the same manifold X. We could have considered
77!: SPί —»X and ττ2: &2-+ Y. If the gauge groups Hj and H2 are (locally)
C 1 isomorphic we get a Cr-diffeomorphism φ\ X—> Y.
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