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EQUATIONS OF MEAN CURVATURE TYPE IN
2 INDEPENDENT VARIABLES

LeEoN SiMoN

The object of this paper is to develop a regularity theory
for equations of mean curvature type in two independent
variables. An equation of mean curvature type in two inde-
pendent variables is defined to be an equation of the form

ZE_, 1a,i,-(x, u, Du)D;;u = bz, u, Duw)
i,5=

on a domain ©2C R?, where the functions a,, b satisfy
special structural conditions. Namely, we require that (i)
1+ | Du)®)~2b(x, u, Du) is bounded by a fixed constant (inde-
pendent of u), and (ii) the quadratic form X2 ;_; a;;(x, u, Du)é&;
is bounded from above and below in terms of the quadratic
form X%, ,-, g¥(Dw)é£;, where g*(Du)=3d;;—DuDyu/(1+]|Dul?),
2,7 =1,2, are the coefficients of the minimal surface equation.

R. Finn [2] was the first to consider such equations; he considered
the case b =0 and e,;(z, w, Du) = a,;(Du). Later Jenkins [5] and
Jenkins-Serrin [6] specialized further to equations which arise as
the non-parametric Euler-Lagrange equation of a parametric elliptic
functional with integrand independent of the spatial variables (see
Appendix 1). The main results in [2] concerned a-priori estimates
for the gradient of a solution. In [5], [6] somewhat deeper results
were obtained; in particular, pointwise estimates for the principal
curvatures of the graph of a solution were established. Recently J.
Spruck [11] obtained such a pointwise curvature estimate for the
constant mean curvature equation; this was the first such result
obtained for a non-homogeneous (i.e. b not identically zero) equation
of mean curvature tpye.

In this paper we intend to use the Holder estimate established
in [8] in order to obtain a strong regularity theory for the entire
class of equations of mean curvature type. The plan of the paper
is as follows. In §1 we introduce the class of equations of mean
curvature type and give a geometric characterization of such equations.
In §2 we discuss application of the results of [8] to homogeneous
equations of mean curvature type; in particular we obtain some
a-priori gradient estimates, a Bernstein type theorem, a Bers-type
theorem concerning the limiting behaviour of the gradient of so-
lutions defined outside a compact set, a global Holder continuity
estimate for solutions which continuously attain Lipschitz boundary
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values on 042, a pointwise estimate for the principal curvatures of the
graph of a solution, and a theorem concerning the removability of
isolated singularities. Except for the pointwise curvature estimate,
all of these results are obtained without any continuity restrictions
on the coefficient functions a@;;. In §3 we discuss extensions of the
results of §2 to the nonhomogeneous case.

1. Preliminaries. By an equation of mean curvature type, we
mean an equation of the form

1.1) sz_ a,;(z, w, Du)D;u = b(x, w, Du)

4,5=1

on a domain 2 C R?, where a,;, ¢, 7 = 1, 2, and b are given real-valued
functiens on 2 X R X R* with

12 1ef = {58 < 3 aute, 7 e = (160 - 50

for all (z,2, p)el X R x R* and all & = (&, &) € R} and
(1.3) |b(x, z, p)| < V1 + [pP

for all (z, 2, p)e2 X R x R*. Here 7 and p denote fixed constants.

Note that the minimal surface equation can be written in the
form (1.1) with a,;(z, 2, p) = 6;; — Pw;/(L + |p]?) and with b =0. In
this case (1.2), (1.3) hold with v =1 and ¢ = 0. More generally,
any equation which arises as the non-parametric Euler-Lagrange
equation of a parametric elliptic functional (see Appendix 1) is of
the form (1.1), (1.2), (1.3). But quite apart from these examples, the
equations of mean curvature type are both natural and interesting
in that they are completely characterized as follows:

Suppose u is a C¥R2) function with graph

M= {(z,2):2e, z=ux)}.

Then there exists real-valued functions a,;, b such that (1.1)-(1.3)
hold if and only if the principal curvatures «, £, of M are related
at each point of M by an equation of the form

1.1y QK+ Gk, =,
with «,, «,, B satisfying

1.2y 1,27, 21=1,2,
1.3y 1Bl =p.

To demonstrate that this characterization is valid, we let d denote
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the distance function of M defined for X = (x, 2) € 2 X R by setting
d(X) = dist (X, M) if z > u(x) and d(X) = —dist (X, M) if z < u(x).
Since d is C* and d(z, u(z)) = 0, z € 2, we then have, by the chain
rule, the identities D,d(X) + Du(x)D,d(X) = 0 and

D,;;d(X) + D;u(x)Dy;d(X) + D;u()Ds,d(X)

1.4) + Du(x)D;u(w) Dyd(X) + Dsd(X)D,5u(x) = 0,

1, 7 =1, 2, where X = (z, w(z)). Since D:d(X)=v"", v=V1+|Du(x)|?
(1.1) then implies

(1.5) a(@)Dy;d(X) + b*(x) = 0,

3
%,5=1

where b*(x) = v7'b(x, w(x), Du(x)) and where the 3 X 3 matrix (a(z))
is defined by setting afi(z) = a,;(, u(x), Du(x)) for ¢,5 =1,2 and

L.6) ai(@) = ai@) = 3 Du@as(@) , =12,
@ = 3 Dau(o)Du(z)al(a)

Note that these last relations are equivalent to
14

3
(L.6) Sai@w; = Dak@y; =0, i=1,23,
j=1 Jj=1

where v = v(—Du(x), 1)(=Dd(X)) is the upward unit normal of M.
Next we let @ be the matrix with rows e, e, v, where ¢, ¢, are
principal directions of M at X, so that Q(D,;d(X))Q* = diag [«,, £,, 0],
where £, £, are principal curvatures of M at X. Thus (1.5) can be
written in the form (1.1)’, with «a,, @, the first two elements on the
leading diagonal of Q(a}(x))Q' and with & = b*(x). (1.3) is now true
by (1.8). To check (1.2), we first note that, by (1.6),

an(@)i; = 3 a3(@)E + &Du@)E + D), FeR,

3
i,5=1

and it then follows from (1.2) that
|& [ éi%afj(x)&& SYEP, §=8— 9y,

where v = v"'(—Du(x), 1). (1.2)" easily follows from this.

To prove the converse implication we suppose that (1.1), (1.2),
(1.3) hold at X = (z, w(z)) e M, we let (a}(x)) = Q' diag [a,, a,, 0]Q,
where @ is as above, and let b*(x) = 8. Then (1.5) holds and conse-
quently, since we still have the relations (1.6), (1.6), an application
of (1.4) yields
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S, ai@) Do + b() = 0 .

2 1

We then define, for ¢, 5 =1, 2,

ak(x) if z = wu(z) and »p = Du(x)
@il 2, 0) = 45 —PPi _ otherwise ,
\ 1+ [pf
and
b, 2, p) = ;b*(x) if 2 = u(x) and » = Du(z)
HEPI= 0 otherwise .

(1.1) (1.3) are now easily checked.
Notice that if we square each side of (1.1) and divide by «,«,,
then we obtain

a, I‘:f + azﬁ.g — “2ffllfz+ IQZ ,
a, a, ao,
and by (1.2), (1.3)" this gives
@a.mn k= Ak, - Ay, A, = —27, 4y = Vi

This last inequality asserts precisely that the Gauss map of the
graph of M is (4,, 4,)-quasiconformal in the sense of [8]. (See [8],
(1.8), (1.9).) In particular the Gauss map is (4, 0)-quasiconformal,
with 4, = —27, in case b =0 (for then we can set ¢t =0). These
observations are the key in applying the results of [8] to the equa-
tions of mean curvature type.

2. The homogeneous case (b = 0). Throughout this section it
is assumed that w is a C*Q) solution of (1.1), that b =0on 2 X R x
R, and that (1.2) holds.

M will denote the graph of u; that is

M={X=(z, u(z)):xc}.

v and v = (v, v,, ¥;) will denote the functions defined on M by
(X)) =vV1+ [ Du@)}, X=( uw@x)eM

and
X)=v(—Dulz),l), X=(r,ulx)eM.

(Thus v is just the upward unit normal of M.)
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£(X), £,(X) will denote the principal curvatures of M at X .
x, will denote a fixed point of 2.

X, will denote the point (z,, u(z,))e M.

Dy(2,) = {we R |z — @] < p};

So(Xy) = (X e M: | X — X,| < p} = M N B(X,),

where
BJ(X)) = {XeR:|X - X;| < 0}.

We will begin by listing some results which follow directly from
[8] §3, 4 (by virtue of the remarks at the end of §1 above).

THEOREM 1. (See Theorem (4.2) of [8].) If D.(x,)C 2, then

supv < cinfv,
8 5/2(X ) S p/2(Xp)

where ¢ > 0 depends only on 7.

THEOREM 2. (See Corollary (4.2) of [8].) If u =0 on D,(x,),
then

| Du(w,) | = ¢, exp {c,u(,)/0} ,
whepe ¢, ¢, depend only on 7.
THEOREM 3. (See Theorem (4.3) of [8]). If D.(x,) C 2, then
2 - w8y 5 oy {EZAY, X Xesum),
where ¢ > 0 and a€(0,1) depend only on 7.

THEOREM 4. (See Theorem (4.1) of [8]). If 2 = R?, then u s
linear.
(Note that Theorem 4 follows directly from Theorem 3 by letting

‘0-—>oo,)

THEOREM 5. (See Theorem (4.4) of [8].) Suppose u extends
continuously to 2, suppose @ is a Lipschitz function on R* with
sup |Dp| < L. Then, of lim,., w(z) = ¢(y) at each y €02, we have

lu(@) — w@)| = M + | —Z|"}o - Z|*, 2,7l

where M = sup, |[u — @| and ¢ > 0, @ € (0, 1) are constants depending
only on L.
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Notice that there is absolutely no dependence on the domain Q
in the estimate above. We should point out also that from Theorem
5 various other continuity estimates follow. (See Theorems 3 and 4
of [10].)

We now wish to mention some additional results which do not
quite directly follow from [8]. First we have the following theorem,
which is an analogue of a theorem established by Bers [1] for solutions
of the minimal surface equation.

THEOREM 6. Suppose 2 = R* ~ K, where K is compact. Then
there is a wector a € R* such that Du(x) — a uniformly for |x|— .

A somewhat stronger result than Theorem 6 will be established
in Theorem 6’ of §2; in Theorem 6’ the condition that b = 0 will be
replaced by the requirement that & has sufficiently rapid convergence
to zero as x| — oo.

Next we have a theorem concerning removability of isolated
singularities. Such a theorem was proved by Bers [1] for solutions
of the minimal surface equations and by Finn [3] for a class of
divergence-form equations.

THEOREM 7. Suppose D,(2,) ~ {x,} 2. Then u extends to be a
CH(Do(2,)) N W>H(D,(2,)) function, where a € (0, 1) depends only on 7.

For a proof of this theorem the reader is referred to [9].

We will conclude this section with a pointwise curvature estimate
of a type that was established by Heinz [4] for solutions of the
minimal surface equation and by Jenkins [5] and Jenkins-Serrin [6]
for a special class of equations of mean curvature type. In order
to conveniently describe the restrictions on the coefficient functions
a;; which are needed here, it is necessary to introduce some further
notation. We define a 3 X 3 matrix (¢}(X, 1)), where X = (%, 2) ¢
2x Rand =@+ |p|)(—p, 1) with pe R, by

a'l*j(X7 /‘5) = a’ii(x? z, p) ’ 7:; .7 = 1, 2 ’
(2.1) (X, 1) = al(X, ¢) = 3, aii(®, 2, PIP;

2
a?f%(X’ #) :Z a’ii(‘”? z, p)ptpﬂ .
1,5=1

(Cf. the functions aj(x) of (1.6), (1.6)'.) Notice that a}(X, 1) is thus
defined for peS%, where

(2.2) S ={0=(9,050) <R |q| =1,¢,>0}.
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In the case when (1.1) arises as the nonparametric Euler-Lagrange
equation of a parametric elliptic elliptic functional, the matrix (a%(X, 1))
arises quite naturally (see Appendix 1).

THEOREM 8. Suppose D,(x,) C 2 and
(2.3) ig.:lia?‘j(X, ©) —aiX, B =X —X|lo+ |p—-H)

for all X, Xe S, (X,) and all p, ZeS%, where 6 >0 and ac(0, 1) are
constants. Then

(&1 + KX = o(v(X,))*0 7",

where ¢ 18 @ constant depending only on 7, ¢ and 0.

Proof. For sufficiently small 6 € (0, 1), depending on 7, we know
Spo(X,) is connected by [8], Lemma (3.2)'. Let (&, {) = (&, &, {) denote
new coordinates for R® defined by

2.4 (¢ 0 =X - X)Q°,

where @ is an orthogonal matrix with rows e, e, ¥(X;), with {e, e,}
any orthonormal basis for the tangent space of M at X,. By the
Holder estimate of Theorem 3 it is clear that there is a 6¢(0, 1),
depending only on 7, such that S,(X,) can be represented, relative
to the new coordinates (&, ), in the form

(2.5) C=u®), ételU,

where U is an open subset of R? %< C*U) and

(2.6) sup |DU| =1, Dyp(0)cU, @0)=0.
Furthermore, again using Theorem 3 we can infer that

@.7)  |DuE) — Dud)| = e(w(X)) € — El/p}*, & EeDy(0),

provided 6 (0, 1) is sufficiently small (depending on 7). By the dis-
cussion of §1 we can also infer from (1.1) and (1.2) that % satisfies
an equation of the form

2.8) >, 69D =0 on U,

1,5=1
where

1 We will henceforth use this connectivity result whenever it is convenient to do
so; note that for the inhomogeneous case the choice of ¢ depends also on fp.
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e _ _(-Du)* o Ny < e _(-Du)*
e = B = s = (1M 1“sz)

for all e R* and £€ U. By (2.6) this clearly implies
(2.9) SN S 3L @@ S Ve
iy5=1

(because |N[P— (MDY + | DE)?) = [IM*/QA + | D#|)* by Cauchy’s ine-
quality). In fact by virtue of the discussion of §1 together with
(2.7) and the the Holder condition (2.3), it is clear that we may assume

(2.10) 18:4(8) — @(©)] = ofls — El/oY , & E€Dey(0),

where ¢ > 0 and 7€ (0, 1) depend only on «, ¢ and 7.
Now by (2.9), (2.10) and the Schauder interior estimate for solu-
tions of (2.8), we then have

@.11) {= (D)} = cotsup ],

=1 Dgol0)

where ¢ depends only on 7, @ and 6. On the other hand, since D#%(0)=0
and #(0) = 0, we deduce from (2.7) that

(2.12) gug)lﬁl = co(v(X,)™,

where ¢ depends only on 7. Also, again using the fact that D#(0) =0,
we have

2

(2.13) 2 (D;u(0)) = (&1 + £)(Xo)

%,5=1

The theorem is now proved by combining (2.11), (2.12) and (2.13).

3. The inhomogeneous case. Here the notation will be the
same as in §2, except that (1.3) is assumed in place of the condition
b=0.

All the results of §2, except Theorem 4, have analogues in this
more general setting, but in most cases either the hypotheses on the
coefficient functions a,; must be stronger or the conclusion weaker
than for the corresponding results of §2.

We first have the following analogue of Theorem 3.

THEOREM 3'. If D.(z,) C 2, then
0 = D) 5 of Y X Ke S,

where ¢ > 0 and a €(0,1) depend only on 7 and pp.
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In view of the remarks at the end of §1, this theorem is a special
case of [8], Theorem (3.1). By considering examples it is easy to
see that an estimate like that of Theorem 3, with the factor (v(X,))™
on the right hand side, cannot hold in the present inhomogeneous
setting. (One class of examples is obtained by considering the constant
mean curvature equation

2 Du
D—=— ___ =H,
21 V1 + |Dul?
where H is any nonzero constant.)

For the purposes of the present section it will be convenient to
define the function b*(X, ) for

=(@2)e2 xR and p= %, pER,

by

@3.1) OXX, ) = (1 + |p[)7"0(x, 2, p) .

Note that b* is thus well defined for e S%, with S% as in (2.2).
(The function b*, like the functions a of (2.1), arise quite naturally
in case (1.1) is the non-parametric Euler-Lagrange equation of a
parametric elliptic functional—see Appendix 1.)

Next we want to obtain analogues of Theorems 1,2 for the
inhomogeneous case. We will impose the following restrictions on
the functions af, b*:

ovVI+pl® aa”(w 2,

5.2) aw(x, z, #)|

+“’t ‘al—lla (ﬂ}' z,ﬂ) aij(x’z,ﬂ)léay

oVl + |pf I%(x 2, 1)

to3 | 2@ e )

+ I)u - #I_llb*(x, 2, /") - b*(x, 2, #)[ -S— 310_1

(3.3)

for all (x,2)e2 X R and p, 2€S% with g+ ¢ and

(=p» 1)
b= T1or

In these inequalities 6 denotes a fixed constant.

THEOREM 1'. If Dy(z)C 2 and if (3.2), (3.3) hold, then

supv < cinfwv,
Sp/Z(XO) Sp/Z(XO)
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where ¢ > 0 depends only on 7, po, o.

Before giving the proof of this theorem we point out that, by
an argument like that used to prove Theorem 2, we can infer the
following from Theorem 1’.

THEOREM 2’. Under the hypotheses of Theorem 1’,
| Du(z,)| = e, exp {cau(,)/0} ,

provided w =0 on Dyx,). Here c, ¢, are constants depending on
v, to and o.

Proof of Theorem 1. We consider two cases:

Case I. |Du(x,)] 2. In this case the Holder estimate of
Theorem 3’ can be used to deduce sup,,,u., |Du|<3 for suitable
6 (0, 1) depending only on 7 and po. Hence the required result is
established in this case.

Case II. Du(x,) > 2. In this case we introduce new coordinates
(& ) as in (2.4), where now @ has the form

0 0 1
(8.4) Q= (cosa —sina O)

sin « cosa 0

for some constant a to be chosen. Since |Du(x,)| > 2, which guar-
antees ¥(X,)-(0, 0, 1) < 115, it is clear from the Holder estimate of
Theorem 8’ that a can be chosen such that there is a representation
of the form (2.5), (2.6) for suitable #¢(0,1). Also by (1.1)-(1.3) and
by the discussion of §1, we know that

2 ~
(3.5) > @ (8)D;i = b(8) on U

7 3=1

(cf. (2.8)), where (2.9) holds and where |b(¢)| < ¢t on U. Here U is
as in (2.5).

Now let { = {(¢) be a C' function with compact support in U,
multiply by D,/ in (3.5) and integrate over U. After making use

of the relations

SUDzzaDlCdE = - SUDZﬁDIZCdE - Svpmapzc ,
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this gives
|, asDaDds = | Doz,

where o= D, @, = @, [0y, =1, @, =0, a, = 2005/, and 8= 0/@,.
Thus + = D,% is a weak solution of the equation

iélDi(a’ﬁDja/r) =—-Dg.
Since (2.4) and (3.4) imply the relations

&= u(x) - u(xo) ’
x— %= (§cosa + %(&)sina, —&,sina + () cosa),

one can easily check that

(38) D = —aEb*@, u, v) X Ml Zan(s, u, v)
i;5=1 0z

+ ——a-—a?j(x, u, V) sin aD,#i(¢) + —@—a;*,-(x, u, V) cos aD (&)
o, 0w,

2 g5, u,»)-D3Q} + a2 O L
+ i@, 9)- D3R + 8O L@, w, )

+ ? b*(x, u, V) sin aD,#(&) + —a—b*(x, u, V) cos aD, (&)
o, oz,

+ %b*(w, u, v)-DlﬂQ} .

Here M = (A, Ny, N;) denotes the second row of @ (so that @, =

2= @EMN; in accordance with the discussion of §1). Also, ¥ =
(—Du, )V'1 + | Dul?, 0/op denotes the gradient operator on S%, and
we have used the relation 9Q = y. Then, since

D5, = (L + | DEP)y 3, (3. — 5,5;)D;/it
Jj=1

we see (by using the conditions (8.2), (8.8) together with (2.6) and
the identity D,%/1'1 + |D#|* = v™*) that (3.6) implies

@7 | (3 asDaDL + X BDaL + opl)ds =0, CeCyD),
where

2
—;—1012 < S @00, <707, 6=0,0)cR; and
7,i=1

(3.8) .
0 18]+ et = e,
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where ¢, depends only on po and ¢. Clearly we can apply the De
Giorgi, Nash, Moser theory and deduce that

(3.9) sup 4 < ¢, inf
Dgp/2(0) Dgpsal0)

for non-negative solutions + of (3.7), where ¢, depends on 7, 0 and
6. However Dl =11 + |[Di[}/v = 0, as one easily checks from the
relation JQ = y. Thus we can apply (3.9) to D/ji. Because of (2.6)
we then deduce the required Harnack inequality for v. This completes
the proof of Theorem 1’2

An unsatisfactory feature of Theorem 2’ is that the hypotheses
on b* are such as to exclude certain important examples. For ins-
tance, the capillary surface equation

2 D
D\——=—x)=ku, £>0
= <1/1 +_|Du|2> we B2

is excluded from the above discussion. This defect is remedied in

the following theorem, in which the following condition is assumed
in place of (3.3):

—oVTF o 2w, 2, 1) + 03| 20 (3, 2, 1)
(3.10) 07 k=il 0wy

+ | — B[]0 (=, 2, 1) — b*(®, 2, B)| < 00"
for all (x,2)e2 X R and g, ZeS% with ¢ = ¢ and

— (——p’l) 6R2
# vVitier® ? )

THEOREM 2". If D,(x,)C 2, if u = 0 on D(%,) and if (3.2), (38.10)
hold, then

| Du(,)| = ¢, exp {c,u(x,)/0} ,

where ¢, ¢, are constants depending on 7, (o and o.

Proof. In the proof ¢, ¢, --- will denote constants depending
only on 7, #o and é.

We consider the same two cases as in the proof of Theorem 1.
In Case I the required result is trivially satisfied. The argument
for Case II begins as before, except that in place of (3.7) we now
deduce that « = D& is a supersolution of the equation (3.7). That

2 Actually we have only proved subspocxp v = ¢inf spoxpyv for some 6€(0,1) de-
pending on 7, #p and 8. The required result (with 6=1/2) follows because we can
vary Xo.
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is, we deduce
G1) | (S @DwDE + 3 8DYE + e)ds 2 0

for any nonnegative { € C)(U), where (3.8) still holds. Replacing {
by (%, we then deduce that

2
SU{CF > @ ;DawDw + 20 S, @, DawDyL

(3.12) /
+ c(g 8.Dw — r)}d& <0

for all {eCyU), where w = log+y'. Using well-known arguments
from the De Giorgi-Nash theory of uniformly elliptic equations, one
can easily deduce from (3.12) that

(3.13) w(0) < ¢, + 028D+wd$ ,

where Dt = {£ € Dy,,,(0): w(§) >1}. The remainder of the proof consists
is estimating the integral on the right of (3.13). We begin by noting
that inequality (8.11) implies

[Dw*dé < ¢; .

XDﬁp/z(Xw

If we let @ be defined by @ = log v on M, then it is clear (by (2.6))
that this last inequality implies

(3.14) [dwdA < ¢, ,}

where 6 denotes the tangential gradient operator on M. Now define
E ={X = (z, w(x)) € M N (Dsosu{2s) X R): u(x) < u(xo) + 6o/4} .

We can choose points X, ---, Xy € E such that £ c UYL, S(X;) and

(3.15) N = (1 + u(w,)/p) .

Using (3.14) with X, in place of X,, summing over ¢, and also using
(3.15), we then deduce that

(3.16) SEl b 'dA < eyl + u(@,)/0) -

We now recall the fact (see e.g. [8], (4.6)) that
(1 — v5) min {£}, £3} < 0w, [°

3 Such a equality also holds, of course, if |Du(x,)| < 2; in this case one simply
essentially repeats the previous argument without introducing new coordinates &.
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at each point of M. Hence at points where v < 1/2 (that is, where
® >log 1 2) we have

(3.17) £+ 5 = el|0v 4 1) = el | 0w [P + 1)

by virtue of (1.7). Hence, since log 1 2 < 1,

(3.18) S H'dA < 69<SE]5wisz + ;ﬁ]E]) . H=fk +r,.

EN{X:0(X)>1}

Also, we know that
(3.19) B = e, + u(w,)/0)0?

by virtue of (3.15) and the area bounds |S,,(X,)| < ¢, 0°. Next we
have, by the first variation formula for the surface M,

(3.20) SM53hdA - SuvaﬂhdA ,

whenever % is a C* function with compact support in M. In particular,
we can choose i of the form

MX) = f(e)g(@(X)E(@, x,) , X = (2, %, 2)eM,
where f, g are C(R) functions and ¢ € CY(R? with
g(®) = for w>2, g{w) =0 for w<1, and 0=g'(w)< L for weR ;
f(@) =0 for t > u(x,) +o, f'(t) = —1 for t € (u(x,) —0/2, u(x,) +0/2) ,
0= —~ft)=2for teR, ft) =0 for t <ulx,) —0
(@) =1 for ze D,;(x), {(x) =0 for xe ~ D,(x,),
|Dl(x)| < 3/c for e R*. Here 0 = 0p/4.

With such a choice of h one easily deduces

wdA < cm{pg (180 + v | H)IA + |E|} .

SSgp/g(Xo)

Since v;0 <1 we then use (3.16), (3.18) and (3.19) to deduce

EN{X:0(X)>1}

(8.21) wdA =< c(1 + w(@,)/0) .

Ss,gp/s(x(,)
The required result now follows from this and (3.13). (One needs
to note that Sy,/s(X,) D {(&, %(E))Q: & € Dy,,(0)} by virtue of (2.6).)
Next we present an analogue of Theorem 8. Note that the
estimate obtained in the theorem here is weaker than that of Theorem
8 in that there is no factor of (v(X,))™* on the right hand side. (Con-
sideration of graphs with constant mean curvature shows that one
cannot expect to have such a factor on the right hand side in the
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nonhomogeneous case.)

THEOREM 8'. Suppose D,(x,) C 2, suppose (2.3) holds, and suppose
(3:22) V(X 1) — bX(X, B) = 07| X — Xlfo + | — EI)"

for all X, XeS,(X,) and all p, ZeS%, where § > 0 and a (0, 1) are
constants. Then

(&7 + £)(X) = c07?,

where ¢ 1s a constant depending only on 7, (o, 0 and «.

Proof. As in the proof of Theorem 8, we introduce new coord-
inates as in (2.4) and infer from (1.1) an equation like (2.8) for the
function # of (2.5), (2.6). However notice that here we have to use
the inequality of Theorem 3’ instead of the stronger inequality of
Theorem 3. Also, the equation for # corresponding to (2.8) now has
the form

~

2.a,/8)Die = b(§) on U,

where (2.9) still holds, where |5 < ¢ on U and where (by virtue of
(2.3), (8.22) and the estimate of Theorem 3’)

2

3185 — @@ + 015(8) — 3| = ¢l — El/p)

1,5=1

for & &€ Dy(0). Here 6¢(0,1), z€(0,1) and ¢ > 0 depend on «, d, ¥
and p#p. Then by applying Schauder’s interior estimate as in the
proof of Theorem 8, we obtain the required inequality.

The next theorem generalizes Theorem 6; notice that there are
no continuity hypotheses on the functions @,;, b in the theorem.

THEOREM 6'. Suppose 2 = R* ~ K, where K 1is compact, and
suppose that
(3-23) ]b*(Xy /’l)! = ﬂo/! X|1+= ’ XeR ~ {0}’ re Si— ’

where 4, >0 and ©€(0,1) are given constants. Then there is a
vector V° = (M9, v3, V) € 8% such that

V(X) (=1 + | Dufe))""*(— Dule), 1)) — v

untformly for |x|— oo, In case b =0, then Y} > 0 and hence there
18 an a € R* such that Du(x) — a uniformly for |x|— co.

Proof. The proof relies havily on the techniques of [8]. In the
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proof, constants which depend at most on 7, o, ¢, and 7= will be
denoted ¢, ¢, +--.

To begin, let R, be such that K C D;(0), define
0o = sup {(u*(@) + [2[*)'"*: @ € 0Dk (0)}
and for R > o > p, let T, be defined by
Toz={XeM:p<|X|<R}.

We will repeatedly make use of the fact that, for p =0 >0, T, ..,
is covered by S,/(X),---, S,(Xy), where X, ..., X, are points of
T..+. and N < cp/o, where ¢ is an absolute constant.

From the discussion of §4 of [8], have the identity

K kdA = do*

where £, £, are the principal curvatures of M and ®* is the 1-form
on M defined by

0* = (1 + ) (—vdy, + v,ay,) .
Using Stokes’ Theorem we then have, for almost all p, R with o, <
o <R,

(8.24) S Crk,dA = — S al* \ o* + S Co* .
To,R Ty, R

Using (1.7) (and noting that (3.23) implies that we can take p to be
the variable quantity /| X|'**), we then deduce

4|

To,R

clovraa s | | 2040 A |+

g Czw*
To,R Tp, To.r

+ 4,4, § X[ rdA
TR

(3.25)

If { is chosen so that { =0 on 97T, then this gives
[, clvpda=el @ovljoc) +ClxIaa,
To:r To:R
which clearly implies (by Cauchy’s inequality)
(3.26) g ClovPdA < CZS (1€ + &1 X[ ™)dA .
TR To,R

Next we note that because of the area bounds
(3.27) [S(X))| = e0?,
which by Lemma (3.1) of [8] are valid when X, e M and | X,| > 0, +
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20, we can deduce
(3.28) [Too40l S 00, 0>20,0<0=p.

By using a suitable choice of { together with (8.28), it is now not
difficult to see that (3.26) implies

|, IwpdAse, R>4o.
T20,R/2
Thus (since ¢; is independent of R) we deduce

(3.29) S |ovPdA < o

Ty,

for p > 2p,. By again choosing { appropriately, we can now deduce
from (3.25) and (3.28)

L, "

T, o

0»

(3.30) S |ov|*dA < cs{
Ty oo

+ p‘“} .

By a straightforward modification of the argument of [8], Theorem
(2.1), we can infer from this that

(3.31) Z(0) £ — :02'(0) + cp™™
for almost all o > 4p,, where

2(0) = ST |6y [*dA .

(20

(It is necessary to note the fact that

a

(3.32) ———(ZgSTp,wIBIXiIZdAgcg{p‘liTp,zpl+ST iH]dA},

0,20
where H = k, + £,. This follows by using the first variation formula
for M in a manner similar to the argument leading to (A.2) to (A.2)
of [8].) By integrating (8.32) from 40, to p, we now conclude

(3.33) 2(0) £ ewp™, p>4p,,

where B¢ (0, 27) depends only on 7, 0, tt, and 7. In particular we
note that

(8.33) ovPdA = D(X,, 0) = ¢,,07°

Ssp<xo)
for all X, e M with | X,| > 20 > 8p,.

Now an examination of the proof of the Holder estimate of
theorem (in particular see (2.11), (2.12) of [8]) will show that in the
present setting we can assert
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(3.34) (X) — v(X)| = eo{ D (0, Xo) + 07} o/}
for any X e S,(X,), 0 €(0, p). Combining (3.33)" and (3.34), with ¢ = p,
gives
X)) — v X)) S eop™, XeS(X), 8 =82,
and this clearly implies (since we can vary X,)

sup (VX)) — v X)| = e

X, XeT 5,

for any o > 4p,. Then for any integer k¥ =1 we have

_ k1
sup [¥(X) — %(X) = e (5 277)

X,feTp,zkﬂ
where upon we deduce that

sup (YX) — v(X)| Ze,07 .

X, Xe Tproo

The first conclusion of the theorem clearly follows from this.

We now consider the case b = 0. We then have (1.7) with 4, = 0,
so that we can use the theory developed in §4 of [8]. In particular
we use the identity

(3.35) (A — v)7()) ki, dA = —d(Y()(L + vo) =1y, + vidvy))

where 7 is an arbitrary C'(R) function. (This identity is the pointwise
version of identity (4.5) of [8], as one easily checks by using Stokes’
Theorem.) We multiply each side of (3.35) by a cut-off function &2
which vanishes for | X| > R, and integrate (3.35) over T,.. After
using Stokes’ Theorem, this gives

|, @ —vwreyreda
(3.36) - -LT CYNL + v —v,dy, + vdv)
—S QLYWL + v) AL A (—v,dy, + vdv) .

Now from Theorem 1 we know that

(3.37) sup y; < ¢ inf v,
5T preo 74,00
[for each p > 20,.
Also if there exists a sequence {X;}C M with | X;|— - and with
{v7(X;)} bounded, we could immediately deduce v;>0, and the required
fresult would be established. We may therefore assume v,(X) < 1/2
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for all | X| > p,, where p, > p, is a fixed constant. Then for o > p,
we can replace Y(v;) in (3.36) by (v5)'/(1 — v;), thus giving

g Oy k,d A = —S Vil — ) A (— vy, + vdv,)
(3.38) e Toree
—S 7' — Vi) TH(—vay, + vidy,) .
9T 00

Using inequality (4.8) of [8] and also using Cauchy’s inequality, one
easily checks that (3.38) implies

S & owl'dA < c{g 8¢ *dA + S |6w]C2ds} .
Tp,e0 Tp,00 aT,
Here, and subsequently, w = log v;'. Choosing {(X) =1 for | X| <

R/2 and {(X) =0 for |X|> R, and letting R — o, we then deduce
that

(3.39) S [dw]? < oo
Tp 0

for o > p,. Making a similar choice of { in (3.38) and again letting
R — o, we can conclude, for almost all o > p,,

(3.40) ST 1ow|*dA < ¢
0,

S —w,dy, + @,dy,| ,
T 00

where
o, =yl —v)t, 1=1,2.

Now for almost all p > p, we have oT, .. = UX" 'Y, where N(p) is
a positive integer and 7'/’ is a smooth Jordan curve such that ¢|X]|

does not vanish of I"{’. Since S @i =0, we can write (3.40) in
Iy

the form

=3

(o)

|, lowrdd < e,
(3.41) o
+ (0, — @,(X9))av,

|, )@ — o (X9,
er

’

where X denotes a fixed point on I'Y’. Now

dw,

ds

ds < ¢y S viiov|ds .

r(9)
Ty

(3.42)  suplo, —0x9) =
. 1*;j) I‘Fﬂ
Combining (3.41) and (3.42), we obtain

S low|dA < cw@ |3u[ds>2 sup v;® .
Tp,00 AT 5 co AT, oo
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In view of inequality (4.8) of [8] and inequality (3.37) above, we
then deduce

gfp’w[éwisz < 020<§3Tp,w15w[ds>2 .

Using (8.32) and the Holder inequality one can then use an argument
like that of [8] Theorem (2.1) (the argument is like that needed to
obtain the estimate (3.33) above); we thus obtain

S 16w A < ey0?

T4

where 5’ €(0, 1) depends only on o, and 7. In particular we have
S 16w A < eg0"
5,(Xg)

whenever Y, e M and |X,| > 20, 0 > p,. Using this last inequality
in combination with the inequalities (4.15), (4.16) of [8], we then deduce

sup w — inf w =< ¢,07 %%,
Sp,2(X0) 8 p,2(X0)

In view of the arbitrariness of X, this gives

supw — inf w < ¢ ,07F2.
To,20 To,20

Iterating, we obtain

supw — inf w < 023‘0“*""2<2 2""””)

T piokp T pr2kp =0
for each integer ¥ = 1. Hence

supw — inf w < ¢, 07%;
Tp,00 T 4,00
that is, w is bounded for | X| > 0,. The theorem now follows.

It is not clear whether or not an estimate like that obtained in
Theorem 5 holds for general equation (1.1)-(1.3), (3.2), (3.3), (3.23).
However, for a class of divergence-form equations (with » = 2 inde-
pendent variables) such a theorem is obtained in [10]; from the
discussion of §1 of [10] it is clear that the structural conditions
imposed there certainly hold in case the equation arises as the non-
parametric Euler-Lagrange equation (equation (A.6) in Appendix 1)
of an elliptic parametric functional with integrand F(X, q) in case
F(X, q) is independent of X. More generally, it suffices that FI(X, q) =
F(z, z,q) is such that F,(z,z, q) =0. (Actually the condition (1.3)
of [10] is not quite stated in a weak enough form to include this
latter case; however, one can check that all the results of [10]
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remain valid if the first inequality of [10], (1.8) is replaced by the
weaker condition

n
Z ua:iDik
i=1

é Bﬁ ’ i%JDik} .S_ :85 ’
where (in the notation of [10])
Dik = u:clAiaclPk + uxkAiz + umink + IDu[ZAzzpk ’

and this condition is weak enough to include the case when F' in
(A.6) satisfies F,(z, 2z, q) = 0.)

Finally we state the following analogue of Theorem 6; a proof
will be found in [9].

THEOREM. Suppose D,(x,) ~ {x,} C 2. Then the closure M (taken
in 2X R) of the graph of u is a C“* surface such that (D,(x,)x R)yN M
is compact for each o < p.

One can show by example that even though the graph of w can
thus be extended to a C"* surface in R? nevertheles the function
u(z) (as a function of x€ Q) may have no C' extension to D.(z,).
(Because it may happen that |Du(x)| is unbounded for x in a neigh-
bourhood of =z,.)

APPENDIX: Elliptic Parametric Functionals.

Let 2 be a bounded domain in R? and consider the functional I,
defined for C*' mappings Y = (Y, Y,, Y;): 2 — R® by

(A1) 1Y) = SgG(x, Y, DY, D,Y)dz ,

where G = G(z, X, p) is a given continuous function of (z, X, p) €
R* x R* x R*. (Here of course D,Y = (D,Y,, D,Y,, D,Y;) fori =1, 2.)
Now let us consider the possibility that I remains invariant under
orientation preserving diffeomorphism of R?* that is, whenever +r is
a diffeomorphism of R? onto itself with positive Jacobian, we would
have

[,66¢ T, 0.7, DY@ = | GG, Y@, DY (@), D.Y@ds,

where 2’ = (2) and ¥ = Yoy'. A simple computation (cf. [7], p.
349) shows that this would be true for all such diffeomorphisms
and domains 2 if and only if there is a real-valued function F' on
R? X R® such that
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(A2) Gz, X, p) = F(X,P), (¢, X,p)eR*XR X R,
where

P = (905 — D206, P06 — DD DoDs — DiDs) 5

and
(A3) F(X,n) =ANF(X,q), (X,9)eR* xR, n>0.

Note in particular that (A2) implies that G(z, X, p) cannot depend
on z; that is, G(z, X, p) = G(0, X, p) for (z, X, p)e R* X R*° X R*. In
case p = (DY, D,Y), where Y is a C' map from 2 into R’ P is
given by

P = (D1Y3'D2Y2 - D1Y2'D2Y3, -D1Y1'D2Y3 - D1Y3‘D2Y1 ’
D,Y,-D,Y, — DY,-D,Y,) .

As is well known, in case Y is one-to-one and such that the Jacobian
matrix [D;Y,(x)] has rank 2 for each z <2, this last identity can be
written

P=y,

where v is the unit normal of the embedded surface S = {Y(z)|xz € 2}
and y is the area magnification factor of the mapping Y. Thus,
assuming that we orient S with unit normal v such that y > 0, we
can write

(Y) = | PO X)) ;

that is, we can express I(Y) completely in terms of the oriented
surface S and independently of the particular mapping Y that is
used to represent S. Through this discussion we are led to consider
the functional J, defined for any smooth oriented surface S in R?
having finite area, by

(A4) JS) = | PO X0)aAX) 5

this functional has the property that J(S) = I(Y) whenever Y is a
one-to-one C' mapping from £ into R® such that [D;Y;] has rank 2
at each point of 2 and S = {Y(z)|x € 2}.

If F satisfies (A3), we call a functional of the form (A4) a para-
metric functional. The functional J is called elliptic if F' is C* on
R® x (R* — {0}) and if the convexity condition

(A5) gl Dy FX, s = |81, & =d— (s L)L,
al/Ta
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holds for all XeR?, ge R®* — (0) and £€ R’. Notice that, up to a
scalar factor, (A5) is the strongest convexity condition possible for
F in view of the homogeneity condition (A3).

If we now consider a nonparametric surface M given by

M = {(@, w(@) e R°|w e 2},

where w e C*2), then, taking v to be the downward unit normal

(Du, —1)/V'1 4+ | Dul?, we have
J(S) = SQF(x, w@), Du(x), —1)de .

Notice that here we have used the relation dA =11+ |Dul%dx.
The expression on the right can be considered as a nonparametric
functional, defined for any € C*2). The Euler-Lagrange equation
for this nonparametric functional is

(A6) 3 DIF,(®,u, Du, —1)] — Dy, F(w, u, Du, —1) = 0 .

By using the chain rule and the homogeneity condition (A3), one can
easily check that this equation can be written in the form

a.(x, u, Dw)D ;u = b(x, u, Du) ,

where

(A7) aij(xr u, Du) = IQ(inthF(xy U, Du, —1) ’ 7:; 3 = 1’ 2 ’
(A8) b(@, u, Du) = —|q| 3, Dyor (@, u, Du, —1).

By using (A3), (A5) it is not difficult to check that (1.2), (1.3) hold
with constants v and g depending on F. That is, the nonparametric
Euler-Lagrange equation for an elliptic parametric functional s
an equation of mean curvature type.

Jenkins [5] and Jenkins-Serrin [6] consider equations of the form
(A6) in case F'(X, q) does not depend on X. Note (A6) has the form
(1.1) with b = 0 in this case; hence all the results of §2 apply.

Finally we wish to point out that the functions aj, b* introduced
in §2 have a natural interpretation in the present context. In fact
one can easily check that in case a,; b are as in (AT), (A8), then
ak, b* are given by

a’;kj(X} y) = inq]'F(X, V), 4,J=L1,23,
b'(X, ) = ~ 141 3, Do FIX, )
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furthermore the conditions (2.3), (3.22) hold automatically with 4, @
determined by F, provided that F'e C¥R® x (R* — {0})).
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