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RINGS WITH INVOLUTION AND THE PRIME RADICAL

W. E. BAXTER AND L. A. CASCIOTTI

This paper first gives an equivalent characterization of
the prime radical of S, the set of symmetric elements, in a
ring R which is 2-torsion free and has an involution defined
on it to that of Tsai by showing their equivalence using the
results of Erickson and Montgomery.

With the ideas developed, the structure of Jordan ideals of S
under an algebraic condition similar to the topological condition
previously investigated by Baxter is exhibited.

II• Two views of primeness and semiprimeness for Jordan
ideals of S. Assuming that R is a 2-torsion free ring with involu-
tion, we wish to characterize the prime radical of Tsai ([3] and
[4]) differently. In so doing we offer a new definition of primeness
and semiprimeness in the Jordan ring S based on the (linear) Jordan
multiplication a^b = ab + 6α (rather than the quadratic Jordan
multiplication, aTJh — bab, as investigated in [3]. We must empha-
size however that the assumption of 2-torsion free is most impor-
tant to this development. Henceforth R is a 2-torsion free ring
with involution, a—*α*.

The definition given in [3] is due to Tsai [4], it is stated as
follows.

DEFINITION 1.

(i) Q is a ί-prime (έ-semiprime) Jordan ideal of S if whenever
A and B are Jordan ideals of S and AUB = {ΣaUb \ ae A, be J3}cQ.
Then either AdQ or BczQ (AUAc:Q then AcQ).

(ii) S is ί-prime (ί-semiprime) if 0 is a ί-prime (semiprime)
Jordan ideal of S.

We wish to consider Jordan ideals of S which are related to
the quadratic multiplication

{u, s, v] = sUUyV = usv + vsu .

In this direction we make the following definition.

DEFINITION 2. If Q and T are Jordan ideals of S then

QΛT = {Σ{q, s,t}\qeQ, seS, teT}

is the subgroup generated by {q, s, t).
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It is easily shown that QΛT is a Jordan ideal of S.

With this notation we introduce our definition of i-primeness
O'-semiprimeness).

DEFINITION 3.

( i ) Q is a y-prime (i-semiprime) Jordan ideal of S if whenever
A and B are Jordan ideals of S and AΛB c Q (AΛA c Q) then either
AdQ or BczQ (AcQ). x

(ii) S is i-prime (i-semiprime) if, and only if, 0 is a ./-prime
(^-semiprime) Jordan ideal of S.

One says that a subset H is 2-divisible if whenever 2x e H then
xeH. The following follows very quickly.

LEMMA 4. If Q is t-semiprime and 2-divisible Jordan ideal of
S then Q is j-semiprime.

Suppose AΛAczQ for a Jordan ideal A of S. Then, in parti-
cular, {a, b, a} e Q for all a, be A. That is, 2aba e Q. Since Q is
2-divisible, AUA(zQ and hence AczQ.

Following the same argument as Theorem 2, [3] one can prove

LEMMA 5. Let I be a semiprime 2-dίvisible ideal of R then
I Pi S is a j-semiprime Jordan ideal of S.

In particular, we observe that rj9 the prime radical, is a 2-divi-
sible ideal of R when R is 2-torsion free. This is stated as

LEMMA 6. Let R be 2-torsion free with involution. Then the
prime radical, η, is a two-divisible ideal of R. Hence, rj Π S is
j-semiprime.

The proof of the lemma follows by comparing m-sequences {x —
bQ, bi •==• xc^ for appropriately chosen c j and {2x = dOf dt — 2{2i){xcix)}

beginning at x and 2x respectively. If the latter vanishes {R is 2-
torsion free) so does the former. However, x$Ύ) implies the exis-
tence of a non-vanishing m-sequence and 2x e η would contradict that
fact.

Using the notion of i-semiprime, we introduce a new radical
for S. We define
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DEFINITION 7. Rj(S) is the intersection of all the j-semiprime
ideals of S.

We are now able to conclude

THEOREM 8. R3(S) = η n S = ^f(S) = ^(S).

We know from [3], Lemma 1 that the latter two equalities
hold. Furthermore, Lemma 6 tells us that R3(S) aη Π S. To show
the inclusion the other way we make use of the argument of [3].
We modify it slightly to show that we can work with a more
restrictive set; namely, ^£ — {M is a 2-divisible ideal of R, and
M Π S c R3(S)}. Oe^C and thus ^t Φ 0 . By Zorn's lemma, it
has a maximal element, M'. By construction, M' is 2-divisible.
Furthermore, M' is semiprime. To see this, let A be an ideal of
R, A2aM', M'aA.

Thus, (A Π S)Λ(A n S ) c 4 2 n S c J l ί ' n S c R 3 ( S ) . AS R3{S) is j -
semiprime we have Af] Sd R3(S). If A were 2-divisible we are
done. If not, let T = {t \ 2itt e A for some positive integer it}. Then
T is a 2-divisible ideal of R and A c Γ .

Now, {2Hί9 s, 2H2} 6 (A Π S)Λ(A n S) for all t19 t2eTr)S, se S.
Thus, 2<1+ί2{£1, s, έ2} e M' n S. However, I f is 2-divisible and so all
the generators of (T Π S)Λ(T Π S) are in the i-semiprime Jordan
ideal R3(S). Therefore, TπSczRjiS) which contradicts the maxi-
mality of Mf. Hence, Mf is a semiprime ideal of R. The following
inclusions are obvious: ηπSaM'Γ\S(ZR3(S). This completes the
argument.

As a consequence of this theorem we have the following lemma
whose proof is immediate.

LEMMA 9. Let I be a ""-ideal of R such that IΠ S = 0, then
IczK and P=0. In particular, ifηp\S=0 then ηczK and η*=0.

We are now able to conclude that in 2-torsion free rings with
involution these definitions of primeness (and semiprimeness) are
equivalent.

THEOREM 10. Let R be 2-torsion free with involution. Then
S is t-prime if, and only if, S is j-prime.

The easier direction appears to be that ί-prime implies i-prime.
Thus, assume S is ί-prime and let AΛB — 0 for Jordan ideals A and
B of S. Now for a, beAf]B we have {a, b, a} = 0. Thus (A Π
B)UAf]B = 0. That is, A Π B = 0. Therefore 2{a,b,a} = 0 for all
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aeA, beB. That is, BUA = 0. Hence, by hypothesis, 4 = 0 or
B = 0. This is the desired conclusion.

To see the other direction, assume S is i-prime (then, of course,
S is i-semiprime). Thus by Theorem 8, η Π S = 0. That is, S is ί-
semiprime. Let A and I? be Jordan ideals of S such that A £7* = 0. Then
(A Π B) UUOB) = 0 or A Π 2? = 0. Therefore, for all α 6 A, δ 6 J5, αo6 = 0.

Thus, aoφos) = 0 = (α°s)°δ for all αeA, δel?, seS.
Expanding, and adding, we have {a, s, b} = 0 for all α e A, s e S,

δ e B. That is, AΛί? = 0. Since S is i-prime we have the desired
conclusion.

We next investigate semiprimeness of S and show that each
definition implies the other.

THEOREM 11. Let R be 2-torsion free with involution. Then S
is t-semiprime if, and only if, S is j-semiprime.

If S is έ-semiprime and AΛA — 0 for a Jordan ideal of S, we
can immediately conclude by appropriate choices that AUA — 0.
Hence, A = 0. That is, S is ^-semiprime.

The argument in the other direction assumes that S is i-semi-
prime, that is, 0 is i-semiprime ideal and hence Rj(S) = 0 = η Π S.
Let A be a Jordan ideal of S with the property that AUA = 0.
Recalling the definitions and conclusions of [1], we have B = {δ|δα+
α*δ* G A} is a right ideal of R, SBaB, and hence Bf]S is a Jordan
ideal of S. Thus, B f] A is a Jordan ideal of S and for all δ,
ceί?nA, aeR we have both c(δα + α*δ)c = 0 and bcb = 0. Therefore,
6c(δα + α*δ)e = 0, or bcRbc = 0. That is, δc e >; and so δ<>c e η Π S = 0.

Since R is 2-torsion free we are able to conclude that boc = b2 = 0
for all δ, ceBΠ A. Therefore, δ°(δos) = 2δsδ = 0 for all δ e B Π A,
seS.

That is, (I? Π A)U{B()A) = 0 and so the conclusion, B f] A = 0.
However, 4 ( A ° A ) c ΰ n A = 0, and so AoA = 0, Hence, as

above, we conclude that A = 0. That is, we have shown that S is
£-semiprime when S is i-semiprime.

Ill* An annihilator condition on S. In this section we con-
sider the results of [2] after removing the topological conditions on
the ring, R, and the requirements that 2R = R, R2 = Ry and R is
semi-prime.

We continue the hypothesis that R is a 2-torsίon free ring
with involution and S is t-semiprime. Therefore, the prime radi-
cal, η, is a two-divisible ideal of R, contained in K. That is,
7] Π S = 0 and rf = 0.

Hence, in R = R/η we have the property that 2S^ c SB. One
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uses this remark to conclude that

LEMMA 12. Let R be a 2-torsion free ring with involution.
Let S be t-semi-prime. Let A be a Jordan ideal of S with the
property that an = 0 for all a e A, n a fixed positive integer. Then
A = 0.

As in [1] and [2] we continue the notation

(a, b)j = ab + 6*α* for all

a, beR.
In RJΎ] we can assume that an element of Ίζ~ comes from an

element of BA. Indeed, notice that

Ύ] c BA = {6 I (6, a)j c A} .

This is a consequence of (nf a)j = 0 for all w e37, α e R .
Letting Sf(βA) denote the left-annihilator of BA in R/η, we can

conclude that £fN(B) = {t \ tb e η for all beB} is a set which inherits
the properties of Sf{B) of [2]. These are collected as the following
theorem.

THEOREM 13. Let R be a 2-torsion free ring with involution.
Let S be t-semiprime. Let A be a Jordan ideal of S and let B=BA

and £fN(B) be as defined then:
( i ) £fN(B) is a two sided self adjoint ideal of R.
(ii) j^N(B)f)B = V

(iii) // £fN{V) = [teR\tveτ] for all v in the Jordan ideal V
of S}, then 3fN(V) - £?N(B Π S) = ̂ ^ ( B ΓΊ F) = £fN(B)

(iv) 1/ 7 is α Jordan ideal of S and
jzfj(V) = {teS\tov = 0 for all veV}; the Jordan annihilator of
V in S, then £?N(V) ί l S = JK(V).

(v) if w = (j5fN(B)ns)e(ΰns) ίλ^ J^(W)-0.
(vi) 1/ Y = {sfN{B)ns)φ(ins) tΛβ̂  JK(Y) = 0.

We now impose an algebraic annihilator condition on S which
is related to the annihilator condition of [2]; namely.

DEFINITION 14. A ring R is said to satisfy condition Jtf if,
and only if,

( i ) R is 2-torsion free with involution,
(ii) S is ί-semiprime, and
(iii) whenever V, a Jordan ideal of S, is such that

then V= S.
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Using this concept we have

LEMMA 15. Let R satisfy condition Ssf then:
( i ) If L is a Jordan ideal of S such that for all t e

tn eL (n a fixed positive integer) then L = S.
(ii) The norms generate S, the traces generate S, Rn Π S = S

for all positive integers n.
(iii) S = (Bv Π S) 0 (£fN(B) nS) = F 0 ^ ( F ) for all Jordan

ideals V of S.

Remarks (ii) and (iii) follow immediately from (i). Hence, we
prove (i). Suppose tneL for all tejχTj(L). Then, pot = 0 for all
t e J^fj(L). That is, tn+1 = 0 for all t e J*fj(L). By Lemma 12,
J*S(L) = 0 or L = S.

This annihilator condition is sufficient to guarantee that Bv is a
two-sided ideal for any Jordan ideal, VaS. This remark forms a
part of the following theorem.

THEOREM 16. Let R satisfy condition s/l Then Bv f] S and
SfN{B) Π S are strongly semiprime Jordan ideals of S, V = Bv Π S,
and Bv is a two-sided, self-adjoint ideal of R.

Letting Bv = B, and SfN(B) — L one observes that for all
beBΓ\S, seS, teLf)S,

Since, S = (B n S)ζ&(L Γ\ S) we have for each a e S, a = b + t,
for some beBΓ\S, teLf]S. Now if rUa = araeBf] S for all
r 6 S, we must have (using the above observation)

rUte(BnL)f]S = 0.

That is, t — 0 and hence a = 6 e 5 .

Now, if w = 6 + t for some 6 e β ί l S, teL Π S then

( % o s ) - ( 6 o 8 ) = ( t o 8 ) β V f ] L

for all seS. Thus, t e J*S(S) or t = 0. Hence, F c ΰ . On the
other hand, arguing from S = 7 φ ( L ( l S ) we conclude BπSczV.

Furthermore, given beB, aeR then (6, a)jeBπS = F. How-
ever, JB is a right ideal. Thus, iϋδ* e i? for all 6 6 B. Now consider
αδ for arbitrary aeR, beB. Then, for all ceR consider

{(ab), c)j .

We observe, ((ab), c)j = ((c*δ*), α*)j e V. Hence, αδ e E. That is, B
is a two-sided ideal of R.
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Now, for any 6 e J5, 6 + 6* = c + t for appropriate c e B Π S,
teLnS. Therefore tU8 = (6 - c)U8 + 6*U8. Since Rb* e B we have
the right side of this expression is in B. Therefore, tU8 = 0 for
all seS. It follows that V = {teS\tU8 ~ 0} is a Jordan ideal and
VUV = 0. Hence F = 0 as S is t-semiprime. Thus, t = 0, or 6* 6 JS.
That is, I? is self-adjoint.

This theorem has the interesting consequence which was observed
in [2].

THEOREM 17. Let R satisfy condition Jzf. Let V be the addi-
tive subgroup generated by the elements {ua-a*u \ u e W, a nonzero
Jordan ideal of S, and a e R}. Then W + V contains a nonzero
2-sided ideal of R. Furthermore, if W is minimal, 2R = R, or
2W = W this last containment is an equality.

The proof of the first fact is to observe that since B Π S = W
we have R(2u)R c W + V for all ueW. Since S is ί-semiprime,
we can conclude that R(2u)RΦ0 for some ueW and hence the
desired result. If W is minimal, 2W — W and hence the latter
remarks follow quickly.

THEOREM 18. Let R be a semiprime ring with condition
Let W be a Jordan ideal of S. Then either Wdζa (the annihilator
of the socle) or W contains an idempotent.

The proof is the same as in [2]. Knowing B (Ί S = W, we can
conclude that whenever a symmetric idempotent is in the set on
the left then it is in the set on the right. This observation replaces
the need for the assumption 2R = R.
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