ON STARLIKENESS AND CONVEXITY OF CERTAIN ANALYTIC FUNCTIONS

V. V. Anh and P. D. Tuan

Let N be the class of normalised regular functions

$$
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}, \quad|z|<1 .
$$

For $0 \leqq \lambda<1, \gamma \geqq 1$, let $f(z), g(z) \in N$ be such that

$$
|f(z) /[\lambda f(z)+(1-\lambda) g(z)]-\gamma|<\gamma, \quad|z|<1 .
$$

We establish the radius of starlikeness of $f(z)$ under the assumption $\operatorname{Re}\{g(z) / z\}>0$, or $\operatorname{Re}\{g(z) / z\}>1 / 2$, or $\operatorname{Re}\left\{z g^{\prime}(z) / g(z)\right\}>$ $\alpha, 0 \leqq \alpha<1$, or $\operatorname{Re}\left\{1+z g^{\prime \prime}(z) / g^{\prime}(z)\right\}>0$ for $|z|<1$. The analysis may be extended to the problem of finding the radius of convexity for certain subclasses of N.

1. Introduction and notation. Let S, S^{*}, S^{c} denote the subclasses of N which are univalent, univalent starlike, univalent convex in $|z|<1$ respectively.

A necessary and sufficient condition for $f(z) \in N$ to be univalent starlike in $|z|<r$ is

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0, \quad|z|<r
$$

A necessary and sufficient condition for $f(z) \in N$ to be univalent convex in $|z|<r$ is

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>0, \quad|z|<r
$$

A function $f(z)$ belongs to $S^{*}(\beta)$, i.e., is starlike of order β, $0 \leqq \beta<1$, if it satisfies the condition

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\beta, \quad|z|<1
$$

A function $f(z)$ belongs to $S^{c}(\beta)$, i.e., is convex of order $\beta, 0 \leqq$ $\beta<1$, if it satisfies the condition

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\beta, \quad|z|<1
$$

Let \mathscr{P}_{α} denote the class of regular functions of the form

$$
p(z)=1+\sum_{k=1}^{\infty} c_{k} z^{k}, \quad|z|<1,
$$

satisfying the inequality $\operatorname{Re}\{p(z)\}>\alpha$ for $|z|<1,0 \leqq \alpha<1$ and \mathscr{Q}_{r} the class of functions $q(z)$ with expansion of the above form but satisfying the inequality $|q(z)-\gamma|<\gamma$ for $|z|<1, \gamma \geqq 1$. We note that both \mathscr{P}_{0} and \mathscr{Q}_{∞} reduce to the class \mathscr{P} of functions with positive real part.

Let $N_{n}, n \geqq 1$, denote the subclass of N consisting of functions of the form $f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k}$. Then $N_{1}=N$.

Shah [8] considered the problem of determining the radius of starlikeness of $f(z) \in N_{n}$ for the following cases:
(a) $f(z) /[\lambda f(z)+(1-\lambda) g(z)] \in \mathscr{P}$ with $g(z) \in N_{n}$ and $g(z) / z \in \mathscr{P}$, or $g(z) / z \in \mathscr{P}_{1 / 2}$ (with $n=1$), or $g(z) \in S^{*}(\alpha)$;
(b) $f(z) /[\lambda f(z)+(1-\lambda) g(z)] \in \mathscr{Q}_{1}$ with $g(z) \in N_{n}$ and $g(z) / z \in \mathscr{P}$, or $g(z) \in S^{*}(\alpha)$.

The conditions were shown to be sharp only when $\lambda=0$. In this paper, we solve the problem for the subclasses of N mentioned at the beginning, subject to certain restrictions on the values of λ. Letting $\gamma \rightarrow \infty$ we obtain the radii of starlikeness of $f(z)$ satisfying $f(z) /[\lambda f(z)+(1-\lambda) g(z)] \in \mathscr{P}$. All the bounds obtained are best possible. Furthermore, the same technique may be used to establish the radius of convexity of $f(z) \in N$ satisfying $f^{\prime}(z) /\left[\lambda f^{\prime}(z)+(1-\lambda) g^{\prime}(z)\right] \in \mathscr{Q}_{r}$, where $g(z)$ belongs to various subclasses of N. The results proved here generalize those of MacGregor [3, 4, 5] and Ratti [6, 7].

It should be remarked that parallel results for subclasses of $N_{n}, n>1$, may be derived in an analogous manner. The manipulations involved are, however, more complicated.

The lemmas required for the proofs of our theorems are given in $\S 2$. Section 3 contains theorems giving the conditions for starlikeness. We outline the conditions for convexity in $\S 4$.
2. Some lemmas. Let \mathscr{B} denote the class of functions $w(z)$ regular in $|z|<1$ and satisfying $w(0)=0,|w(z)|<1$ for $|z|<1$.

Lemma 2.1 [9]. If $w(z) \in \mathscr{B}$, then for $|z|<1$,

$$
\left|z w^{\prime}(z)-w(z)\right| \leqq \frac{|z|^{2}-|w(z)|^{2}}{1-|z|^{2}}
$$

Proof. Write $w(z)=z \phi(z)$, where $\phi(z)$ is regular in $|z|<1$ and $|\phi(z)| \leqq 1$. The assertion now follows from the well-known result due to Caratheodory

$$
\left|\phi^{\prime}(z)\right| \leqq \frac{1-|\phi(z)|^{2}}{1-|z|^{2}}
$$

Lemma 2.2. Let $w_{1}(z)=[1-w(z)] /[1+\beta w(z)]$, where $w(z) \in \mathscr{B}$,
$\beta \geqq 0$. Then, fo $|z|=r<\min (1,1 / \beta)$,

$$
\begin{aligned}
\operatorname{Re}\left\{-\beta w_{1}(z)+\frac{1}{w_{1}(z)}\right\} & +\frac{r^{2}\left|1+\beta w_{1}(z)\right|^{2}-\left|1-w_{1}(z)\right|^{2}}{\left(1-r^{2}\right)\left|w_{1}(z)\right|} \\
& \leqq \frac{1-\beta+(3 \beta+1) r+\beta(\beta+3) r^{2}+\beta(\beta-1) r^{3}}{\left(1-r^{2}\right)(1+\beta r)}
\end{aligned}
$$

Proof. By Schwarz's lemma, $|w(z)| \leqq r$ on $|z|=r<1$. The transformation $w_{1}(z)=[1-w(z)] /[1+\beta w(z)]$ maps the disc $|w(z)| \leqq r$, $r<\min (1,1 / \beta)$, onto the disc $\left|w_{1}(z)-a\right| \leqq d$, where

$$
\alpha=\frac{1-\beta r^{2}}{1-\beta^{2} r^{2}}, \quad d=\frac{(1+\beta) r}{1-\beta^{2} r^{2}}
$$

Clearly,

$$
0<a-d=\frac{1+r}{1+\beta r}<a+d=\frac{1+r}{1-\beta r}
$$

Put $w_{1}(z)=a+u+i v, R=|a+u+i v|$; then

$$
\begin{align*}
S(u, v) & =\operatorname{Re}\left\{-\beta w_{1}(z)+\frac{1}{w_{1}(z)}\right\}+\frac{r^{2}\left|1+\beta w_{1}(z)\right|^{2}-\left|1-w_{1}(z)\right|^{2}}{\left(1-r^{2}\right)\left|w_{1}(z)\right|} \tag{2.1}\\
& =-\beta(a+u)+\frac{a+u}{R^{2}}+\frac{1-\beta^{2} r^{2}}{1-r^{2}} \cdot \frac{d^{2}-u^{2}-v^{2}}{R}
\end{align*}
$$

Now,

$$
\frac{\partial S}{\partial v}=-\frac{v}{R^{4}}\left\{2(a+u)+\frac{1-\beta^{2} r^{2}}{1-r^{2}}\left[\left(d^{2}-u^{2}-v^{2}\right) R+2 R^{3}\right]\right\}
$$

The terms inside the curly brackets are always positive for $r<$ $\min (1,1 / \beta)$. Hence the maximum of $S(u, v)$ in the disc $\left|w_{1}(z)-a\right| \leqq d$ is attained when $v=0$ and $u \in[-d, d]$. Setting $v=0$ in (2.1) we obtain

$$
\begin{equation*}
S(u, 0)=\frac{2\left(1-\beta^{2} r^{2}\right) \alpha}{1-r^{2}}-\frac{(1+\beta)\left(1-\beta r^{2}\right)}{1-r^{2}}(\alpha+u) \tag{2.2}
\end{equation*}
$$

Since $d S(u, 0) / d u<0$ for $r<\min (1,1 / \beta)$, the maximum of $S(u, 0)$ occurs at the end point $u=-d$ and the result follows.

Lemma 2.3. If $w(z) \in \mathscr{B}, \beta \geqq 0$, then for $|z|=r<\min (1,1 / \beta)$,

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z w^{\prime}(z)}{[1-w(z)][1+\beta w(z)]}\right\} \leqq \frac{r}{(1-r)(1+\beta r)} \tag{2.3}
\end{equation*}
$$

Proof. From Lemma 2.1, we have

$$
\begin{aligned}
\operatorname{Re}\left\{\frac{z w^{\prime}(z)}{(1-w(z))(1+\beta w(z))}\right\} \leqq & \operatorname{Re}\left\{\frac{w(z)}{(1-w(z))(1+\beta w(z))}\right\} \\
& +\frac{r^{2}-|w(z)|^{2}}{\left(1-r^{2}\right)|1-w(z)||1+\beta w(z)|}
\end{aligned}
$$

Put $w_{1}(z)=[1-w(z)] /[1+\beta w(z)]$, then the above inequality becomes

$$
\begin{aligned}
\operatorname{Re}\left\{\frac{z w^{\prime}(z)}{(1-w(z))(1+\beta w(z))}\right\} \leqq & \frac{1}{(1+\beta)^{2}}\left[\beta-1+\operatorname{Re}\left\{-\beta w_{1}(z)+\frac{1}{w_{1}(z)}\right\}\right. \\
& \left.+\frac{r^{2}\left|1+\beta w_{1}(z)\right|^{2}-\left|1-w_{1}(z)\right|^{2}}{\left(1-r^{2}\right)\left|w_{1}(z)\right|}\right]
\end{aligned}
$$

An application of Lemma 2.2 to the right hand side will give the result which is easily seen to be sharp for $w(z)=z$ at $z=r$.

The following lemma is a consequence of [2, Theorem 3].
Lemma 2.4. If $p(z) \in \mathscr{P}$, then on $|z|=r$,

$$
\begin{align*}
\operatorname{Re}\left\{\frac{z p^{\prime}(z)}{1+p(z)}\right\} \geqq & \left\{\begin{array}{cl}
-\frac{r}{1+r}, & \text { for } \quad r<\frac{1}{3} \\
\frac{r^{2}+2^{3 / 2}\left(1-r^{2}\right)^{1 / 2}-3}{1-r^{2}}, & \text { for } \quad \frac{1}{3} \leqq r<1
\end{array}\right. \tag{2.4}\\
& \operatorname{Re}\left\{\frac{z p^{\prime}(z)}{p(z)}\right\} \geqq-\frac{2 r}{1-r^{2}} \tag{2.5}
\end{align*}
$$

3. Radii of starlikeness.

Theorem 3.1. Let $f(z) \in N$ be such that $f(z) /[\lambda f(z)+(1-\lambda) g(z)] \in$ \mathscr{Q}_{r}, where $g(z) \in N$ and $g(z) / z \in \mathscr{P}, 0 \leqq \lambda<(1+\sqrt{3}+1 / 2 \gamma) /(2+\sqrt{\overline{3}})$. Then the radius of starlikeness σ_{1} of $f(z)$ is given by the only positive root in $(0,1)$ of the equation

$$
\beta r^{3}+(2+3 \beta) r^{2}+3 r-1=0
$$

where $\beta=[(1+\lambda) \gamma-1] /(1-\lambda) \gamma$.
Proof. Put $\psi(z)=1-f(z) / \gamma[\lambda f(z)+(1-\lambda) g(z)]$. Then $|\psi(z)|<1$ for $|z|<1$ and $\psi(0)=1-1 / \gamma=A$. Let $w(z)=[\psi(z)-A] /[1-A \psi(z)]$. It is clear that $w(z) \in \mathscr{B}$ and $\psi(z)=[w(z)+A] /[1+A w(z)]$ from which we deduce

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=\frac{z g^{\prime}(z)}{g(z)}-\frac{1+A}{1-\lambda} \cdot \frac{z w^{\prime}(z)}{(1-w(z))(1+\beta w(z))} \tag{3.1}
\end{equation*}
$$

$\beta=(A+\lambda) /(1-\lambda)$, provided $1-\lambda(1-w(z)) /(1+A w(z)) \neq 0$. Since $|w(z)| \leqq r$ for $|z|=r$ by Schwarz's lemma, it follows that

$$
1-\lambda(1-w(z)) /(1+A w(z)) \neq 0
$$

if, in particular, $|z|<1 / \beta$.
Now, as $g(z) / z \in \mathscr{P}$, write $g(z) / z=p(z)$, some $p(z) \in \mathscr{P}$. Then $z g^{\prime}(z) / g(z)=1+z p^{\prime}(z) / p(z)$. An application of (2.5) gives

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z g^{\prime}(z)}{g(z)}\right\} \geqq \frac{1-2 r-r^{2}}{1-r^{2}}, \quad|z|=r<1 . \tag{3.2}
\end{equation*}
$$

This result together with (3.1) and (2.3) yield

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\} \geqq \frac{1-3 r-(2+3 \beta) r^{2}-\beta r^{3}}{(1-r)(1+\beta r)} .
$$

For the cubic polynomial

$$
F(r)=\beta r^{3}+(2+3 \beta) r^{2}+3 r-1,
$$

$F(0)<0, F(1)=4+4 \beta>0, F(1 / \beta)=\left(3+6 \beta-\beta^{2}\right) / \beta^{2}$. Thus the equation $F(r)=0$ has exactly one root in $(0,1)$ which is in the range $(0,1 / \beta)$ if $\beta<3+2 \sqrt{3}$, i.e., if $\lambda<(1+\sqrt{3}+1 / 2 \gamma) /(2+\sqrt{3})$.

Remark 3.1. The theorem is sharp for

$$
f(z)=\frac{1-z}{1+\beta z} \cdot \frac{z(1-z)}{(1+z)} .
$$

When $\lambda=0, f(z)$ is starlike in $|z|<\sqrt{5}-2$ if $\gamma \rightarrow \infty$ and in $|z|<$ $(\sqrt{17}-3) / 4$ if $\gamma=1$ as previously shown by Ratti [6, Theorems 1 and 4].

Theorem 3.2. Let $f(z) \in N$ be such that $f(z) /[\lambda f(z)+(1-\lambda) g(z)] \in$ \mathscr{Q}_{r}, where $g(z) \in N$ and $g(z) / z \in \mathscr{P}_{1 / 2}$. Then the radius of starlikeness of $f(z)$ is

$$
\sigma_{2}=\left\{\begin{array}{cr}
r_{1}, & \text { for } 0 \leqq \lambda \leqq 1 / 2 \gamma, \\
r_{2}=\left[2^{1 / 2}(1+\beta)^{1 / 2}-1\right] /(1+2 \beta), & \text { for } 1 / 2 \gamma<\lambda<(\sqrt{5}+1 \\
& +1 / \gamma) /(\sqrt{5}+3),
\end{array}\right.
$$

where $\beta=[(1+\lambda) \gamma-1] /(1-\lambda) \gamma$ and r_{1} is the smallest positive root in $(0,1)$ of the equation

$$
\begin{aligned}
\left(1+2 \beta+9 \beta^{2}\right) r^{4} & +2\left(1+12 \beta+3 \beta^{2}\right) r^{3}+\left(13+10 \beta+\beta^{2}\right) r^{2} \\
& +4(1-\beta) r-4=0 .
\end{aligned}
$$

Proof. Since $g(z) / z \in \mathscr{P}_{1 / 2}$, there exists $p(z) \in \mathscr{P}$ so that $g(z) / z=$ $1 / 2+p(z) / 2$. Hence

$$
\begin{equation*}
\frac{z g^{\prime}(z)}{g(z)}=1+\frac{z p^{\prime}(z)}{1+p(z)} \tag{3.3}
\end{equation*}
$$

Applying (2.4) to this equation gives, on $|z|=r$,

$$
\operatorname{Re}\left\{\frac{z g^{\prime}(z)}{g(z)}\right\} \geqq\left\{\begin{array}{cl}
1 /(1+r), & \text { for } \tag{3.4}
\end{array} \quad 0<r<1 / 3.3 .\right.
$$

This result together with (3.1) and (2.3) yield, for $|z|=r<1 / 3$,

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\} \geqq \frac{1-2 r-(1+2 \beta) r^{2}}{(1-r)(1+\beta r)}=G(r)
$$

and for $1 / 3 \leqq r<1$,

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\} \geqq-\frac{(1+\beta) r}{(1-r)(1+\beta r)}+\frac{2\left[2^{1 / 2}\left(1-r^{2}\right)^{1 / 2}-1\right]}{1-r^{2}}
$$

which yields the equation giving the condition of starlikeness of $f(z)$ to be

$$
\begin{aligned}
\left(1+2 \beta+9 \beta^{2}\right) r^{4} & +2\left(1+12 \beta+3 \beta^{2}\right) r^{3}+\left(13+10 \beta+\beta^{2}\right) r^{2} \\
& +4(1-\beta) r-4=0
\end{aligned}
$$

The only root in $(0,1)$ of the numerator of $G(r)$ is r_{2} which is less than $1 / 3$ if $\beta>1$, i.e., if $\lambda>1 / 2 \gamma$, and is the range $(0,1 / \beta)$ if $\beta<$ $\sqrt{5}+2$, i.e., if $\lambda<(\sqrt{5}+1+1 / \gamma) /(\sqrt{5}+3)$. Thus $f(z)$ is starlike in $|z|<r_{2}$ if $1 / 2 \gamma<\lambda<(\sqrt{5}+1+1 / \gamma) /(\sqrt{5}+3)$. Now, for $0 \leqq \lambda \leqq$ $1 / 2 \gamma, \beta<1$, and r_{1} is in the interval $(0,1 / \beta)$ and the theorem is proved.

Remark 3.2. The results are sharp. The extremal functions are $f(z)=\left\{\begin{array}{l}\frac{1-z}{1+\beta z} \cdot \frac{z}{2}\left[1+\frac{1}{2}\left(\frac{1+z e^{-i \theta}}{1-z e^{-i \theta}}+\frac{1+z e^{i \theta}}{1-z e^{i \theta}}\right)\right\}, \text { for } 0 \leqq \lambda \leqq 1 / 2 \gamma \\ \frac{1-z}{1+\beta z} \cdot \frac{z}{1+z}, \text { for } 1 / 2 \gamma<\lambda<(\sqrt{5}+1+1 / \gamma)(\sqrt{5}+3),\end{array}\right.$
where θ satisfies the equation

$$
\begin{aligned}
H\left(r_{1}\right)\left(1+r_{1}^{2}\right) & +r_{1}^{2}-\left[3 H\left(r_{1}\right)+1 / 2+r_{1}^{2}\left(H\left(r_{1}\right)+1 / 2\right)\right] r_{1} \cos \theta \\
& +2 H\left(r_{1}\right) r_{1}^{2} \cos ^{2} \theta=0
\end{aligned}
$$

with

$$
H\left(r_{1}\right)=\left[r_{1}^{2}+2^{3 / 2}\left(1-r_{1}^{2}\right)^{1 / 2}-3\right] / 2\left(1-r_{1}^{2}\right) .
$$

When $\lambda=0$, the cases $\gamma \rightarrow \infty$ and $\gamma=1$ give Theorems 2 and 5 of [6].

Remark 3.3. For $g(z) \in S^{c}$, the result [10]

$$
\operatorname{Re}\left\{\frac{z g^{\prime}(z)}{g(z)}\right\} \geqq \frac{1}{1+r}, \quad|z|=r<1
$$

together with (3.1) and (2.3) give the radius of starlikeness of $f(z) \in$ N with $f(z) /[\lambda f(z)+(1-\lambda) g(z)] \in \mathscr{Q}_{r}$ to be $\left[2^{1 / 2}(1+\beta)^{1 / 2}-1\right] /(1+2 \beta)$ for $0 \leqq \lambda<(\sqrt{5}+1+1 / \gamma) /(\sqrt{5}+3), \beta=[(1+\lambda) \gamma-1] /(1-\lambda) \gamma$. The bound is attained for the function

$$
f(z)=\frac{1-z}{1+\beta z} \cdot \frac{z}{1+z} .
$$

When $\lambda=0$, the cases $\gamma \rightarrow \infty$ and $\gamma=1$ become Theorem 4 of [4] and Theorem 4 of [5] respectively.

Theorem 3.3. Let $f(z) \in N$ be such that $f(z) /[\lambda f(z)+(1-\lambda) g(z)] \in$ Q_{r}, where $g(z) \in S^{*}(\alpha), 0 \leqq \lambda<\lambda_{0}$, some $\lambda_{0}<1$. Then the radius of starlikeness σ_{3} of $f(z)$ is given by the smallest positive root in $(0,1)$ of the equation

$$
\beta(2 \alpha-1) r^{3}+(3 \beta+2 \alpha-2 \alpha \beta) r^{2}+(3-2 \alpha) r-1=0,
$$

where $\beta=[(1+\lambda) \gamma-1] /(1-\lambda) \gamma$.
Proof. Since $g(z) \in S^{*}(\alpha)$, we have

$$
\operatorname{Re}\left\{\frac{z g^{\prime}(z)}{g(z)}\right\} \geqq \frac{1+(2 \alpha-1) r}{1+r}, \quad|z|=r<1 .
$$

Applying this result and (2.3) to (3.1) gives the required equation from which σ_{3} may be obtained. λ_{0} is determined by the condition $\sigma_{3}<1 / \beta$.

Remark 3.4. The theorem is sharp for

$$
f(z)=\frac{1-z}{1+\beta z} \cdot \frac{z}{(1+z)^{2-2 \alpha}} .
$$

When $\lambda=0$, the cases $\gamma \rightarrow \infty$ and $\gamma=1$ correspond to Theorems 3 and 6 of [6].
4. Radii of convexity. In this section, we briefly look at the problem of determining the radius of convexity of $f(z) \in N$ with $f^{\prime}(z) /\left[\lambda f^{\prime}(z)+(1-\lambda) g^{\prime}(z)\right] \in \mathscr{Q}_{r}$, where $g(z)$ belongs to various subclasses of N. For such $f(z)$, we can deduce in a similar manner as in Theorem 3.1 that

$$
\begin{align*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}= & \operatorname{Re}\left\{1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right\}-\frac{1+A}{1-\lambda} \\
& \cdot \frac{z w^{\prime}(z)}{(1-w(z))(1+\beta w(z))} \tag{4.1}
\end{align*}
$$

provided $1-\lambda(1-w(z)) /(1+A w(z)) \neq 0, w(z) \in \mathscr{B}, A=1-1 / \gamma, \beta=$ $(A+\lambda) /(1-\lambda)$. With some restriction on λ, we may apply (2.3) and the known bounds for $\operatorname{Re}\left\{1+z g^{\prime \prime}(z) / g^{\prime}(z)\right\}$ to (4.1) to get the equations from which the radii of convexity of $f(z)$ may be obtained. We consider the following six cases.
(i) $g^{\prime}(z) \in \mathscr{P}$. The radius of convexity of $f(z)$ is equal to σ_{1} as given by Theorem 3.1.
(ii) $g^{\prime}(z) \in \mathscr{P}_{1 / 2}$. The radius of convexity of $f(z)$ is equal to σ_{2} as given by Theorem 3.2.
(iii) $g(z) \in S^{c}(\alpha)$. The radius of convexity of $f(z)$ is equal to σ_{3} as given by Theorem 3.3.
(iv) $g(z) \in S$.

The result [1, p. 166]

$$
\operatorname{Re}\left\{1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right\} \geqq \frac{1-4 r+r^{2}}{1-r^{2}}, \quad|z|=r<1
$$

together with (2.3) and (4.1) yield the radius of convexity of $f(z)$ to be the smallest positive root (less than 1) of the equation

$$
\beta r^{3}-5 \beta r^{2}-5 r+1=0
$$

with $0 \leqq \lambda<(2-\sqrt{6}+1 / 2 \gamma) /(3-\sqrt{6})$.
(v) $g(z) \in S^{*}$. The radius of convexity of $f(z)$ is the same as that of part (iv).
(vi) $g(z) \in S^{*}(1 / 2)$. Theorem 4.1 of [9] with $\beta=1 / 2$ gives

$$
\operatorname{Re}\left\{1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right\} \geqq \frac{1-r}{1+r}, \quad|z|=r<1 / 2
$$

This result together with (2.3) and (4.1) yield the radius of convexity of $f(z)$ to be the smallest positive root ρ of the equation

$$
\beta r^{3}-3 \beta r^{2}-3 r+1=0
$$

with $0 \leqq \lambda<(1+\sqrt{2}+1 / 2 \gamma) /(2+\sqrt{2})$.
All these results are best possible and generalise those obtained by Ratti [7, Theorems 1-6].

References

1. G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, Amer. Math. Soc., Providence, R. I., 1969.
2. W. Janowski, Some extremal problems for certain families of analytic functions I , Ann. Polon. Math., 28 (1973), 298-326.
3. T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc., 104 (1962), 532-537.
4. -, The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 14 (1963), 514-520
5. The radius of univalence of certain analytic functions II, Proc. Amer. Math. Soc., 14 (1963), 521-524.
6. J. S. Ratti, The radius of univalence of certain analytic functions, Math. Z., 107 (1968), 241-248.
7. - The radius of convexity of certain analytic functions, Indian J. Pure Appl. Math., 1 (1970), 30-36.
8. G. M. Shah, On the univalence of some analytic functions, Pacific J. Math., 43 (1972), 239-250.
9. V. Singh and R. M. Goel, On radii of convexity and starlikeness of some classes of functions, J. Math. Soc. Japan, 23 (1971), 323-339.
10. E. Strohhäcker, Beiträge zur Theorie der schlichten Funktionen, Math. Z., 37 (1933), 356-380.

Received October 15, 1976. One of the authors (V. V. Anh) acknowledges the financial support of a University of Tasmania Research studentship. The authors are grateful for the referee's valuable comments.

University of Tasmania, Hobart Tasmania, Australia

