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ON STARLIKENESS AND CONVEXITY OF CERTAIN
ANALYTIC FUNCTIONS

V. V. ANH AND P. D. TUAN

Let N be the class of normalised regular functions

f(z) = z + Σ akz* , \x\<l.
k=2

For 0 ^ λ < 1, γ ^ 1, let f(z), g(z)eN be such that

\f(z)l[λf(z) + ( 1 - λ)g(z)] ~ γ \ < γ , \ z \ < l .

We establish the radius of starlikeness of f(z) under the
assumption Ee{g(z)/z}>0, or ΈLe{g(z)lz}>U2, or Re{zg'(z)lg(z)}>
a,0^a<l, or Re {1 + zg"(z)lg'(z)} > 0 for \z | < 1. The
analysis may be extended to the problem of finding the
radius of convexity for certain subclasses of N.

1* Introduction and notation* Let S, S*, Sc denote the sub-
classes of N which are univalent, univalent starlike, univalent convex
in I z I < 1 respectively.

A necessary and sufficient condition for f(z) e N to be univalent
starlike in | z \ < r is

A necessary and sufficient condition for f(z) e N to be univalent
convex in I z < r is

A function f(z) belongs to S*(/3), i.e., is starlike of order β,
0 ^ β < 1, if it satisfies the condition

A function f(z) belongs to Sc(β), i.e., is convex of order β,0^
β < 1, if it satisfies the condition

Let 3?a denote the class of regular functions of the form
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satisfying the inequality Re {p(z)} > a for 1 z \ < 1, 0 ^ a < 1 and &r

the class of functions q(z) with expansion of the above form but
satisfying the inequality \q(z) — 7| < 7 for \z\ < 1, 7 ^ 1. We note
that both ^ 0 and Ό̂o reduce to the class & of functions with
positive real part.

Let Nn, n^l, denote the subclass of N consisting of functions
of the form f(z) = z + Σ*U+i α^fc Then N, = 2NΓ.

Shah [8] considered the problem of determining the radius of
star likeness of f(z)eNn for the following cases:

(a) f(z)/[Xf(z) + (1 - X)g(z)] e & with flr(s) e Nn and βr(̂ )/̂  6 &,
or ^(z)/^ 6 ̂ 1 / 2 (with n — 1), or 0(2) 6 S*(αO;

(b) /(z)/[λ/(2) + (1 — X)g(z)] e έ2[ with βf(̂ ) e iV% and g(z)/z e ^ ,
or g(z) e S*(a).

The conditions were shown to be sharp only when λ = 0. In this
paper, we solve the problem for the subclasses of N mentioned at
the beginning, subject to certain restrictions on the values of λ.
Letting 7 —• 00 we obtain the radii of starlikeness of f(z) satisfying
f{z)l\\if{z) + (1 — X)g(z)] 6 &. All the bounds obtained are best pos-
sible. Furthermore, the same technique may be used to establish the
radius of convexity of f(z) e N satisfying f'(z)/[Xf(z) + (l~-X)g'(z)] e &y,
where g(z) belongs to various subclasses of N. The results proved
here generalize those of MacGregor [3, 4, 5] and Ratti [6, 7].

It should be remarked that parallel results for subclasses of
Nn, n>l, may be derived in an analogous manner. The manipula-
tions involved are, however, more complicated.

The lemmas required for the proofs of our theorems are given
in §2. Section 3 contains theorems giving the conditions for star-
likeness. We outline the conditions for convexity in §4.

2. Some lemmas* Let & denote the class of functions w(z)
regular in \z\ < 1 and satisfying w(0) = 0, \w(z)\ < 1 for \z\ < 1.

LEMMA 2.1 [9]. If w(z)e<^, then for \z\ < 1,

1 - | z | 2

Proof. Write w(z) = zφ(z)y where φ(z) is regular in \z\ < 1 and
10(3)1^1. The assertion now follows from the well-known result
due to Caratheodory

LEMMA 2.2. Let wx{z) = [1 - w(z)]/[l + βw(z)]9 where w(z)
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β ^ 0. Then, fo \z\ = r < min(1, Ijβ),

7 W&).

< 1 ~ β + (3/9 + l ) r + β(β + 3)r2 + β(β - l)r 3

= (1 - r2)(l + £r)

Proof. By Schwarz's lemma, |w(2) |<^r on | » | = r < l . The
transformation wt(z) == [1 — w(z)]/[l + βw(z)] maps the disc ) w(z) \ ̂  r,
r < min (1, 1//3), onto the disc | wx{z) — a\ ^ d, where

a _ 1 - βr2

 d „ (1 + ff)r

Clearly,

1 + /Sr 1 — £ r "

Put ^(^) = a + u + iv, R = \a + u + iv\; then

^( + M) + +
Λ2 l - r 2

Now,

The terms inside the curly brackets are always positive for r <
min (1,1//S). Hence the maximum of S(u, v) in the disc | wx{z) — a\ ̂  d
is attained when v = 0 and ue[ — d, d]. Setting v = 0 in (2.1) we
obtain

(2.2) S(«, 0) = 2 < ! - W f t - (1 + β)iX - βr>)(a + % ) #

1 — r 2 1 — r 2

Since dS(w, 0)/d^ < 0 for r < min (1, 1/β), the maximum of S(w, 0)
occurs at the end point u — —d and the result follows.

LEMMA 2.3. If w(z) e<^,β^0, then for | z \ = r < min (1,1//9),

(2.3) Re I 2ί£® 1 < r
l[ l - w(z)][l + βw(z)] J - (1 - r)(l

Proof. From Lemma 2.1, we have
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Re { zw'(z) Ί f

(i - w(z))(i + βw(z))ί ~ R e i α ^

1 Re ί
1(1 - w(«)Xl + βw(z)) f~ 1(1

r 2 ) | l - w(z)\ \1 + βw(z)\

Put wx(2) = [1 — w(z)]f[l + /3w(«)], then the above inequality becomes

R e

Π ^

An application of Lemma 2.2 to the right hand side will give the
result which is easily seen to be sharp for w(z) — z at z = r.

The following lemma is a consequence of [2, Theorem 3].

L E M M A 2.4. If p(z)e&*, then on \z\ = r,

(2.4) for r < —
1 + r 3

1 _ r* ' 3

(2.6)

Radii of starlikeness*

THEOREM 3.1. Let f(z) eNbe such that f(z)/[\f(z) + (1 -
&ΐ9 where g(z) e N and g(z)/z e&*, 0 ^ λ < ( l + l /3 + l/2Ύ)/(2 + T/T).
Γftβ^ ίftβ radius of starlikeness σx of f(z) is given by the only
positive root in (0, 1) of the equation

βr* + (2 + 3/S)r2 + 3r - 1 = 0 ,

where β = [(1 + λ)7 - 1]/(1 - λ)Ύ.

Proo/. Put ψ(a ) = 1 - f(z)/7[Xf(z) + (1 - λ)flr(«)]. Then | f{z) \ < 1
f or I» |< 1 and ψ (0) = 1 -1/7 = A. Let t φ ) = [t(») - A]/[l - A ^ ) ] .
It is clear that w(z) e έ% and ψ(z) = [̂ (2;) + -A]/[l + A^(a )] from which
we deduce

i) s/(a) = gg'(g) _ 1 + A gw'(g)
' ^ /(«) g(z) 1 - λ (1 - w(«)Xl + βw(z)) '

β = (A + λ)/(l - λ), provided 1 - λ(l - w(z))/(l + Aw(̂ )) ^ 0. Since
|w(s)| ^ r for \z\ — r by Schwarz's lemma, it follows that
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1 - λ(l - w(z))/(l + Aw(z)) Φ 0

if, in part icular, \z\ < 1//5.

Now, as g(z)/z e ^ , write g(z)/z = p(z), some p(z) e &. Then
zg'(z)/g(z) = 1 + zp\z)/p(z). An application of (2.5) gives

(3.2) R

This result together with (3.1) and (2.3) yield

Re ίlίMλ > 1 - 3r - (2 + 3/3)r2 - βr*
I f(z) I - (1 - r)(l + βr)

For the cubic polynomial

F(r) = βr3 + (2 + 3/3)r2 + 3r - 1 ,

F(0) < 0, F(l) = 4 + 4^ > 0, F(l/β) = (3 + 6β - ^2)//S2. Thus the
equation F(r) = 0 has exactly one root in (0, 1) which is in the range
(0, IIβ) if β < 3 + 2τ/ΊΓ, i.e., if λ < (1 + vΊΓ + l/2τ)/(2 + τ/T).

REMARK 3.1. The theorem is sharp for

When λ = 0, f(z) is starlike in \z\ < i/Ύ - 2 if 7-> oo and in |z\ <
(i/Ϊ7 — 3)/4 if 7 = 1 as previously shown by Ratti [6, Theorems 1
and 4].

THEOREM 3.2. Let f(z) eNbe such that f(z)/[xf(z) + (1 -^)g(z)] e
<&7, where g(z) e N and g(z)/z e &*1/2. Then the radius of starlίkeness
of f(z) is

r19 for 0 ^ λ ^ 1/27 ,

r2 = [2^2(1 + /3)1/2 - 1]/(1 + 2/3) , /or 1/27 < λ < (VT+ 1

+ 3) ,

8 = [(1 + λ)7 — 1]/(1 — λ)7 and r1 is the smallest positive root
in (0, 1) of the equation

(1 + 2/3 + 9/32)r4 + 2(1 + 12/3 + 3/32)r3 + (13 + 10/3 + /32)r2

+ 4(1 - /3)r - 4 = 0 .

Proof. Since #(2)/z € ^ U , there exists p(z) e & so that
1/2 + p(z)/2. Hence
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(3.3) ==1

g(z) 1 + p(z)

Applying (2.4) t o this equation gives, on \z\ — r,

ΪW) ~ (2[21/2(1 - r 2 ) 1 / 2 - 1]/(1 - r 2 ) , for 1/3 ^ r < 1 .
(3 4)

This resul t together with (3.1) and (2.3) yield, for \z\ = r < 1/3,

Re fJ&.\ Z '-^S+^r = G(r)

β)r

and for 1/3 ^ r < 1,

2[21/2(1 - r2)172 -
βr) 1 - r2

which yields the equation giving the condition of starlikeness of f(z)
to be

(1 + 2/9 + 9/32)r4 + 2(1 + 120 + 3/92)r3 + (13 + 10/9 + /92)r2

+ 4(1 - β)r - 4 = 0 .

The only root in (0, 1) of the numerator of G(r) is r2 which is less
than 1/3 if β > 1, i.e., if λ > 1/27, and_is the range (0,1//9) if β <
1/ΊΓ+ 2, i.e., if λ < (VΊΓ+JL + l/7)/(τ/T+_8). Thus /(β) is starlike
in\z\ < r2 if 1/27 < λ < (VΊΓ+ 1 + l/7)/(i/5 + 3). Now, for 0 ^ λ ^
1/27, /9 < 1, and rL is in the interval (0, 1//9) and the theorem is
proved.

REMARK 3.2. The results are sharp. The extremal functions are

1 - z

/(*) =
1 + βz

1-z
+ ^2 1 + Z

where θ satisfies the equation

with

, for l / 2 7 < λ < C l / 5 + l+l/7)(l/~5"+3),

+ rϊ) + ri - [SflίrJ + 1/2 + r

+ 2£f(rt)r2 cos2 θ = 0

,) + l/2)]n cos θ

.Hfo) = [r2 + 23/2(l - r2)1 / 2 - 3]/2(l - r2) .

When λ = 0, the cases 7 —* <χ> and 7 = 1 give Theorems 2 and 5 of [6].
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REMARK 3.3. For g(z)eS% the result [10]

- ^ f \z\ = r
1 + r

together with (3.1) and (2.3) give the radius of starlikeness of f(z) e
N with f(z)l[\f(z) + (1 - X)g(z)] ej?r to be [21/2(1 + β)1/2 - 1]/(1 + 2β)
for 0 ^ λ < (V 5 + 1 + 1/7)/(i/ 5 + 3), β = [(1 + λ)7 - 1]/(1 - λ)7.
The bound is attained for the function

" x / 1 + βz 1 + z

When λ = 0, the cases 7 —> oo and 7 = 1 become Theorem 4 of [4]
and Theorem 4 of [5] respectively.

THEOREM 3.3. Let f(z)eNbe such that f(z)/[Xf(z) + (1 - X)g(z)] e
&r, where g(z) e S*(cκ), 0 ^ X < λ0, some Xo < 1. Tftew the radius of
starlikeness σ3 of f(z) is given by the smallest positive root in (0, 1)
of the equation

β(2a - l)r3 + (3/5 + 2a - 2aβ)r2 4- (3 - 2a)r - 1 = 0,

where β = [(1 + λ)7 - 1]/(1 - λ)7.

Proof. Since g{z) 6 S*(α), we have

, | β | r < i .
fi() 1 + r

Applying this result and (2.3) to (3.1) gives the required equation
from which σ3 may be obtained. λ0 is determined by the condition

REMARK 3.4. The theorem is sharp for

1 — z z
/(*) =

1 + βz (1 + zf

When λ = 0, the cases 7 —> oo and 7 = 1 correspond to Theorems 3
and 6 of [6].]

4* Radii of convexity* In this section, we briefly look at the
problem of determining the radius of convexity of f(z)eN with
f'(z)/[Xf'(z) + (1—X)g'(z)] e ^ , where g(z) belongs to various subclasses
of N. For such f(z), we can deduce in a similar manner as in
Theorem 3.1 that
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+
(4.1)

# zw(z)

βw(z)) '
provided 1 - λ(l - w(z))/(l + Aw(z)) Φ 0, w(z) e ^ A = 1 - 1/7, /5 =
(A + λ)/(l — λ). With some restriction on λ, we may apply (2.3)
and the known bounds for Re {1 + zg"{z)lg\z)} to (4.1) to get the
equations from which the radii of convexity of f(z) may be obtained.
We consider the following six cases.

( i ) g'(z) 6 ̂ * The radius of convexity of f(z) is equal to σx

as given by Theorem 3.1.
(ii) g\z) e ^ 1 / 2 . The radius of convexity of f(z) is equal to σ2

as given by Theorem 3.2.
(iii) g(z) e Sc(ά). The radius of convexity of f(z) is equal to σ3

as given by Theorem 3.3.
(iv) g(z)eS.
The result [1, p. 166]

together with (2.3) and (4.1) yield the radius of convexity of f(z)
to be the smallest positive root (less than 1) of the equation

βτz - 5/Sr2 - 5r + 1 = 0 ,

with 0 S λ < (2 - T/ΊΓ+ l/27)/(3 - vΊΓ).
(v) g(z)eS*. The radius of convexity of f(z) is the same as

that of part (iv).
(vi) g(z) e S*(l/2). Theorem 4.1 of [9] with β = 1/2 gives

* | = r < l / 2 .+ ^ U
g'(z) J 1 + r

This result together with (2.3) and (4.1) yield the radius of convexity
of f(z) to be the smallest positive root p of the equation

βr* - Wr2 - 3r + 1 = 0 ,

with 0 g λ < (1 + T/Ύ+ l/27)/(2 + vΊΓ).
All these results are best possible and generalise those obtained

by Ratti [7, Theorems 1-6].
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