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ON SPACES WHICH HAVE A CLOSURE-PRESERVING
COVER BY FINITE SETS

YUKINOBU YAJIMA

The purpose of the present paper is to give a characteri-
zation of spaces which have a closure-preserving cover by
finite sets, in terms of hereditary metacompactness and
generalized σ-discreteness. Several results with respect to
spaces which have a closure-preserving cover by finite sets
can be deduced easily from our characterization. Moreover,
we can conclude more easily from it whether or not a given
space has such a cover.

l Introduction* H. Tamano [10] and R. Telgarsky [11] raised
independently the question of whether or not a space which has a
closure-preserving cover by compact sets must be paracompact.
H. B. Potoczny [7] showed that even if a space has a closure-
preserving cover by finite sets, it is not necessarily paracompact.
Thus, the study of spaces which have a closure-preserving cover by
finite sets has been taken up by several authors in [9], [11], [12],
[13] and [14]. In particular, R. Telgarsky [12] gave a necessary
condition and a sufficient condition for a given space to have such
a cover. But each of these conditions is not necessary and sufficient
as we shall show by examples below. In the present paper, we
shall first find a necessary and sufficient condition for a topological
2\-space to have a closure-preserving cover by finite sets. It will
be shown that the necessary condition and the sufficient condition
of R. Telgarsky can be deduced easily from our necessary and suf-
ficient condition. Secondly, we shall prove that it is undecidable
under set theoretic assumptions whether or not a first countable
normal space with a closure-preserving cover by finite sets is metri-
zable.

2* Preliminaries and main theorem* Throughout this paper,
N denotes the set of all natural numbers and all spaces are assumed
to be ϊ\-spaces.

A space X is said to be weakly σ-discrete, if X is the countable
union of discrete subsets {Xn: neN} such that \Jf=1 Xt is closed in
X for each neN. A space X is said to be σ-discrete ([12], [13]),
if X is the countable union of discrete closed subsets. A space X
is said to be hereditarily metacompact, if each (open) subset of X
is metacompact.

Our main theorem is as follows.
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THEOREM 1. The following are equivalent for a space X.
(a) X has a closure-preserving cover by finite sets.
(b) X is hereditarily metacompact and weakly σ-discrete.

REMARK. It is easy to see from Theorem 1 that the spaces
which are given by examples in [6], [7] and [14] have closure-
preserving covers by finite sets.

3* Proof of Theorem 1*

LEMMA 2. If a space X has an open cover U = {U(x): xeX}
such that xe U(x) for each xeX and U{x)c U{y) whenever xe U(y),
then g = {Fx: xeX} is a closure-preserving cover of X, where Fx = .
{yeXixe U(y)} for each xeX.

Proof. Since xeFx for each x e X, g is a cover of X. Let
YaX. Let xe\JyeγFy. Then there is a point yoeY such that
U(x) Γ\FyύΦ 0 . Choose z e U(x) Π Fyo. Since U(z) c U(x) and y0 e
U{z), we have yQe U(x). Hence xeFyo(z[JyeγFy. This proves that
the cover g is closure-preserving.

Let us consider the following two conditions (*), (**).
Condition (*): X has an open cover U = {U(x): xeX} such that

(i) x6 U{x) for each xeX, (ii) U(x)c U(y) whenever xe U{y), and
(iii) U is point-finite in X.
and

Condition (**): X has an open cover S3 = {V(x): xeX} such that
(i) x6 V(x) for each xeX, and (ii) 93 is point-finite in X, and has a
countable pair wise disjoint cover {Xn: neN} such that (iii) each Xn

is a discrete subset and (iv) U?=i^ is closed in X for each neN.
We shall prove the three lemmas below

LEMMA 3. The following are equivalent for a space X.
(a) X has a closure-preserving cover by finite sets.
(b) X satisfies the condition (*).

Proof, (a) —• (b): Let g = {Fa: aeA} be a closure-preserving
cover of X by finite sets. Put U(x) = X - (J {F«- x $ Fa) for each
xeX and U = {U(x):xeX}. It is obvious that 11 satisfies (i) and
(ii) of (*). Assume now that there is a point xeX such that
ord (x, U) ̂  fc^. We can choose an infinite number of points x19 x2,
• 6X such that xe U(xn) for each neN. Choose Fa6g such that
x e Fa. Then we have xn e Fa for each neN. Since Fa is finite,
this is a contradiction. Hence tt is point-finite in X.



ON SPACES WHICH HAVE A CLOSURE-PRESERVING COVER 573

(b)—>(a): It is obvious from Lemma 2 and (iii) of (*).

LEMMA 4. For every space X, the condition (*) and the condi-
tion (**) are equivalent.

Proof. (*) —> (**): Put Xn = {x e X: ord (x, U) = n] for each w e
N. It is obvious that {Xn:neN} is a countable pairwise disjoint
cover of X. Since U?=i -Xt = {# e X: ord (a?, tt) ̂  n}, U?=i -X* is closed
in X for each neN.

Fix w 6 iV and x e X%. We can choose distinct n points x19 ,
xneX such that {x' eX:xe U{x') ell} = {a?!, , xn}. Let 1/ 6 U(x) Π -X».
By (i) and (ii) of (*), y e U{y) c I7(aθ c ΠU ϋfo). Since ord (», tt) = n,
ye{xί9 •••, xn}. Thus JE» is a discrete subset of X for each neN.

(**)--•(*): We use the induction with respect to n. Let P(n)
be the proposition: There are point-finite (in X) collections Û  =
{U(x): x e XJ of open sets for i — 1, , n such that (a) U(x) Π Xt = {a?}
for each α? e Xί? (b) if j < i, xe Xi9 y e Xd and α; e Z7(̂ /) e VLjf then
J7(a?) c U(y) and (c) C7(α;) c V(x) and ί/(a?) n Ui=ί X* = 0 for each

It is obvious that P(l) is true. Assume now that P(n) is true.
By (iii) and (iv) of (**), we can choose an open neighborhood U(x)
of x for each x e Xn+ί such that U(x) c F(α?), U{x) Π -Z"w+1 = {α;} and
U(x) n US=i -Zi = 0 . Moreover, if a? 6 U?-i {UiUeUJn Xn+1, then
we choose U(x) such that U(x) czf\{U:xeUe U?=i ̂ } . It is possible
since {U: x e Ue U?=i^J ί s a finite collection. Put UΛ+1 = {U(x):
xeXn+1). By our construction and P{n)9 it is easy to see that
&i> # »ttΛ+i satisfy the conditions (a), (b) and (c) of P(n + 1) and
Uw+1 is point-finite in X. So, X has an open cover JJSU HΛ such that
Hi, , Un satisfy the conditions of P(n) for each neN. Put U =
UΓ=i Û  By the pairwise disjointness of {Xn: n e N}9 U = {U(x): x e X}.
The open cover U satisfies (i), (ii) and (iii) of (*).

LEMMA 5. The following are equivalent for a space X.
(a) X satisfies the condition (**).
(b) X is hereditarily metacompact and weakly σ-discrete.

Proof. (a)-+(b): It follows from (i) and (ii) of (**) that X is
hereditarily metacompact. X is obviously weakly (/-discrete.

(b) —> (a): Let X = U£=i -Σ» such that Xn is a discrete subset,
Uf=iXi is closed in X and (J?^ X* is metacompact for each neN.
We may assume, without loss of generality, Xm Γ) Xn = 0 for mΦ n.
Since each Xw is a discrete closed subset in UΓ^ -Xt, there is a point-
finite collection SS% = {7(a;):a;6lJ of open sets for each neN such
that V(x) f)Xn = {x} and V(x) c UΓ=. -Z, for each x e Xn. Put 93 =
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Un=i*» Then 3S = {V(x): x e X}. It is easy to prove that 33 is
point-finite in X. Hence X satisfies the condition (**).

By Lemmas 3, 4 and 5, the proof of Theorem 1 is complete.

4* Applications*

LEMMA 6. Each metacompact σ-discrete space is hereditarily
metacompact.

Proof. Let X be a metacompact σ-discrete space. We may
assume, without loss of generality, that X = UΞU %* such that each
Xn is a discrete closed subset of X and Xm Π Xn = 0 for m Φ n.
Let Y be an open subset of X. Let tt be an open cover of Y.
Since XΛ Π Y is a discrete closed subset of X, there is a point-finite
(in X) collection S3W = { F ^ a e l , , Π Γ} of open sets of X for each
neN such that x e V(x), V(x) Π U*=iι -X, = 0 and 7(») is a subset
of some element of ϊt for each x e Xn Π Y. Put S3 = (J^=L SSΛ. Then
SS = {F(α ): a e Γ } and S3 is a point-finite open refinement of 11 in Y.
Hence X is hereditarily metacompact.

COROLLARY 7. Each metacompact σ-discrete space has a closure-
preserving cover by finite sets.

This is an immediate consequence of Theorem 1 and Lemma 6.

REMARK. R. Telgarsky proved in [12] (Theorem 5) that each
paracompact σ-discrete space has a closure-preserving cover by finite
sets. Corollary 7 generalizes this result. We shall show in § 5
(Example 3) that there is a metacompact tf-discrete space which is
not paracompact.

Recall that Y is said to be scattered, if each subset Z of Y has
an isolated point in Z.

COROLLARY 8 (R. Telgarsky [12]). If X has a closure-preserving
cover by finite sets, then X has a countable cover {Yn:neN}, ivhere
Yn is a scattered closed subset of X and it is the union of n dis-
crete subsets for each neN.

This an immediate consequence of Theorem 1.

COROLLARY 9. The following are equivalent for a space X.
(a) X has a closure-preserving cover by finite sets.
(b) X is hereditarily metacompact and has a σ-closure-pre-
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serving cover by finite sets.

Proof, (a) —> (b): Obvious.
(b) —•> (a): It is easy to show that the countable union of weakly

d-discrete closed subsets is weakly σ-discrete. Hence X is hereditarily
metacompact and weakly σ-discrete.

REMARK. Our Corollary 9 has been proved earlier, in [13]
(Theorem 12.1), by R. Telgarsky for the case of X being a metriza-
ble space.

THEOREM 10. The following are equivalent for a space X.
(a) X has a closure-preserving closed cover by compact sets.
(b) X has an open cover U = {U(x): xeX} such that (i) x e U(x)

for each xe X, (ii) U(x) c U(y) whenever x e U(y) and (iii) C(x) =
{y e X: x e U(y)} is a compact closed set for each xe X.

Proof, (a)—>(b): Let & = {Ca\aeA} be a closure-preserving
closed cover by compact sets. Put U(x) = X — U {Ca: x g Ca} for
each α e X a n d IX = {U(x): xe X). It is obvious that ΐt satisfies (i)
and (ii) of (b). Let yίC{x) and z e U(y). Since αg £%) and U{z)a
U(y), x£ U(z). Thus, we have zίC(x). Therefore U(y) Π C(x) = 0 .
This proves that each C(x) is closed in X. Let yeC(x). Since #e
t%), ^ e C α whenever xeCa. Thus, C(x) is contained in Π {Ca: xeCα}
which is compact and closed. Hence C(x) is a compact closed set
for each xeX.

(b) —* (a): It is obvious from Lemma 2 and (iii) of (b) in this
theorem.

REMARK. For a space to have a closure-preserving closed cover
by compact sets, R. Telgarsky gave, in [12], a sufficient condition
which is not necessary.

LEMMA 11. If a first countable space X has a closure-preserving
cover by finite sets, then X is developable.

Proof. By Lemma 3, X has an open cover U = {U(x): x e X)
satisfying (i), (ii) and (iii) of (*). So, X has a countable number of
open covers %$n = {Vn(x): x e X} of X such that {Vn(x):neN} is a
local base at x and Vn+1(x) c Vn(x) c U(x) for each x e X and neN.
We shall show that {SS%: neN} is a development of X. Let a e l
and let W be an open neighborhood of x. There is a finite number
of points x19 -->,xmeX such that {Ue U: x e U) = {ETifo)* , ?7(α;m)}.
For i — 1, •• ,m, we choose some n^N such that V ^ . ^ c I F if
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XiβW and x $ Vni(xt) if xt ί W. Put n0 = max {n<: i = 1, , m}.
Assume that x e VnQ(y) e 33%O. By x e Vno(y) c U(y), y = % for some
k^m. Since a? 6 V^α*), α?* e T7. So, we have VnQ(y) c Vnfc(xk) c 17.
Hence St (x, 33%o) c "FT.

LEMMA 12. / / α collectionwise Hausdorff, regular space X has
a closure-preserving cover by finite sets, then X is paracompact.

The proof of Lemma 12 is quite parallel to that of H. B.
Potoczny's theorem in [8], So, we omit it.

THEOREM 13. / / a first countable normal space X has a closure-
preserving cover by finite sets, then

(a) X is metrizable under V = L (i.e., the axiom of construc-
tibility), and (b) X is not necessarily metrizable under Martin's
Axiom and 2*° > fc$lβ

Proof, (a): W. Fleissner showed in [2] that a first countable
normal space is collectionwise Hausdorff under V = L. So, X is
paracompact and developable by Lemmas 11 and 12. Hence X is
metrizable.

(b): It is well-known that there is a subset A of the real-line
such that every subset of A is a relative Gδ-set, assuming Martin's
Axiom plus 2*° > fc$1# S. A. Peregudov showed in [6] that Heath's
space in [4] (Theorem 3) has the desired property. Here it is to be
noted the existence of Heath's space is guaranteed under such an
assumption.

THEOREM 14. If a first countable normal space X has a closure-
preserving cover by compact sets, then

(a) X is paracompact under V — L, and (b) X is not necessarily
paracompact under Martin's Axiom and 2K° > fcίi

The proof of (a) of Theorem 14 is similar to that of H. B.
Potoczny [8] by using the techniques of W. Fleissner [3]. The detail
of the proof is left to the reader. When we consider above Heath's
space, (b) is obvious by Lemma 11.

5* Examples*

EXAMPLE 1. There is a compact T2-space which has a closure-
preserving cover by finite sets and is not σ-discrete.

Let X be the one-point-compactification of an uncountable dis-



ON SPACES WHICH HAVE A CLOSURE-PRESERVING COVER 577

crete space. The space X has only one accumulation point xQ. If
F is a closed subset of X such that xQ $ F, then F is a finite set.
If D is a discrete subset of X such that xQeD, then D is also a
finite set. Since X is uncountable, the countable union of discrete
closed sets is not X. Hence X is not ^-discrete. It is easily verified
that X has a closure-preserving cover consisting of two-point sets.

REMARK. By our Example 1, for a space which has a closure-
preserving cover by finite sets, cr-discreteness is not a necessary
condition. Hence the sufficient condition given in our Corollary 7
and R. Telgarsky's Theorem 5 in ]12] for such a space is not nec-
cessary.

EXAMPLE 2. There is a paracompact weakly σ-discrete T2-space
which is not hereditarily metacompact and not α-discrete.

Let X, = {(x, 0): x e R1} and X2 = {(x, y): {x, y) eR2,y> 0}. Let
p0 = (0, - 1 ) and X = Xx U X2 U {po} The topology for the space X
is defined as follows: For each (x, 0) e X1 a local base at (x, 0) is
{Un(x, 0): n 6 AT}, where Un(xf 0) = {(x\ y): {xr - xf + (y - l/n)2 < 1/n2} U
{(x, 0)}, for each (x, y) e X2 {{x, y)} is open in X and a local base at
pQ is {X - Uni{qx) U U Z7w<(?i) U {n, , r, }: qlf ••-,?<€ Xx, n, ,
r̂  e X2 for each ΐ, j e N}.

It is obvious that X is a weakly σ-discretέ Tychonoff space.
Since every open cover of X has a pairwise disjoint open refinement,
X is paracompact with dim X — 0. It follows from Baire's category
theorem that XL U X2 is not metacompact, which is a well-known
fact. By Theorem 1 and Corollary 7, X is not σ-discrete.

REMARK. Our Example 2 shows that we can not replace heredi-
tary metacompactness in Theorem 1 by metacompactness and that
the necessary condition in Corollary 8 proved by R. Telgarsky is
not sufficient.

EXAMPLE 3. There is a metacompact σ-discrete normal space
which is not paracompact.

Let G be Bing's space modified by E. Michael in [5] (Example 2).
We define Fp as in [1] (Example H). Then the space G is perfectly
normal, metacompact, and non-paracompact ([5]). Since every point
of G — Fp is an isolated point of G and the discrete closed subset
Fp is a £rβ-set, G is σ-discrete.
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