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RIESZ HOMOMORPHISMS AND POSITIVE
LINEAR MAPS

C. T. TUCKER

It was shown in previous papers [C. T. Tucker, "Homomor-
phisms of Riesz spaces," Pacific J. Math., 55 (1974), 289-300,
and "Concerning σ-homomorphisms of Riesz spaces," Pacific
J. Math., 57 (1975), 585-590] that there is a large class β of
Riesz spaces with the property that if L belongs to β and
φ is a Riesz homomorphism of L into an Archimedean Riesz
space then φ preserves the order limit of sequences. In
this paper it is shown that if L belongs to β then every
order bounded linear map of L into an Archimedean, di-
rected, partially ordered vector space is sequentially con-
tinuous. An application of this is made to the theory of
Baire funtions. Further, some properties of those members
of β which are also normed Riesz spaces are considered.

This paper is a continuation and extension of Tucker [8] and
[9]. The notation of Tucker [8] and [9] will be used.

The following theorem includes Theorem 19.8 of Nakano [5].

THEOREM 1. Suppose L belongs to β. Then every order bounded
linear map of L into an Archimedean, directed, partially ordered
vector space is sequentially continuous.

Proof. Suppose E is a complete Riesz space and let Jΐ?~ =
£f~(L, E) be the complete Riesz space of all order bounded linear
transformations of L into E. If feL and Γ e ^ , then denote by
(f, T) the order bounded bilinear form </, T) — Tf. The canonical
imbedding of L into ^f^(^f~(L, E), E) is a Riesz homomorphism.
(A proof when E — R is given in Kelley and Namioka [2], Section
23. The same argument holds when R is replaced by any complete
Riesz space.) Since Sf~{c2f~{L, E), E) is Archimedean, it follows
from the hypothesis that the imbedding preserves countable suprema
and infima. Hence if fn \ θ, then for every T e ^f~, Tfn = </n, Γ> \ θ
by definition of =SP~.

Suppose E is only an Archimedean, directed, partially ordered
vector space. There exists a one to one order continuous positive
linear map λ of E into E, its completion. If T is an order bounded
linear map of L into E, then λΓ is an order bounded linear map
of L into the complete Riesz space E and thus XT is sequentially
continuous. This implies that T is sequentially continuous.

In view of the previous theorem the elements of β will be said
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to have the sequential mapping continuity property, abbreviated the
s.m.c. property.

In Tucker [7], property c was defined. It was shown in Tucker
[8] that if a Riesz space contained a point with property c then it
belonged to β. The following shows more clearly how property c
relates to other properties.

DEFINITION. A point x ^ θ has weak property c if, whenever
{hi} is a sequence such that ht \ x, there exists a subsequence hilf

hi2, hh, ' and a point b such that 6 <; Σ*=i hip for each positive
integer n.

Clearly in the hypothesis of Theorem 3 of [8], property c could
be replaced by weak property c with only a minor modification of
the argument.

THEOREM 2. Suppose order convergence in L is stable and f*zθ.
Then f has weak property c.

Proof. Suppose ht \ f. Then hj \ θ. Since order convergence is
stable there exists a point g and a sequence {cj of real numbers
converging to 0 such that ctg <; hj. Let {cip} be a subsequence of
{c,} such that cip < 1/2*. Then ΣίU ̂  ^ ΣlU %g ^ Σ!U V&g ^ g.

Suppose each of Ω and Ωf is a linear lattice of functions on a
set X containing the constant functions. Denote by BX{Ω) (the first
Baire class of Ω) the family of all pointwise limits of sequences from
Ω and by LS(Ω) the family of all pointwise limits of nondecreasing
sequences from Ω. For a recent survey of the properties of Baire
functions, see Mauldin [4].

LEMMA 3. Pointwise monotone convergence in B^Ω) is equivalent
to monotone order convergence. (In the sense that filfeB^Ω) in
order convergence if and only if it does in pointwise convergence
also.)

Proof. Clearly pointwise convergence implies order convergence.
Suppose / ^ / ^ / s ^ ^ ^ / i G B^Ω), and Λ A = θ. There exists
a sequence gx ^ g2 ^ gs Ξ> ^ θ such that gt e LS(Ω) and the point-
wise limit of {#J is the same as the pointwise limit of {/J. Suppose
there exists anxeX and e > 0 such that g^x) > ε for every positive
integer i. There exists a point hteΩ such that gi^h^θ and
hi(x) = ε. Let kt = m i n ^ {Λ,J. Then kx^ kz^k3^ ^ θ, k^Ω,
ki <; βTi, and k^x) = β. Let j be the pointwise limit of {fcj. Then
j e BXΩ), gt ^ j , and j(x) = ε > 0, so that i ^ ^. This is a con-
tradiction. Thus {/J converges pointwise to θ.
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PROPOSITION 4. The space BX{Ω) contains a point with weak
property c.

Proof. In view of Lemma 3, the proof of Theorem 6 of Tucker
[9] holds.

COROLLARY 5. An order bounded linear mapping from B^Ω) to
Bx(Ωr) is sequentially continuous (and thus preserves bounded point-
wise convergence).

If " | | | |w is a norm on the Riesz space L such that | | / | | ^
if I/I <̂  \g\, then " | | | |" is called a Riesz norm on L and L is said
to be a normed Riesz space. Also L will be said to have property
(A,i) if ft\θ implies H/JIJO.

The remainder of this paper will consider those members of β
which are also normed Riesz spaces.

THEOREM 6. Suppose L is a normed Riesz space. Then, of the
following conditions, (1) implies (2) and (2) implies (3). If L is
assumed to be norm complete then each two of the three conditions
are equivalent. If L is not assumed to be norm complete then the
reverse implications do not hold.

(1) Order convergence in L is stable.
(2) L has the s.m.c. property.
(3) L has property (A, i).

Proof. (1) implies (2) clearly. If L has the s.m.c. property then
every positive linear functional is sequentially continuous, thus by
Corollary 24.3 of Luxemburg and Zaanen [3], L has property (A, i).

In the event that L is norm complete and has property (A, i),
then order convergence implies norm convergence which implies re-
lative uniform convergence and (1) holds.

For an example to show that (3) does not imply (2) if L is not
assumed to be norm complete take L°° with the L2 norm.

To show that (2) does not imply (1) in the absence of norm
completeness consider the following example: Let S be the set of
all ordered pairs of positive integers. Let L be the collection to
which / belongs only in case / is a real valued function on S with
the property that there is a set co which includes all but at most
a finite number of positive integers such that if A; is a positive
integer in ω, /(I, k), f(2, k)f(3, k), is a bounded number sequence
and with the property that
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The space L is an order complete Riesz space and

is a Riesz norm on L.
Suppose M is an ideal which is relatively uniformly closed. Let

/ be the l.u.b. of a countable subset a of M. The function which
is equal to f(i, j) at (i, j) and zero elsewhere is in M. For each
positive integer k let fk(p, q) = f(p, q) if k — q and zero otherwise.
There exists a nondecreasing unbounded sequence of positive integers
{cj such that the function gk defined by gk(p, q) = cpfk(p, q) is in L.
Thus /fc is in M. Also, there exists a non-decreasing unbounded
sequence of positive integers {dj such that h(p, q) = dqf{py q) is in
L. Therefore / is in M. By Corollary 4 of Tucker [9], L has the
s.m.c. property.

For each positive integer i, let g% be the function such that
9i(P> Q) = 1 if p = ί and #,(p, g) = 0 if p Φ i. Then {gt} is an or-
thogonal subset of L whose supremum is the constant function 1,
but there is no nondecreasing unbounded positive number sequence
{fcj such that {ktgt} is bounded above. Thus order convergence is
not stable in L.

The Riesz space L is said to be almost σ-complete if L is a Riesz
subspace of a σ-complete space K such that for every Θ <Ξ ue K
there exists a sequence {un} Q L with θ ^ un \ u in K. See Aliprantis
and Langford [1] or Quinn [6] for some properties of almost
6Γ-complete spaces.

COROLLARY 7. Suppose the normed Riesz space L has s.m.c.
property. Then every order bounded linear mapping of L into
an Archimedean, directed, partially ordered vector space preserves
order convergence of nets if and only if L is almost σ-complete.

Proof. Suppose L is almost ^-complete. By Theorem 9.1 of
Quinn [6], L is order separable which implies that sequentially con-
tinuous maps are net continuous. On the other hand, if every
sequentially continuous map is net continuous, then L is order
separable and therefore almost σ-complete.

The following theorem includes Theorem 5.1 of Zaanen [10] and
Theorem 3 of Tucker [7].

THEOREM 8. Suppose L has the s.m.c. property, is almost
σ-complete, and has a strong unit. Then L is finite dimensional.
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Proof. Let {AJ be a countable orthogonal subset of L+. Suppose
e is a strong unit of L. It may be assumed that for each positive
integer i, e ̂  ht. By Corollary 8.5 of Quinn [6], there exists a
sequence fn[θ such that fn ^ |ΣΓi*h t — ΣΓ=iλ<I for each positive
integer p. Thus fn is an upper bound of {/&,}£=»+!. It may be as-
sumed that for each positive integer n, fn ^ e. Let ^ = e —
(Λ V (V?=i λ<)) Then e ̂  flrΛ+1 ̂  ^ .

Let Q be the set to which / belongs only in case feL+, / < ; e,
and if ε > 0 there exists a positive integer n such that

Let Af be the set to which / belongs only in case there is a positive
number c such that c\f\eQ. To show that M is an ideal, suppose
that / and g are in M. Now | / + #| ̂  | / | + | # | = | / | V|flf| + | / | Λ
\g\ ̂  2 ( | / | V \g\) eM. So that / + g is in M. The other properties
of an ideal follow easily.

Note that e = V/^ + V^, but since e — εβ — gp = (fp\/ (V?=i ̂ ) ) —
εβ ^ Σ?=i fr* ~" ε e for each positive integer ti, e is not in M and M is
not a σ-ideal.

Suppose dt I 0, {/J is a sequence of points of M, and / is a
point of L such that | / — ft\ ^ ^ e . Let ε > 0 and d{ < ε/2. Then
ft 4- ε/2β ^ / and /< — ε/2e ̂  / — εe. There exists a positive integer
w such that A7=Λfi ~ ε/2e - Σ?=i^* ~ ^ ) + = ^ T h ^ s

?

A (/ - ee - Σ Λi - ^ , ) + - « ,
3?=1 i = l

/ belongs to M, and Λf is uniformly closed. This is a contradiction.

In Theorem 8, the s.m.c. property cannot be replaced by property
(Af i) as the first example in Theorem 6 shows. The following ex-
ample shows that the almost ^-completeness can not be dropped.

EXAMPLE 9. Let X be an uncountable set and let L be the
space of all real valued functions on X that are constant except
possibly on a finite subset of X. Then L has the principal projec-
tion property but is not almost σ-complete. Also L is infinite
dimensional, has a strong unit, and has the s.m.c. property since
the constant function 1 has weak property c.
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