THE SCHUR SUBGROUP OF THE BRAUER GROUP

J. WILLIAM PENDERGRASS

Let K be a subfield of a cyclotomic extension L of the rational field Q. The Schur subgroup, S(K), of the Brauer group of K, B(K), consists of those algebra classes which contain an algebra which is isomorphic to a simple component of a group algebra QG for some finite group G.

In this paper we describe a set of generators for S(K). We then use this theorem to determine the 2-primary part of S(K) when L/K is cyclic and the fourth roots of unity are not in K.

NOTATION. In this paper K is a field contained in $Q(\varepsilon_n)$ where ε_n is a primitive *n*th root of unity. The completion of K at a prime P is denoted K_P . If p is the integral prime dividing P, then the residue class degree of P over p is written f(p) = f(p, K/Q). The ramification index of p in $Q(\varepsilon_n)$ over K is $e(p) = e(p, Q(\varepsilon_n)/K)$.

If A is a central simple algebra over K, then [A] will denote the class of A in B(K). A class [A] in B(K) is said to have uniformly distributed invariants of values 0 or 1/2 if for each rational prime p, [A] has the same Hasse invariant at each of the primes of K which divide p, and these invariants are either 0 or 1/2. The common value of the invariant of [A] at the primes of K dividing p is called the p-local invariant of [A] and is denoted: $inv_p[A]$.

If L is an extension field of K, then the Galois group of L over K is denoted by $\operatorname{Gal}(L/K)$, and the Frobenius automorphism of a prime p unramified in L over K is written [L/K, p]. Let α be a factor set $\operatorname{Gal}(L/K) \times \operatorname{Gal}(L/K)$ into L. Then the crossed product algebra made with L and α is denoted by $(L/K, \alpha)$. This is a central simple K algebra having L basis $\{u_{\sigma}\}$ for $\sigma \in \operatorname{Gal}(L/K)$ with multiplication given by

$$egin{array}{ll} u_\sigma u_ au = lpha(\sigma,\, au) u_{\sigma^ au} \ u_\sigma x = \sigma(x) u_\sigma & ext{for} \quad \sigma,\, au \in ext{Gal}\,(L/K) \;, \quad x \in L \;. \end{array}$$

In case Gal $(L/K) = \langle \sigma \rangle$ is cyclic, we shall write (L, σ, a) for the crossed product in which

$$egin{array}{rcl} (u_{\sigma})^i &= u_{\sigma^i} & 1 \leq i < |\sigma| \ &= a & i = |\sigma| \ . \end{array}$$

If p is a rational prime which splits into an even number of primes in K over Q, then $\Omega(p)$ denotes the class of B(K) with invariant 1/2 at each of the primes of K dividing p and invariant

0 elsewhere. If p_1 and p_2 are rational primes which split into an odd number of primes in K over Q, then $\Omega(p_1, p_2)$ denotes the class in B(K) with invariant 1/2 at each of the primes of K dividing p_1p_2 and invariant 0 elsewhere.

Finally $|m|_2$ denotes the highest power of 2 which divides the integer *m*, and $t(q) = q^{f(q)} - 1$ for all rational primes *q*.

2. The generator theorem. In this section we give a set of generators for S(K). This is a useful refinement of a result by Janusz [6].

LEMMA 1. Let K be a field contained in $Q(\varepsilon_n)$ where n is odd. Suppose that $\operatorname{Gal}(Q(\varepsilon_n)/K) = \prod_{i=1}^r \langle \phi_i \rangle$ and that $\operatorname{Gal}(Q(\varepsilon_{in})/Q(\varepsilon_n)) = \langle \rho \rangle$. If $[Q(\varepsilon_n)/K, 2] = \prod \phi_i^{g_i}$, then the 2-local index of an algebra $(Q(\varepsilon_{in})/K, \alpha)$ is equal to 2 if and only if $\sum g_i x_i + zf(2)$ is odd where $u_\rho u_{\phi_i} = \varepsilon_i^{x_i} u_{\phi_i} u_\rho$ and $u_\rho^2 = \varepsilon_i^{z_i}$.

Proof. Set $\eta = [Q(\varepsilon_n)/K, 2]$ and suppose that η has order s. Then $u_{\eta}u_{\rho} = \varepsilon_i^2 u_{\rho}u_{\eta}$ where

$$\lambda = \sum_{i=1}^r g_i x_i$$

If λ is even we have

$$u_
ho(arepsilon_4^{\lambda/2} u_\eta) = arepsilon_4^{-\lambda/2} arepsilon_4^\lambda u_\eta u_
ho = (arepsilon_4^{\lambda/2} u_\eta) u_
ho$$
 .

Let π be a prime of K dividing 2, then

$$egin{aligned} K_{\pi\otimes K}(Q(arepsilon_{4\eta})/K,\,lpha)&=\sum\limits_{i=0}^{1}\sum\limits_{j=0}^{s-1}Q_2(arepsilon_{4\eta})u_{
ho}^iu_{
ho}^j\ &=\sum\limits_{i=0}^{1}\sum\limits_{j=0}^{s-1}K_\pi(arepsilon_4)Q_2(arepsilon_n)u_{
ho}^i(arepsilon_{4}^{1/2}u_{\eta})^j\ &=(\sum\limits_{i=0}^{1}K_\pi(arepsilon_4)u_{
ho}^i)(\sum\limits_{j=0}^{s-1}Q_2(arepsilon_n)(arepsilon_{4}^{1/2}u_{\eta})^j)\ &=(K_\pi(arepsilon_\eta),\,
ho,\,u_{
ho}^2)igodolmarrow_{K_\pi}(Q_2(arepsilon_n),\,\eta,\,(arepsilon_{4}^{1/2}u_{\eta})^s)\ \end{aligned}$$

Now $(\varepsilon_4^{2/2}u_{\eta})^{\mathfrak{s}}$ is a root of unity and $Q_2(\varepsilon_n)$ is unramified over K_{π} , hence by [1, Chap. V, Thm. 9.14] $(Q_2(\varepsilon_n), \eta, (\varepsilon_4^{2/2}u_{\eta})^{\mathfrak{s}})$ has index 1. Further

$$[(K_{\pi}(\varepsilon_4), \rho, \varepsilon_4^{2z})] = [K_{\pi} \bigotimes_{Q_2} (Q_2(\varepsilon_4), \rho, \varepsilon_4^{2z})]$$

and $(Q_2(\varepsilon_4), \rho, \varepsilon_4^{2z})$ has index 2 if and only if z is odd, since -1 is not a norm from $Q_2(\varepsilon_4)$. Thus $K_{\pi} \bigotimes_{K} (Q(\varepsilon_{4\pi})/K, \alpha)$ has index 2 if and only if f(2)z is odd in the case that λ is even.

Now suppose that λ is odd. We have that

$$u_{
ho}((1+arepsilon_4^{\lambda})u_{\eta})=(1+arepsilon_4^{-\lambda})arepsilon_4^{\lambda}u_{\eta}u_{
ho}=((1+arepsilon_4^{\lambda})u_{\eta})u_{
ho}$$
 .

Hence

$$[K_{\pi}\bigotimes_{\kappa} (Q(\varepsilon_{4n})/K, \alpha)] = [(K_{\pi}(\varepsilon_{4}), \rho, u_{\rho}^{2})\bigotimes_{\kappa_{\pi}} (Q(\varepsilon_{n}), \eta, ((1 + \varepsilon_{4}^{\lambda})u_{\eta})^{s})]$$

by the same reasoning used above. We have already seen that $(K_{\pi}(\varepsilon_{4}), \rho, u_{\rho}^{2})$ has index 2 if and only if f(2)z is odd; we must look at $(Q_{2}(\varepsilon_{n}), \eta, ((1 + \varepsilon_{1}^{2})u_{\eta})^{s})$.

Let V_L denote the exponential valuation in the 2-adic field L. Then

$$egin{aligned} V_{{}_{K_{\pi}}}((1+arepsilon_{4}^{\lambda})u_{\eta})^s &= rac{1}{2}\,V_{{}_{K_{\pi}}(arepsilon_{4})}((1+arepsilon_{4}^{\lambda})u_{\eta})^s \ &= rac{1}{2}\,V_{{}_{K_{\pi}}(arepsilon_{4})}(1+arepsilon_{4}^{\lambda})^s + rac{1}{2}\,V_{{}_{K_{\pi}}(arepsilon_{4})}(u_{\eta}^s) \ &= rac{s}{2}\,V_{{}_{K_{\pi}}(arepsilon_{4})}(1+arepsilon_{4}^{\lambda}) \end{aligned}$$

since u_{γ}^s is a unit in $K_{\pi}(\varepsilon_4)$. Further, $(1 + \varepsilon_4^2)$ is a prime element in $K_{\pi}(\varepsilon_4)$ since λ is odd. Thus $V_{K_{\pi}(\varepsilon_4)}(1 + \varepsilon_4^2) = 1$ and

 ${V}_{{\scriptscriptstyle K}_\pi}((1+arepsilon_4^{\scriptscriptstyle\lambda})u_\eta)^s=s/2$.

Hence, by the definition of the Hasse invariant,

$$egin{aligned} & ext{inv} \left(Q_2(arepsilon_n), \, \eta, \, ((1+arepsilon_4^2)u_\eta)^s
ight) &= rac{s/2}{s} \, ext{mod} \, oldsymbol{Z} \ &= rac{1}{2} \, ext{mod} \, oldsymbol{Z} \, . \end{aligned}$$

Therefore, if λ is odd, we have that the index of $K_{\pi} \bigotimes_{K} (Q(\varepsilon_{4n})/K, \alpha)$ is 2 if and only if f(2)z is even.

This completes the proof of the lemma.

We will let $S(K)_p$ denote the *p*-primary part of S(K), and W(K, p) denote the roots of unity in K with *p*-power order.

THEOREM 1. Let p be a rational prime. Then $S(K)_p$ is generated by algebra classes which contain an algebra of the form $(Q(\varepsilon_{nq})/K, \alpha)$ where the values of α are in $W(Q(\varepsilon_{nq}), p)$, q is either 4 or an odd prime, and q does not divide n.

Proof. This is a refinement of Theorem 3 of [6]. In that theorem Janusz showed the following:

1. If p is odd, or p = 2 and 4 divides n, then $S(K)_p$ is generated by classes which contain algebras of the following types:

(a) $(Q(\varepsilon_{nq})/K, \alpha)$, the values of α in $W(Q(\varepsilon_n), p)$ and q a prime

not dividing n.

(b) $(K(\varepsilon_{qr})/K, \beta)$, the values of β in W(K, p) and q and r distinct primes not dividing n.

2. If p = 2 and n is odd, then $S(K)_p$ is generated by classes which contain an algebra of type (b), or of type (a') $(Q(\varepsilon_{4nq})/K, \alpha)$, the values of α in $W(Q(\varepsilon_4), 2)$ and q an odd prime not dividing n.

In order to prove Theorem 1, we must look closely at algebras of types (b) and (a').

Let Gal $(K(\varepsilon_{qr})/K) = \langle \sigma \rangle \times \langle \tau \rangle$ where $\langle \sigma \rangle = \text{Gal}(K(\varepsilon_q)/K)$ and $\langle \tau \rangle = \text{Gal}(K(\varepsilon_r)/K)$. Also let ζ be a p^d th root of unity, the highest *p*-power root of unity in *K*. Consider the algebra

$$\Delta_{qr} = (K(\varepsilon_{qr})/K, \beta) = \sum K(\varepsilon_{qr})u_{\gamma} \qquad (\gamma \in \langle \sigma \rangle \times \langle \tau \rangle)$$

where $u_{\sigma}u_{\tau} = \zeta^{x}u_{\tau}u_{\sigma}$, $u_{\sigma}^{q-1} = \zeta^{y}$, and $u_{\tau}^{r-1} = \zeta^{z}$. By [8, §1], the only restrictions on x, y, and z are $(\zeta^{z})^{\sigma-1} = (\zeta^{x})^{N(\tau)}$ and $(\zeta^{y})^{r-1} = (\zeta^{-x})^{N(\sigma)}$ where $N(\phi) = 1 + \phi^{2} + \cdots + \phi^{|\phi|^{-1}}$. However both σ and τ fix ζ , so we get that p^{d} divides both x(r-1) and x(q-1).

Now Δ_{qr} can have nonzero invariant only at the primes of K which divide q and r. This is because these are the only primes ramified in $K(\varepsilon_{qr})/K$.

Suppose that q is odd. Let $\tau^g = [K(\varepsilon_r)/K, q]$, the Frobenius automorphism of q in $K(\varepsilon_r)/K$, and set $t = q^{f(q)} - 1$. We have that

$$\Bigl(rac{eta(\sigma,\, au^g)}{eta(au^g,\,\sigma)}\Bigr)^{(q-1)/t} u^{q-1}_{\sigma} = (arepsilon_t)^{\mu
u}$$

where $\mu = (q - 1)/p^{d}$ and $\nu = xg + y(t/(q - 1))$.

The inertia group of q in $K(\varepsilon_{qr})/K$ is $\langle \sigma \rangle$, so [7, Thm 3] implies that the q-local index of Δ_{qr} is max $\{p^{d-s}, 1\}$ where p^s exactly divides ν .

Now suppose that p^a exactly divides f(q). Then p^a divides g since $[K(\varepsilon_r)/K, q] = [K(\varepsilon_r)/Q, q]^{f(q)}$. Moreover, if p = 2, f(q) is even, and $q \equiv 3 \mod 4$, then 2^{a+1} exactly divides t/(q-1), otherwise p^a exactly divides t/(q-1). In the case where p = 2, f(q) is even and $q \equiv 3 \mod 4$, we either have $2^d > 2$ so that x is even, or $2^d = 2$ so that Δ_{qr} has q-local index 1.

Hence in all cases, max $\{p^{d-s}, 1\}$ takes its highest possible value when p^s exactly divides t/(q-1).

Now consider the algebra $(K(\varepsilon_q), \sigma, \zeta)$. Applying [7, Thm. 3] we see that the q-local index is max $\{p^{d-c}, 1\}$ where p^c exactly divides t/(q-1). Further, the local index of $(K(\varepsilon_q), \sigma, \zeta)$ at any prime unequal to q is 1. Note that $(K(\varepsilon_q), \sigma, \zeta)$ inflated to $Q(\varepsilon_{nq})/K$ has the form described in Theorem 1.

If r is even, then $K(\varepsilon_{qr}) = K(\varepsilon_q)$ so that the r-local index of Δ_{qr}

is 1. Thus, in this case, some power of $(K(\varepsilon_q), \sigma, \zeta)$ has exactly the same set of invariants as Δ_{qr} .

If r is odd, then we may replace q by r in the above argument. Hence, some power of $(K(\varepsilon_r), \tau, \zeta)$ has the same invariants at primes dividing r as Δ_{qr} does, and some power of $(K(\varepsilon_q), \sigma, \zeta)$ has the same invariants as Δ_{qr} at primes dividing q.

Thus $[\mathcal{A}_{qr}]$ is contained in the group generated by the classes described in the theorem.

Now suppose that p = 2 and n is odd. Let $G = \text{Gal}(Q(\varepsilon_n)/K)$ be given by the direct product

$$G = \langle \phi_1
angle imes \langle \phi_2
angle imes \cdots imes \langle \phi_k
angle$$

where $\langle \phi_i \rangle$ has order n_i . Further, set $\langle \rho \rangle = \text{Gal}\left(Q(\varepsilon_{4n})/Q(\varepsilon_n)\right)$ and $\langle \sigma \rangle = \text{Gal}\left(Q(\varepsilon_{nq})/Q(\varepsilon_n)\right)$, were q is an odd prime not dividing n. Let ζ be a primitive fourth root of unity.

Consider the algebra

$$\varDelta_{2q} = (Q(\varepsilon_{4nq})/K, \alpha) = \sum Q(\varepsilon_{4nq})u_{\gamma}$$

where

$$egin{aligned} u_{
ho}u_{\sigma}&=\zeta^{x_0}u_{\sigma}u_{
ho}\;,\quad u_{
ho}u_{\phi_i}&=\zeta^{x_i}u_{\phi_i}u_{
ho}\;,\ u_{\sigma}u_{\phi_i}&=\zeta^{y_i}u_{\phi_i}u_{\sigma}\;,\quad u_{\phi_i}u_{\phi_j}&=\zeta^{y_{ij}}u_{\phi_j}u_{\phi_i}\;,\ u_{
ho}^2&=\zeta^z\;,\quad u_{\sigma}^{q-1}&=\zeta^{z_0}\;,\quad u_{\phi_i}^{n_i}&=\zeta^{z_i}\;, \end{aligned}$$

for $i, j = 1, 2, \dots, k$ and $i \neq j$. The conditions in [8, §1] imply that

 $egin{aligned} &z,\,y_{\,i},\,\, ext{and}\,\,\,y_{\,ij}\,\, ext{are even for}\,\,i,\,j=1,\,2,\,\cdots,\,k\,\, ext{and}\,\,i
eq j,\ &2z_{0}\equiv x_{0}(q-1)\,\, ext{mod}\,4\,\,,\ &2z_{i}\equiv x_{i}n_{i}\,\, ext{mod}\,4\,\,\, ext{for}\,\,\,i=1,\,2,\,\cdots,\,k\,\,. \end{aligned}$

We have that Δ_{2q} can have nonzero invariants only at those primes of K which divide 2, q, or some prime which ramifies in $Q(\varepsilon_n)/K$. Moreover, the invariants of Δ_{2q} can only be 0 or 1/2 since the only 2-power roots of unity in K are $\{\pm 1\}$.

 Let

$$arDelta_q = (Q(arepsilon_{nq})/K,\,\gamma) = \sum Q(arepsilon_{nq}) v_{ au}$$

be the algebra such that

$$egin{aligned} &v_{\sigma}v_{\phi_i}=\zeta^{y_i}v_{\phi_i}v_{\sigma}\,, &v_{\phi_i}v_{\phi_j}=v_{\phi_j}v_{\phi_i}\,,\ &v_{\sigma}^{q-1}=\zeta^{z_0^{m *}}\,, &v_{\phi_i}^{n_i}=1\,, \end{aligned}$$

for $i, j = 1, 2, \dots, k$ where

where

$$r^{-1} \equiv rac{q^{f(q)}-1}{q-1} \mod 4$$
.

Note that the y_i are all even, and that $z_0 + x_0r$ is even when $q \equiv 3 \mod 4$ and f(q) is odd. Thus the values of γ are all +1 or -1, and Δ_q is in S(K).

Further, let

$$\varDelta_2 = (Q(\varepsilon_{4n})/K, \gamma') = \sum Q(\varepsilon_{4n}) w_{\tau}$$

be the algebra such that

$$egin{aligned} &w_{
ho}w_{\phi_i}=\zeta^{z_i}w_{\phi_i}w_{
ho}\;, \quad w_{\phi_i}w_{\phi_j}=\zeta^{m{v}_ij}w_{\phi_j}w_{\phi_i}\;, \ &w_{
ho}^2=\zeta^{z^*}\;, \quad w_{\phi_i}^{n_i}=\zeta^{z_i} \end{aligned}$$

for $i, j = 1, 2, \dots, k$ and $i \neq j$ where

$$z^* = z + x_0$$
 if $q \equiv 3$ or $5 \mod 8$ and $f(2)$ is odd
= z otherwise.

Observe that both Δ_q and Δ_2 belong to classes of the type described in the theorem.

Claim. The algebra Δ_{2q} is equivalent to $\Delta_2 \bigotimes_K \Delta_q$ in B(K).

Proof of Claim. We will show that Δ_{2q} and $\Delta_2 \otimes \Delta_q$ have the same set of invariants. This is the same as showing that the local indices of these algebras are the same at q, 2, and the primes ramified in $Q(\varepsilon_n)/K$ because the invariants can be only 0 or 1/2.

First consider the q-local indices of Δ_{2q} and $\Delta_2 \otimes \Delta_q$. Let the Frobenius automorphism for q in $Q(\varepsilon_{4n})/K$ be $\eta_q = \rho^{\sigma} \prod \phi_i^{q_i}$, and set $t = q^{f(q)} - 1$. Then

$$\left(\frac{\alpha(\sigma, \eta_q)}{\alpha(\eta_q, \sigma)}\right)^{(q-1)/t} u_{\sigma}^{q-1} = (\varepsilon_t)^{(q-1)\nu_0/4}$$

where

$$m{
u}_{_{0}}=gx_{_{0}}+\mu\sum g_{_{i}}y_{_{i}}+z_{_{0}}(t/(q-1))$$

where

$$\mu = -1 \quad ext{if} \quad g = 1 \ = 1 \quad ext{if} \quad g = 0 \; .$$

By [6, Thm. 3], the q-local index of Δ_{2q} is given by

$$rac{q-1}{(
u_{\scriptscriptstyle 0}(q-1),\,q-1)} = rac{1}{2} \quad egin{array}{ccc} ext{if} &
u_{\scriptscriptstyle 0} \equiv 0 \ ext{mod} \ oldsymbol{Z} \ ext{if} &
u_{\scriptscriptstyle 0} \equiv 1/2 \ ext{mod} \ oldsymbol{Z} \ . \end{cases}$$

Now q does not ramify in $Q(\varepsilon_{i_n})/K$, so the q-local index of $\Delta_2 \otimes \Delta_q$ is equal to the q-local index of Δ_q .

The restriction of η_q to $Q(\varepsilon_n)$ is the Frobenius automorphism of q in $Q(\varepsilon_n)/K$; we will denote this by η'_q .

We have that

$$\Big(rac{\gamma(\sigma,\,\gamma_q')}{\gamma(\gamma_q',\,\sigma)}\Big)^{(q-1)/t} v_{\sigma}^{q-1} = (arepsilon_t)^{(q-1)
u_0'}$$

where

$$u_0' = rac{1}{4} [\sum g_i y_i + z_0^* (t/(q-1))] .$$

Hence the q-local index of $\Delta_2 \otimes \Delta_q$ is given by

$$\frac{q-1}{(\nu'_0(q-1), q-1)} = \frac{1}{2} \quad \text{if} \quad \nu'_0 \equiv 0 \mod Z$$

if $\nu'_0 \equiv 1/2 \mod Z$.

Now if $q \equiv 1 \mod 4$, then g = 0 and $z_0^* = z_0$, so $\nu_0 = \nu'_0$ and Δ_{2q} has the same q-local index as $\Delta_2 \otimes \Delta_q$. If $q \equiv 3 \mod 4$ and f(q) is even, then g = 0 and 4 divides t/(q - 1), so that $\nu' \equiv \nu'_0 \mod Z$. Thus again Δ_{2q} and $\Delta_2 \bigotimes_K \Delta_q$ have the same q-local index. Finally suppose that $q \equiv 3 \mod 4$ and f(q) is odd. In this case g = 1 so that

$$gx_0 + z_0(t/(q-1)) \equiv z_0^*(t/(q-1)) \mod 4$$
.

Hence $\nu_0 \equiv \nu'_0 \mod Z$ and Δ_{2q} has the same q-local index as $\Delta_2 \otimes \Delta_q$.

Now let l be a prime which ramifies in $Q(\varepsilon_n)/K$. We will compare the l-local indices of Δ_{2q} and $\Delta_2 \otimes \Delta_q$. Let $\langle \omega \rangle$ be the inertia group of l in $Q(\varepsilon_n)/K$ where $\omega = \prod \phi_i^{a_i}$, and let $\eta_l = \rho^g \sigma^{g_0} \prod \phi_i^{g_i}$ be a Frobenius automorphism of l in $Q(\varepsilon_{4nq})/K$. Then $\eta'_l = \rho^g \prod \phi_i^{g_i}$ and $\eta''_l = \sigma^{g_0} \prod \phi_i^{g_i}$ are Frobenius automorphisms of l in $Q(\varepsilon_{4n})/K$ and $Q(\varepsilon_{nq})/K$ respectively. Let e be the ramification index of l in $Q(\varepsilon_n)/K$. Then we have $v_{\omega}^e = 1$ and $w_{\omega}^e = w_{\omega}^e$. Moreover

$$\frac{\alpha(\omega, \eta_i')}{\alpha(\eta_i', \omega)} = \frac{\gamma(\omega, \eta_i')}{\gamma(\eta_i', \omega)} \frac{\gamma'(\omega, \eta_i)}{\gamma'(\eta_i, \omega)} .$$

Hence, by [7, Thm. 3], we see that Δ_{2q} and $\Delta_2 \otimes \Delta_q$ have the same

l-local index.

Finally, we must compare the 2-local indices of Δ_{2q} and $\Delta_2 \otimes \Delta_q$. Let $\sigma^{g_0} \prod \phi_i^{g_i}$ be the Frobenius automorphism of 2 in $Q(\varepsilon_{nq})/K$, then Lemma 1 implies that the 2-local index of Δ_{2q} is 2 if and only if $\nu = g_0 x_0 + \sum g_i x_i + (z/2) f(2)$ is odd. Further, the 2-local index of $\Delta_2 \bigotimes_{\kappa} \Delta_q$, which is the 2-local index of Δ_2 , is 2 if and only if $\nu' = \sum x_i g_i + (z^*/2) f(2)$ is odd.

If f(2) is even, then g_0 is even since

$$[Q(arepsilon_{nq})/K, 2] = [Q(arepsilon_{nq})/Q, 2]^{f(2)}$$
 .

Thus $\nu \equiv \nu' \mod 2$ and Δ_{2q} has the same 2-local index as $\Delta_2 \otimes \Delta_q$. If f(2) is odd and $q \equiv 1$ or 7 mod 8, then 2 is a square modulo q, so that g must be even. Hence, once again $\nu \equiv \nu' \mod 2$ and Δ_{2q} and $\Delta_2 \otimes \Delta_q$ have the same 2-local index. Finally suppose that f(2) is odd and that $q \equiv 3$ or 5 mod 8. Then g is odd and $z^* = z_0 + x_0$, so $gx_0 + (z/2)f(2)$ is equivalent to $(z^*/2)f(2)$ modulo 2. Thus again $\nu \equiv \nu' \mod 2$.

This completes the proof of the claim and of the theorem.

3. $S(K)_2$ when $Q(\varepsilon_n)/K$ is cyclic. In this section we will completely chararacterize the classes in $S(K)_2$ by the behavior of of their invariants in the case where Gal (L/K) is cyclic. Before beginning these calculations we need to prove the following lemma.

LEMMA 2. Suppose that $K \subset F$ are subfields of a cyclotomic field and that [F: K] is not divisible by the rational prime p. If there are no p-power roots of unity in F which are not in K, then $S(F)_p = F \bigotimes_k S(K)_p$.

Proof. Clearly $S(F)_p \supseteq F \bigotimes_k S(K)_p$. We need to show containment in the other direction.

Let L be the smallest cyclotomic field containing F, and let G = Gal(L/K) be given by

$$G = \prod_{i=1}^t \langle \phi_i
angle imes \prod_{j=1}^s \langle \psi_j
angle$$

where the order of each $\langle \phi_i \rangle$ is a power of p and the order of each $\langle \psi_j \rangle$, n_j , is relatively prime to p. It follows that H = Gal(L/K) is given by

$$H=\prod\limits_{i=1}^t ig\langle \phi_i ig
angle imes \prod\limits_{j=1}^{s'}ig\langle \psi_j' ig
angle$$

where $\prod_{j=1}^{s} \langle \psi_j \rangle$ is a subgroup of $\prod_{j=1}^{s'} \langle \psi'_j \rangle$.

By Theorem 1, $S(F)_p$ is generated by classes containing algebras

of the form

$$(L(arepsilon_q)/F,\,lpha) = \sum_{\sigma} L(arepsilon_q) \, U_{\sigma}$$

where q is either 4 or an odd prime and the values of α are p-power roots of unity.

Suppose that $U_{\psi_j}^{\pi_j} = \zeta^{z_j}$ where ζ is a primitive p^d th root of unity. The order of ψ_j is prime to p, so $\psi_j(\zeta) = \zeta$ unless ζ is not in F, in which case $S(F)_p = F \bigotimes_K S(K)_p = 1$. Set $\gamma = -z_j/n_j$ modulo p^d . Now replace U_{ψ_j} by $\zeta^{\lambda} U_{\psi_j}$ in $(L(\varepsilon_q)/F, \alpha)$. This gives an equivalent algebra, but now

$$(\zeta^{\lambda}U_{\psi_{j}})^{n_{j}}=\zeta^{\circ}=1$$
 .

Hence we might as well have started with $z_j = 0$ for $j = 1, 2, \dots, s$.

Now suppose that $U_{\psi_j}U_{\tau} = \zeta^{x_j}U_{\tau}U_{\psi_j}$ for some τ in Gal $(L(\varepsilon_q)/F)$, τ not in $\langle \psi_j \rangle$. Then

$$egin{aligned} 1 &= \, U_{\psi_{\,j}}^{\,n_{\,j}} = \, (\, U_{\, au}^{-_1} U_{\psi_{\,j}} U_{\, au})^{n_{\,j}} \,=\, \prod_{i=0}^{n_{\,j}-_1} \, \psi_{\,j}^i(\zeta^{x_{\,j}}) \ &= \, \zeta^{n_{\,j}x_{\,j}} \,\,. \end{aligned}$$

However n_j is prime to p, so x_j must be 0. Thus $U_{\psi_j}U_{\tau} = U_{\tau}U_{\psi_j}$ for all $\tau \in \text{Gal}(L(\varepsilon_q)/F)$. This is true for all ψ_j , $j = 1, 2, \dots, s$.

Therefore

$$[(L(\varepsilon_q)/F, \alpha)] = [(E_1/F, \alpha_1) \bigotimes_F (E_2/F, \alpha_2)]$$

where E_1 is the field fixed by $\prod_{i=1}^{t} \langle \phi_i \rangle$ and E_2 is the field fixed by $\prod_{j=1}^{s} \langle \psi_j \rangle$. Moreover α_1 is the trivial factor set, so $[(E_1/F, \alpha_1)] = [F]$.

Further, $[(E_2/F, \alpha_2)] = [F \bigotimes_{\kappa} (E_2/K, \alpha'_2)]$ where α'_2 restricted to $\prod_{i=1}^t \langle \phi_i \rangle$ equals α_2 and α'_2 is trivial on Gal (F/K). This makes α'_2 a factor set by the same reasoning we used to ascertain that α is equivalent to a factor set with nontrivial values only on $\prod_{i=1}^t \langle \phi_i \rangle$.

This completes the proof of the lemma.

Notice that this lemma implies that an algebra class [A] in $S(F)_p$ has q_i -local index p^{a_i} for some sets of primes q_1, \dots, q_t if and only if there is an algebra class [D] in $S(K)_p$ with exactly the same local indices. Hence, if we can find the possible local indices for classes in $S(F)_p$, then we have found them for classes in $S(K)_p$.

In the following theorems we assume that [K:Q] is even. We may do this because S(K) consists of all classes in B(K) with uniformly distributed invariants of value 0 or 1/2 if [K:Q] is odd. This follows from [2].

A. $S(K)_2$ when n is odd.

THEOREM 2. Let K be a field contained in $L = Q(\varepsilon_n)$ where n

is odd such that Gal(L/K) is cyclic and [K:Q] is even. Then the 2-primary part of S(K) consists of those classes [A] in B(K) with uniformly distributed invariants of value 0 or 1/2 which satisfy the following conditions.

(I) For a prime p which divides n, $inv_p[A] = 0$ if e(P) is odd or if [L: K]/e(P) is even.

(II) For any prime q, $\operatorname{inv}_q[A] = 0$ if f(q) is even and a Frobenius automorphism of q is a square in $\operatorname{Gal}(L/K)$.

(III) Let p be a prime which divides n to which (I) does not apply. Suppose that f(p) is odd and that $|(p-1)/e(p)|_2 \ge |p'-1|_2$ for every prime p' which divides n and is unequal to p. Then the invariant of [A] is 1/2 at an even number of primes in the set

 $\{p\} \cup \{\text{primes } q: (q/p) = -1 \text{ and } (q, n) = 1\}$

where (q/p) is the Legendre symbol.

Proof. Let G = Gal(L/K) be $\langle \phi \rangle$ and have order $m = 2^{c}c'$, (2, c') = 1.

Step 1. We need to determine the invariants of the generators of $S(K)_2$ given in Theorem 1.

(a) Let
$$\Delta_q = \Delta_q(x, y, z)$$
 be an algebra
 $\Delta_q = (L(\varepsilon_q)/K, \alpha) = \sum_{\tau} L(\varepsilon_q) U_{\tau}$

where q is an odd prime not dividing n and the values of α are in $\{\pm 1\}$. Let $\langle \gamma \rangle = \text{Gal}(L(\varepsilon_q)/L)$. Then the factor set α is determined by the integers x, y, and z where

$$egin{aligned} &U_7\,U_\phi=(-1)^x\,U_\phi\,U_7\;,\ &(U_7)^{q-1}=(-1)^y\;,\ &(U_\phi)^m=(-1)^z\;. \end{aligned}$$

The restrictions given in $[8, \S1]$ reduce to:

$$x = 0$$
 if m is odd.

Suppose that the Frobenius automorphism of q in L/K is ϕ^{g} . Set $t(q) = q^{f(q)} - 1$. Then

$$\left(\frac{\alpha(\gamma,\phi^g)}{\alpha(\phi^g,\gamma)}\right)^{(q-1)/t(q)}U_7^{q-1}=(\varepsilon_{t(q)})^{((q-1)/2)\nu}$$

where $\nu = xg + y(t(q)/(q-1))$. The inertia group of q in $L(\varepsilon_q)/K$ is $\langle \gamma \rangle$, so [8, Thm. 3] implies that the q-local index of $[\varDelta_q]$ is given by

$$\frac{q-1}{(\nu(q-1)/2, q-1)} = 1 \quad \text{if } \nu \text{ is even}$$
$$= 2 \quad \text{if } \nu \text{ is odd }.$$

Now
$$t(q)/(q-1)$$
 is odd if and only if $f(q)$ is odd, so we get

(3.1)
$$\operatorname{inv}_{q} [\mathcal{A}_{q}] = 1/2 \iff xg + yf(q) \quad \text{is odd} .$$

Now suppose that p divides n. Let $\gamma^{k}\phi^{k'}$ be a Frobenius automorphism for p in $L(\varepsilon_q)/K$, and let $\langle \phi^{a} \rangle$ be the inertia group of p in $L(\varepsilon_q)/K$. Then

$$\left(\frac{\alpha(\phi^a,\,\gamma^h\phi^{h'})}{\alpha(\gamma^h\phi^{h'},\,\phi^a)}\right)^{e(p)/t(p)}(U^a_\phi)^{e(p)}=(\varepsilon_{t(p)})^{(e(p)/2)\nu'}$$

where $\nu' = xah + \mu z(t(p)/e(p))$,

$$egin{array}{lll} ext{where} & \mu = 0 & ext{if} & a = 0 \ = 1 & ext{if} & a
eq 0 \ . \end{array}$$

Thus the *p*-local index of $[\varDelta_q]$ is given by

$$egin{array}{ll} \displaystyle rac{e(p)}{(
u'e(p)/2,\ e(p))} &= 1 & ext{if }
u' ext{ is even} \ &= 2 & ext{if }
u' ext{ is odd }. \end{array}$$

Hence

(3.2)
$$\operatorname{inv}_p \left[\mathcal{A}_q \right] = 1/2 \Leftrightarrow xah + \mu z \left(\frac{t(p)}{e(p)} \right) \quad \text{is odd }.$$

(b) Let $\Delta_2 = \Delta_2(x, y, z)$ be the algebra

$$\Delta_2 = (L(\varepsilon_4)/K, \alpha) = \sum_{\tau} L(\varepsilon_4) U_{\tau}$$

where the values of α are in $\{\pm 1, \pm \varepsilon_4\}$. If $\langle \rho \rangle = \text{Gal}(L(\varepsilon_4)/L)$, then the factor set α is determined by the integers x, y, and z where

$$egin{aligned} U_{
ho}\,U_{\phi} &= (arepsilon_4)^x\,U_{\phi}\,U_{
ho}\;, \ (U_{
ho})^2 &= (arepsilon_4)^y\;, \ (U_{\phi})^m &= (arepsilon_4)^z\;. \end{aligned}$$

The restrictions on x, y, and z are

(3.3) $y \text{ is even} \\ xm + 2z \equiv 0 \mod 4.$

Let $[L/K, 2] = \phi^{g}$. Then by Lemma 1,

$$(3.4) \qquad \qquad \operatorname{inv}_2\left[\mathcal{A}_2 \right] = 1/2 \Leftrightarrow xy + (y/2)f(2) \qquad \text{is odd} \ .$$

Now let p be a prime dividing n. Let $\rho^k \phi^{k'}$ be a Frobenius automorphism of p in $L(\varepsilon_4)/K$, and let $\langle \phi^a \rangle$ be the inertia group of p in L/K. Then

$$\left(\frac{\alpha(\phi^a,\ \rho^k\phi^{k'})}{\alpha(\rho^k\phi^{k'},\ \phi^a)}\right)^{e_{(p)/t(p)}}(U^a_{\phi})^{e_{(p)}} = (\varepsilon_{t^{(\rho)}})^{(e_{(p)/4})\nu^{\prime\prime}}$$

where

$$m{
u}''=xak+\mu z\Bigl(rac{t(p)}{e(p)}\Bigr)$$

where
$$\mu = 0 \quad ext{if} \quad a = 0 \ = 1 \quad ext{if} \quad a
eq 0 \, .$$

Thus

(3.5)
$$\operatorname{inv}_{p}\left[\varDelta_{2}\right] = 1/2 \Leftrightarrow \frac{xak}{2} + \frac{\mu z}{2} \left(\frac{t(p)}{e(p)}\right) \quad \text{is odd }.$$

Finally observe that if l is a finite prime which does not divide nq, then l does not ramify in $L(\varepsilon_q)/K$ and so $\operatorname{inv}_l[\varDelta_q] = 0$.

Now assume that [L: K] is odd. Then $S(K)_2 = K \bigotimes_Q S(Q)$ by [5, Cor. 2]. This means that there is an algebra class [A] in $S(K)_2$ with $\operatorname{inv}_q [A] = 1/2$ if and only if the order of the decomposition group of q in K/Q, f(q)e(q, K/Q), is odd.

For each prime p which divides n, we must have that e(p, K/Q) is even and e(p) is odd. Thus condition (I) of the theorem applies, and is satisfied. Further, every element in Gal(L/K) is a square, so condition (II) reduces to: For any prime q, $\operatorname{inv}_q[A] = 0$ if f(q) is even. Hence this condition is satisfied. Condition (III) is trivially satisfied since condition (I) applies to each prime p which divides n.

Suppose now that q is a prime not dividing n such that f(q) is odd. Then the decomposition group of q in K/Q has odd order. Thus the algebra $K\bigotimes_Q (Q(\varepsilon_{q'}), \gamma, -1)$ has invariant 1/2 at q and invariant 0 elsewhere, where $\langle \gamma \rangle = \text{Gal}(Q(\varepsilon_{q'})/Q)$ and q' = q unless q is even, in which case q' = 4. Note that K cannot be a real field in this case, so that the invariants of any algebra in B(K) are 0 at the infinite primes of K.

We have now shown that the theorem holds if [L:K] is odd. For the rest of the proof we shall assume that [L:K] is even. By Lemma 2, we may assume that $[L:K] = 2^{c}$ for $c \ge 1$.

Suppose that K is a real field. Pick a prime p such that f(p)e(p, K/Q) is even. This can always be done since [K:Q] is assumed to be even. Consider the algebra $K \bigotimes_Q D_p$ where $[D_p] \in S(Q)$ has invariant 1/2 only at p and the infinite prime p_{∞} . Then $[K \otimes D_p]$

has invariant 1/2 just at the infinite primes of K. Hence $\Omega(p_{\infty})$ is in K. This settles the case with respect to the infinite primes since $B(C) = \{1\}$ where C is the complex numbers. For the remainder of the proof, "prime" will mean "finite prime."

Step 2. Condition (I) is satisfied.

Suppose that p is a prime which divides n, and that $e(p) \neq 2^t$. Then a is even where $\langle \phi^a \rangle$ is the invertia group of p in L/K. Hence (p-1)/e(p) is even because it is divisible by a if $e(p) \neq 1$. Thus (3.2) implies that $\operatorname{inv}_p[\mathcal{A}_q] = 0$ for all odd primes q which do not divide n. Now consider \mathcal{A}_2 . If a = 0, then (3.5) implies that $\operatorname{inv}_p[\mathcal{A}_2] = 0$ since $\mu = 0$. If $a \neq 0$, then $2^t \geq 4$ so that $p \equiv 1 \mod 4$. Hence $[Q(\varepsilon_4)/Q, p] = 1$, so in (3.5) we have that k = 0. Moreover, (3.3) implies that z is even, so $\operatorname{inv}_p[\mathcal{A}_2] = 0$.

We have shown that each of the generators of $S(K)_2$ has 0 invariant at p. Hence $\operatorname{inv}_p[A] = 0$ for all [A] in $S(K)_2$ and condition (I) is satisfied.

Step 3. Condition (II) is satisfied.

Suppose that p is a prime dividing n such that f(p) is even and condition (I) does not apply to p. Note that the identity element in Gal (L/K) is a Frobenius automorphism for p in L/K in this case, so condition (II) does apply to p.

Observe that t(p)/e(p) is even, and in the case where e(p) = 2, t(p)/e(p) is divisible by 4. This is so because f(p) is even and $e(p) = 2^t$ must divide p - 1.

Let l be either 4 or an odd prime not dividing n, and suppose that γ^h is a Frobenius automorphism for p in $L(\varepsilon_l)/K$ where $\langle \gamma \rangle =$ Gal $(L(\varepsilon_l)/L)$. If l is an odd prime then h must be even since f(p) is even. If l = 4, then h = 0. Further, by (3.3), z is even when $e(p) \ge 4$. Thus (3.2) and (3.5) imply that $\operatorname{inv}_p[\mathcal{A}_{l'}] = 0$ where l' = l if l is odd or l' = 2 if l = 4.

Hence, for p, condition (II) is satisfied on the generators of $S(K)_2$. Therefore condition (II) is satisfied for all primes which divide n.

Now suppose that q is a prime which does not divide n such that f(q) is even and $[L/K, q] = \phi^{q}$ is a square in Gal (L/K). Then g is even so that gx + f(q)y, or gx + f(q)y/2 in the case of q = 2, is even for all permissible values of x and y. Thus, by (3.1) and (3.4), $\operatorname{inv}_{q}[\mathcal{A}_{q}] = 0$.

Classes of the type $[\Delta_q]$ are the only classes amongst the generating classes given by Theorem 1 which might possibly have

nonzero invariant at primes of K dividing q. Hence $\operatorname{inv}_q[A] = 0$ for all [A] in $S(K)_2$, and condition (II) is satisfied for primes which do not divide n.

Step 4. For each prime l to which conditions (I) and (II) do not apply, there is a class [A] in $S(K)_2$ such that $\operatorname{inv}_l[A] = 1/2$.

First suppose that q is a prime which does not divide n. If f(q) is odd, then the algebra

$$egin{array}{lll} arLambda_{q}^{_{0}} &= arLambda_{q}(0,\,2,\,0) & ext{ if } q = 2 \ &= arLambda_{q}(0,\,1,\,0) & ext{ if } q
eq 2 \end{array}$$

has invariant 1/2 at q and invariant 0 elsewhere. Hence $\Omega(q) = [\mathcal{A}_q^0]$ if f(q) is odd.

Suppose that f(q) is even and that $[L/K, q] = \phi^g$ where g is odd. By (3.1) and (3.4), the algebra

has invariant 1/2 at q.

Now let p be a prime which divides n such that neither condition (I) nor condition (II) applies to p. Hence, f(p) is odd. Pick an odd prime q not dividing n such that $[Q(\varepsilon_{4p})/Q, q] = \psi$ where $\langle \psi \rangle =$ Gal $(Q(\varepsilon_p)/Q)$. There exist infinitely many such q by the Tchebotarev density theorem. This choice of q insures that $q \equiv 1 \mod 4$ and that (q/p) = -1. Hence, by quadratic reciprocity, (p/q) = -1. Thus hmust be odd where γ^h is a Frobenius automorphism of p in $L(\varepsilon_q)/K$. Then by (3.2) $\operatorname{inv}_p[\mathcal{A}_q^1] = 1/2$ where \mathcal{A}_q^1 is the algebra described above. This is because a is odd if condition (I) does not apply.

Step 5. If condition (III) does not apply, then $\Omega(l)$ is in $S(K)_2$ for every prime l to which conditions (I) and (II) do not apply.

Let p be a prime which divides n such that condition (I) does not apply to p. This means that p is totally ramified in L/K. Hence p is the only prime which is ramified in L/K, and so p is the only prime dividing n to which condition (I) does not apply.

Now suppose that condition (II) does not apply to p. We saw in Step 3 that this means that f(p) is odd. Further suppose that $|(p-1)/e(p)|_2 < |p'-1|_2$ for some prime $p' \neq p$ which divides n. Pick an odd prime q_0 which does not divide n such that $[L(\varepsilon_4)/Q, q_0] = \psi\psi'$ where ψ generates Gal $(Q(\varepsilon_p)/Q)$ and ψ' generates Gal $(Q(\varepsilon_p)/Q)$. Now $f(q_0)$ is divisible by the same power of 2 as p'-1 is, hence $[L/K, q_0] = \phi^g$ where g is even. Thus $\operatorname{inv}_{q_0}[\mathcal{A}_{q_0}] = 0$. However our

choice of q_0 insures that $q_0 \equiv 1 \mod 4$ and that $(q_0/p) = -1$. Thus the argument at the end of Step 3 gives $\operatorname{inv}_p \left[\mathcal{A}_{q_0}^1 \right] = 1/2$. Since p is the only prime dividing n at which $\mathcal{A}_{q_0}^1$ can have nonzero invariants, we have that $\Omega(p) = \left[\mathcal{A}_{q_0}^1 \right]$.

Now let q be a prime which does not divide n such that condition (II) does not apply to q. We saw in Step 3 that $\Omega(q)$ is in $S(K)_2$ if f(q) is odd. Further, if f(q) is even, we have that $\operatorname{inv}_q[\varDelta_q^1] = 1/2$. Thus, if $\operatorname{inv}_p[\varDelta_q^1] = 0$, we have $\Omega(q) = [\varDelta_q^1]$. If $\operatorname{inv}_p[\varDelta_q^1] = 1/2$, then $\Omega(q) = [\varDelta_q^1] \bigotimes_k \Omega(p)$.

Step 6. Condition (III) is satisfied.

Let p be a prime dividing n to which condition (I) does not apply. Further suppose that f(p) is odd and that $|(p-1)/e(p)|_2 \ge |p'-1|_2$ for every prime $p' \ne p$ which divides n. This hypothesis, and the assumption that [K:Q] is even, forces $p \equiv 1 \mod 4$. We also have that $\langle \phi \rangle$ is the inertia group of p in L/K.

Let q be a prime not dividing n such that $\operatorname{inv}_p [\Delta'_q] = 1/2$ where Δ'_q is one of the generators of $S(K)_2$ given in Theorem 1. Let $[L/K, q] = \phi^q$ and let γ^h be a Frobenius automorphism of p in $L(\varepsilon_{q'})/K$ where $\langle \gamma \rangle = \operatorname{Gal}(L(\varepsilon_{q'})/K), q' = q$ if q is odd, and q' = 4 if q = 2.

(a) Suppose that q is odd. Then by (3.2), hx must be odd. However, h is odd if and only if (p/q) = -1 since f(p) is odd. So, by the law of quadratic reciprocity, (q/p) = -1 and so f(q) is divisible by the same power of 2 as (p-1)/e(p) is. This implies that g is odd. Hence $\operatorname{inv}_q [d'_q] = 1/2$.

(b) Suppose that q = 2. Then h = 0 since $[Q(\epsilon_4)/Q, p] = 1$. Thus z/2(t(p)/e(p)) must be odd. This means that $t(p)/e(p) \equiv 2 \mod 4$ and z is odd. By (3.3), this can only occur when x is odd and e(p) = 2. Thus $p \equiv 5 \mod 8$, so that (2/p) = -1. This implies that f(2) is even and that q is odd. Hence, by (3.4) inv₂ $[d'_2] = 1/2$.

Now let q be a prime not dividing n such that (q/p) = -1 and $\operatorname{inv}_q [\varDelta_q''] = 1/2$ where \varDelta_q'' is one of the algebras described in Theorem 1. Let $[L/K, q] = \phi^q$ and let γ^h be a Frobenius automorphism of p in $L(\varepsilon_{q'})/K$ where $\langle \gamma \rangle = \operatorname{Gal}(L(\varepsilon_{p'})/K)$ and q' = q if q is odd or q' = 4 if q = 2.

By (3.1) and (3.4), xg is odd. If q is odd, then h is odd so that $\operatorname{inv}_p[\varDelta_q''] = 1/2$. So suppose that q = 2. Then we must have $p \equiv 5 \mod 8$. This implies that $t(p)/e(p) \equiv 2 \mod 4$, and, by (3.3), that z is odd. Hence (3.5) implies that $\operatorname{inv}_p[\varDelta_2''] = 1/2$.

We have now shown that

 $\operatorname{inv}_p[\varDelta_q] = 1/2 \Leftrightarrow \operatorname{inv}_q[\varDelta_q] = 1/2 \text{ and } (q/p) = -1.$

Since every algebra class [A] in $S(K)_2$ is generated by classes of

this form, we have shown that condition (III) is satisfied.

Further, this proves that $\Omega(q)$ is in $S(K)_2$ if (q/p) = 1 and condition (II) does not apply to q. This is because $[\varDelta_q]$ can have nonzero invariants only at p and q; we saw in Step 3 that we could arrange for nonzero invariants at q and we have just seen that we cannot get nonzero invariants at p.

This completes the proof of the theorem.

B. $S(K)_2$ when n is even.

Now suppose that $L = Q(\varepsilon_n)$ is a cyclotomic field containing ζ , a primitive 2^sth root of unity for $s \ge 2$. Further suppose that $K \subset L$ does not contain a fourth root of unity, and that $\text{Gal}(L/K) = \langle \phi \rangle$ has order 2^sc', (c', 2) = 1.

Let Gal $(Q(\zeta)/Q) = \langle \rho \rangle \times \langle \psi \rangle$ where $\rho(\zeta) = \zeta^{-1}$ and $\psi(\zeta) = \zeta^{5}$. Then we may assume that $\phi = \rho \psi^{2^{r-2}} \tau$ where the order of $\langle \psi^{2^{r-2}} \rangle = 2^{s-r}$ divides the order of $\langle \tau \rangle$. Thus $\phi(\zeta) = \zeta^{-h}$ where $h = 5^{2^{r-2}}$. We will keep this notation for the rest of this section.

We must determine the invariants of the generators of $S(K)_2$ given in Theorem 1.

Let $\Delta_q = \Delta_q(x, y, z)$ be the algebra

$$\Delta_q = (L(arepsilon_q)/K, \, lpha) = \sum_{ au} L(arepsilon_q) U_{ au}$$

where q is a prime not dividing n and the values of α are in $\langle \zeta \rangle$. Let $\langle \gamma \rangle = \text{Gal}(L(\varepsilon_q)/L)$. The factor set α is determined by the integers x, y, and z where

$$egin{aligned} U_{7} U_{\phi} &= \zeta^{x} \, U_{\phi} \, U_{7} \; , \ U_{7}^{q-1} &= \zeta^{y} \; , \ U_{\phi}^{z^{c} c'} &= \zeta^{z} \; . \end{aligned}$$

The conditions in $[8, \S1]$ require that

(i)
(i)
(
$$\zeta^{z} = (\zeta^{z})^{\phi} = \zeta^{-hz}$$

(ii)
($\zeta^{y})^{-h-1} = (\zeta^{y})^{\phi-1}$
 $= (\zeta^{-x})^{N(\tau)}$
 $= \zeta^{-x(q-1)}$
(iii)
 $1 = (\zeta^{z})^{\tau-1} = (\zeta^{x})^{N(\phi)}$

where $N(\tau) = 1 + \tau^2 + \cdots + \tau^{|\tau|-1}$ for a group element τ . Hence

(3.6) (a) 2^{s-1} divides z, (b) $y(h+1) - x(q-1) \equiv 0 \mod 2^s$, (c) 2 divides x if c = s - r.

Now suppose that $[L/K, q] = \phi^{g}$. Then

$$\left(\frac{\alpha(\gamma,\phi^g)}{\alpha(\phi^g,\gamma)}\right)^{(q-1)/t(q)}U_{\gamma}^{q-1}=(\varepsilon_{t(q)})^{(q-1)\nu}$$

where

$$u = rac{1}{2^s} \Big[x \Big(rac{1-(-h)^g}{1+h} \Big) + y \Big(rac{t(q)}{q-1} \Big) \Big] \,.$$

Thus the q-local index of Δ_q is given by

$$\frac{q-1}{((q-1)\nu, q-1)} = 1 \quad \text{if} \quad \nu \equiv 0 \mod Z$$
$$= 2 \quad \text{if} \quad \nu \equiv 1/2 \mod Z$$

Hence

$$(3.7) \qquad \qquad \operatorname{inv}_{\mathfrak{q}}\left[\mathcal{A}_{\mathfrak{q}}\right] = 1/2 \Leftrightarrow \nu \equiv 1/2 \mod \mathbb{Z}.$$

Now suppose that p is an odd prime which divides n. Let $\gamma^b \phi^{b'}$ be a Frobenius automorphism of p in $L(\varepsilon_q)/K$, and let $\langle \phi^e \rangle$ be the inertia group of p in $L(\varepsilon_q)/K$.

Then

$$\left(rac{lpha(\phi^a,\,\gamma^b\phi^{b'})}{lpha(\gamma^b\phi^{b'},\,\phi^a)}
ight)^{e_{(p)/t(p)}}(U_{\phi^a})^{e_{(p)}}=arepsilon_{t(p)}^{e_{(p)}
u_p}$$

where

$$m{
u}_p = rac{1}{2^s} igg[xb \Bigl(rac{1-h^a}{1+h} \Bigr) + \mu z \Bigl(rac{p^{f(p)}-1}{e(p)} \Bigr) \Bigr]$$

where

$$\mu = 0$$
 if $a = 0$
= 1 if $a \neq 0$.

Hence

(3.8)
$$\operatorname{inv}_p \left[\varDelta_q \right] = 1/2 \longleftrightarrow \nu_p \equiv 1/2 \mod \mathbb{Z}.$$

Finally suppose that 2 is ramified in L/K. Our assumption that the order of $\langle \psi^{2^{r-2}} \rangle$ divides the order of $\langle \tau \rangle$ implies that in this case Gal $(L/K) = \langle \rho \rangle$.

Let $\eta = \gamma^b$ be a Frobenius automorphism of 2 in $L(\varepsilon_q)/K$. Let f be the order of $\langle \eta \rangle$. We have

$$egin{aligned} U_{
ho}((1+\zeta^{zb})\,U_{\eta}) &= (1+\zeta^{-zb})\,U_{
ho}\,U_{\eta}\ &= (1+\zeta^{-zb})\zeta^{zb}\,U_{\eta}\,U_{
ho}\ &= [(1+\zeta^{zb})\,U_{\eta}]\,U_{
ho}\;. \end{aligned}$$

Let π be a prime of K which divides 2. Then

$$egin{aligned} K_\pi &\otimes arDelta_q = \sum\limits_{\imath=0}^1 \sum\limits_{j=0}^{f-1} K_\pi(arepsilon_4) K_\pi(arepsilon_q) U^i_
ho U^j_\eta \ &= \sum\limits_{\imath=0}^1 \sum\limits_{j=0}^{f-1} K_\pi(arepsilon_4) K_\pi(arepsilon_q) U^i_
ho [(1+\zeta^{xb}) U_\eta]^j \ &\cong \sum\limits_{\imath=0}^1 K_\pi(arepsilon_4) U^i_
ho igodotomode _{K_\pi} \sum\limits_{j=0}^{f-1} K_\pi(arepsilon_q) [(1+\zeta^{xb}) U_\eta]^j \ &\cong (K_\pi(arepsilon_4),
ho, \ U^2_
ho) igodotomode _{K_\pi} (K_\pi(arepsilon_q), \eta, \ [(1+\zeta^{xb}) U_\eta]^f) \ . \end{aligned}$$

Now $[(K_{\pi}(\varepsilon_4), \rho, U_{\rho}^2)] = K_{\pi} \bigotimes_{Q_2} (Q_2(\varepsilon_4), \rho, \zeta^z)$. Hence inv $(K_{\pi}(\varepsilon_4), \rho, U_{\rho}^2)$ may be assumed to be 0, since otherwise e(2, K/Q) would be odd which would mean that $K = Q(\varepsilon_{\pi/4})$. The Schur subgroup of a cyclotomic field is given in [5].

Now let V' and V be the exponential valuations of $K_{\pi}(\varepsilon_4)$ and K_{π} respectively. Since $e(K_{\pi}(\varepsilon_4)/K) = 2$, we have

$$egin{aligned} V[(1+\zeta^{xb})\,U_\eta]^f &= rac{1}{2}\,V'[(1+\zeta^{xb})\,U_\eta]^f \ &= rac{1}{2}[\,V'(1+\zeta^{xb})^f \,+\,V'(U^f_\eta)] \ &= rac{1}{2}fV'(1+\zeta^{xb})\;. \end{aligned}$$

Now $V'(1 + \zeta^{zb})$ is odd if and only if xb is odd since $1 + \zeta^{zb}$ is a prime element of $K_z(\varepsilon_4)$ when xb is odd. Thus from the definition of the Hasse invariant we get

$$\operatorname{inv}\left(K_\pi\otimesarDelta_q
ight)=0 \qquad ext{if} \,\,xb\,\, ext{is even} \ =1/2 \qquad ext{if} \,\,xb\,\, ext{is odd}\,.$$

Thus

(3.9)
$$\operatorname{inv}_{2}[\varDelta_{q}] = 1/2 \longleftrightarrow \mu_{0} xb$$
 is odd

where

$$\mu_{\scriptscriptstyle 0} = 0 \qquad ext{if 2 is unramified in L/K} = 1 \qquad ext{if 2 is ramified in L/K} \, .$$

Observe that q and the primes which divide n are the only primes which might ramify in $L(\varepsilon_q)/K$. Hence, these are the only primes at which Δ_q can have nonzero invariants.

THEOREM 3. The 2-primary part of S(K) consists of all classes [A] in B(K) with uniformly distributed invariants of value 0 or 1/2 which satisfy the following conditions.

(I) For a prime p which divides n, $inv_p[A] = 0$ if any of the following hold:

(a) e(p) is odd;

(b) f(p) is even;

(c) $[L: K(\zeta)]/e(p)$ is an even integer.

(II) For q a prime which does not divide n, $inv_q[A] = 0$ if either

(a) t = s - r and f(q) is even, or

(b) $t \neq s - r$, f(q) is even, and $q^{f(q)} \equiv (-h)^g \mod 2^{s+1}$ where $[L/K, q] = \phi^g$.

(III) Let p be a prime which divides n such that condition (I) does not apply to p. If $|e(p, K/Q)|_2 \ge |e(p', K/Q)|_2$ for every prime $p' \ne p$, then the invariant of [A] is 1/2 at an even number of primes in the set

$$\{p\} \cup \{\text{primes } q: (p/q) = -1, (q, n) = 1\}$$

where (p/q) is the Legendre symbol.

Proof. We have assumed that $\langle \phi \rangle$ has even order. Hence, by Lemma 2, we may assume that $[L: K] = 2^{\circ}$.

First suppose that K is a real field. Pick an odd prime of q such that f(q)e(q, K/Q) is even. There will always be such a prime since [K:Q] must be even. Then the algebra $K\bigotimes_Q (Q(\varepsilon_q), \tau, -1)$ where $\langle \tau \rangle = \text{Gal}(Q(\varepsilon_q)/Q)$ has invariant 1/2 only at the infinite primes of K. Thus $\Omega(p_{\infty})$ is in $S(K)_2$ when K is real.

For the rest of the proof, "prime" will mean "finite prime."

Step 1. Condition (I) is satisfied.

Let p be a prime which divides n. If e(p) = 1, then p is unramified in $L(\varepsilon_q)/K$ for any prime q not dividing n. Hence $\operatorname{inv}_p[A] = 0$ for all [A] in $S(K)_2$. Now suppose that e(p) is even.

If $p \neq 2$ and $\langle \phi^a \rangle$ is the intertia group of p in L/K, then 2^{s-r} divides a, or if s = r, 2 divides a. Since the power of 2 dividing a must divide (p-1)/e(p), we have that t(p)/e(p) is even. Further $h = 5^{2^{r-2}}$ so $(h^a - 1)/(h + 1)$ is not divisible by 2^s if and only if 2^{s-r+1} does not divide a, or if s = r, if and only if 4 does not divide a. However this happens if and only if $[L: K] = 2^{s-r}e(p)$, or if s = r, if and only if $[L: K] = 2^{s-r}e(p)$.

$$rac{h^a-1}{h+1}
ot\equiv 0 ext{ mod } 2^s \longleftrightarrow [L:K(\zeta)]/e(p) ext{ is odd }.$$

Let q be a prime which does not divide n and let $\gamma^{b}\phi^{b'}$ be a

Frobenius automorphism of p in $L(\varepsilon_q)/K$ where $\langle \gamma \rangle = \text{Gal}(L(\varepsilon_q)/L)$. Then we may rewrite (3.8) to read

(3.10)
$$\operatorname{inv}_p[\mathcal{A}_q] = 1/2 \iff ([L: K(\zeta)]/e(p))xb$$
 is odd

since 2^{s-1} divides z. Since b is even if f(p) is even, (3.10) implies condition (I) for $p \neq 2$.

If γ^b is a Frobenius automorphism for 2 in $L(\varepsilon_q)/K$, then b is even if f(2) is even. Thus (3.9) gives condition (I)(b). Since Gal $(L/K) = \langle \rho \rangle$ when 2 is ramified in L/K, we see that condition (I) (c) never applies to 2.

Step 2. Condition (II) holds.

Let q be a prime not dividing n and let $[L/K, q] = \phi^{g}$. We consider the invariants of algebras of the form $\Delta_{q} = \Delta_{q}(x, y, z)$. We have

$$\phi^g(\zeta) = \zeta^{(-h)g} = \zeta^{q^{f(q)}}$$
.

Hence $q^{f(q)} = (-h)^{g} + V2^{s}$ for some integer V. Further, by (3.6) (b), we have

$$y=\frac{x(q-1)+W2^s}{1+h}$$

for some integer W. Thus we may rewrite (3.7) to read

$$(3.11) \quad \operatorname{inv}_{q}\left[\mathcal{A}_{q} \right] = 1/2 \longleftrightarrow \left(\frac{W}{1+h} \right) \left(\frac{q^{f(q)}-1}{q-1} \right) + \frac{xV}{h+1} \equiv 1/2 \bmod Z .$$

Now t(q)/(q-1) is even if f(q) is even. Moreover x is even if t = s - r and V is even if $q^{f(q)} \equiv (-h)^g \mod 2^{s+1}$. Hence condition (II) is obtained directly from (3.11).

Step 3. For each prime l to which conditions (I) and (II) do not apply, there is a class [A] in $S(K)_2$ such that $\operatorname{inv}_l[A] = 1/2$.

Suppose that q is a prime which does not divide n such that condition (II) does not apply to q. If f(q) is odd, then the algebra

$$\varDelta_q^{\scriptscriptstyle 0} = \varDelta_q(0, \, 2^{s-1}, \, 0)$$

has invariant 1/2 at q since W = (h + 1)/2 is odd.

If f(q) is even, $t \neq s - r$, and $q^{f(q)} \not\equiv (-h)^g \mod 2^{s+1}$, then consider the algebra

$$arDelta_q' = arDelta_q \Bigl(rac{h+1}{2}, rac{q-1}{2}, 0 \Bigr) \,.$$

We have that t(q)/(q-1) is even and that V is odd, thus (3.11) implies that $\operatorname{inv}_q[\varDelta'_q] = 1/2$.

Now let p be a prime which divides n such that condition (I) does not apply to p. Pick a prime q which does not divide n such that $[Q(\varepsilon_{4p})/Q, q] = \psi_p$, where ψ_p generates $\operatorname{Gal}(Q(\varepsilon_{4p})/Q(\varepsilon_4))$. This choice of q insures that $q \equiv 1 \mod 4$ and that (q/p) = -1. Hence, by quadratic reciprocity, (p/q) = -1 so that b is odd where $\gamma^b \phi^{b'}$ is a Frobenius automorphism of p in $L(\varepsilon_q)/K$ and $\langle \gamma \rangle = \operatorname{Gal}(L(\varepsilon_q)/L)$. Hence, by (3.10) and (3.9) $\operatorname{inv}_p[\varDelta'_q] = 1/2$.

Step 4. If condition (III) does not apply, then $\Omega(l)$ is in $S(K)_2$ for every prime l to which conditions (I) and (II) do not apply.

Let p be a prime dividing n to which condition (I) does not apply. Then p is totally ramified in $L/K(\zeta)$. Further, since the inertia group of a prime in $Q(\varepsilon_n)/K$ must be a subgroup of its inertia group in $Q(\varepsilon_n)/Q$, we have that p is the only prime which is ramified in L/K. Thus p is the only prime dividing n to which condition (I) does not apply.

Suppose that $|e(p, K/Q)|_2 < |e(p', K/Q)|_2$ for some prime $p' \neq p$ which divides *n*. Let $2^2 = |e(p, K/Q)|_2$.

(a) Assume that p' is odd.

Pick a prime q_0 not dividing n such that $[L/Q, q_0] = \psi_p \psi_{p'}$, where $\langle \psi_{p'} \rangle = \text{Gal}(Q(\varepsilon_{p'})/Q)$ and $\psi_p = \psi$ if p = 2 or $\langle \psi_p \rangle = \text{Gal}(Q(\varepsilon_p)/Q)$ if $p \neq 2$. There are infinitely many such q_0 by the Tchebotarev density theorem. Our choice of q_0 insures that $q_0 \equiv 5 \mod 8$ if p = 2 or $(q_0/p) = -1$ if $p \neq 2$. Thus $(p/q_0) = -1$ since $q_0 \equiv 1 \mod 4$ by choice. Let γ generate $\text{Gal}(L(\varepsilon_{q_0})/L)$ and let $\gamma^b \phi^{b'}$ be a Frobenius automorphism for p in $L(\varepsilon_{q_0})/K$. Then b must be odd. Thus $\inf_p [\mathcal{L}'_{q_0}] = 1/2$ by (3.9) and (3.10). On the other hand, $f(q_0)$ is divisible by $|p'-1|_2$ since $[L/K, q_0] \in \text{Gal}(L/K(\zeta))$ if $p \neq 2$ and $[L/K, q_0] = 1$ if p = 2. Hence $q_0^{f(q_0)}$ and h^g , where $[L/K, q_0] = \phi^g$, are both equivalent to 1 modulo 2^{s+1} . This is clear if p = 2; if $p \neq 2$, then $q_0 \equiv 1 \mod 2^s$ and ϕ^g must be a square in $\text{Gal}(L/K(\zeta))$ by our choice of q_0 . Thus condition (II) applies to q_0 , so $\inf_{q_0} [\mathcal{L}_{q_0}] = 0$. Hence $\mathcal{Q}(p) = [\mathcal{L}'_{q_0}]$.

(b) Assume that p'=2, that is that $2^{s-2}>2^{\lambda}$.

Pick a prime q_1 not dividing n such that $[L(\varepsilon_{2^{s+1}})/Q, q'] = \psi_p \psi_{2^{s'}}^{2^{s-\lambda-2}}$, where ψ_p is the generator of the Sylow-2 subgroup of Gal $(Q(\varepsilon_p)/Q)$ such that $\psi_p^{2^{\lambda+r-s}}(\varepsilon_p) = \phi(\varepsilon_p)$, and $\psi_{2^{\prime}}$ is the automorphism sending $\varepsilon_{2^{s+1}}$ to $\varepsilon_{2^{s+1}}^{s}$. Now

$$[L(\varepsilon_{2^{s+1}})/K, q_1] = (\psi_p^{2^{\lambda+r-s}}\psi_{2'}^{2^{r-2}})^g$$

for some g, $2 \leq g \leq 2^{s-r}$. Hence $[L/K, q_1] = \phi^g$. Further,

$$\psi_{2'}^{2^{r-2g}}(arepsilon_{2^{s+1}})=(arepsilon_{2^{s+1}})^{h^g}=(arepsilon_{2^{s+1}})^{q_1^{f(q_1)}}$$
 ,

so $h^g \equiv q_1^{f(q_1)} \mod 2^{s+1}$. This implies that $\operatorname{inv}_{q_1}[\varDelta'_{q_1}] = 0$ since we arranged for $f(q_1)$ to be even.

On the other hand, we picked q_1 so that $q_1 \equiv 1 \mod 4$ and $(q_1/p) = -1$. Hence $(p/q_1) = -1$. Thus, by (3.10), $\operatorname{inv}_p[\mathcal{L}'_{q_1}] = 1/2$. Therefore $\Omega(p) = [\mathcal{L}'_{q_1}]$.

Now let q be a prime which does not divide n such that condition (II) does not apply to q. By Step 3, there is an algebra \mathcal{A}_q^* such that $\operatorname{inv}_q[\mathcal{A}_q^*] = 1/2$. If $\operatorname{inv}_p[\mathcal{A}_q^*] = 0$, then $\mathcal{Q}(q) = [\mathcal{A}_q^*]$. If $\operatorname{inv}_p[\mathcal{A}_q^*] = 1/2$, then $\mathcal{Q}(q) = [\mathcal{A}_q^*] \bigotimes_K \mathcal{Q}(p)$.

Step 5. Condition (III) holds.

Suppose that p is a prime dividing n to which condition (I) does not apply. Further suppose that $|e(p, K/Q)|_2 \ge |e(p', K/Q)|_2$ for every prime $p' \ne p$ which divides n.

Let q be a prime not dividing n. Let $\langle \gamma \rangle = \text{Gal}(L(\varepsilon_q)/L)$ and $\gamma^b \phi^{b'}$ be a Frobenius automorphism for p in $L(\varepsilon_q)/K$.

First suppose that $\operatorname{inv}_p \left[\varDelta_q^* \right] = 1/2$ where \varDelta_q^* is an algebra of the form \varDelta_q . From (3.9) and (3.10) we see that this implies that xbis odd. Thus b is odd, which means that (p/q) = -1. Further, if $p \neq 2$, then our hypotheses insure that $p \equiv 1 \mod 4$. Thus (q/p) = -1if $p \neq 2$, or $q \equiv 3$ or $5 \mod 8$ if p = 2. Suppose $p \neq 2$, then $|e(p, K/Q)/2^{s-r}|_2 > 2^{r-2}$, so the full 2-part of e(p, K/Q) is equal to $|f(q)|_2$. Hence $q^{f(q)} \equiv 1 \mod 2^{s+1}$ and $[L/K, q] = \phi^{2^{s-r}}$. Since $h^{2^{s-r}} \not\equiv 1 \mod 2^{s+1}$, we have by (3.11) that $\operatorname{inv}_q \left[\varDelta_q^*\right] = 1/2$. In the case where p = 2, $|f(q)|_2 = 2^{s-2}$ so $q^{f(q)} \not\equiv 1 \mod 2^{s+1}$. However [L/K, q] = 1. Thus, by (3.11), $\operatorname{inv}_q \left[\varDelta_q^*\right] = 1/2$.

Now suppose that (p/q) = -1 and $\operatorname{inv}_q [\varDelta_q^*] = 1/2$. Since (p/q) = -1 we have that b is odd. Further, (q/p) = -1 if $p \neq 2$ or $q \equiv 3 \text{ or } 5 \mod 8$ if p = 2. Hence f(q) is divisible by $|e(p, K/Q)/2^{s-r}|_2$ if $p \neq 2$ or by 2^{s-r} if p = 2. This means that f(q) is even so that xv is odd. Thus xb is odd. Hence (3.9) and (3.10) imply that $\operatorname{inv}_p [\varDelta_q^*] = 1/2$.

We have just shown that

$$\operatorname{inv}_p[\varDelta_q] = 1/2 \iff \operatorname{inv}_q[\varDelta_q] = 1/2 \text{ and } (q/p) = -1.$$

Since every algebra class [A] in $S(K)_2$ is a product of classes of the form $[\Delta_q]$, this gives condition (III).

In addition, this shows that $\Omega(q)$ is in $S(K)_2$ where q is a prime not dividing n such that (q/p) = 1 and condition (II) does not apply to q. This is because there is an algebra $[\Delta_q^*]$ with $\operatorname{inv}_q[\Delta_q^*] = 1/2$ by Step 3, and we have just seen that $\operatorname{inv}_p[\Delta_q^*] = 0$. This completes the proof of the theorem.

We have now determined the Schur subgroup of all fields K, not containing a fourth root of unity, which have a cyclic extension of the form $Q(\varepsilon_n)$. Observe that subfields of $Q(\varepsilon_{p^d})$ are included as special cases. The Schur group of these fields was first found by Yamada [8].

References

1. A. A. Albert, *Structure of Algebras*, Amer. Math. Soc. Colloq. Publications XXIV, Providence, 1961.

2. M. Bernard, The Schur subgroup, I, J. of Algebra, 22, No. 2 (1972), 374-377.

3. M. Bernard and M. Schacher, *The Schur subgroup*, *II*, J. of Algebra, 22, No. 2 (1972), 378-385.

4. K. L. Fields, On the Brauer-Speiser theorem, Bull. Amer. Math. Soc., 77, No. 2 (1971), 477-478.

5. G. J. Janusz, The Schur group of cyclotomic field, J. of Number Theory, (to appear).

6. ____, Generators for the Schur group of local and global number fields, Pacific J. Math., (to appear).

7. T. Yamada, Characterization of the simple components of the group algebra over the p-adic number field, J. Math. Soc. Japan, 23 (1971), 295-310.

8. ____, The Schur subgroup of the Brauer group, I, J. of Algebra, 27 (1973), 579-589.

Received November 18, 1974. The material presented in this paper is from the author's doctoral thesis, written at the University of Illinois under the direction of Professor G. J. Janusz.

NEW MEXICO STATE UNIVERSITY LAS CRUCES, NM 88001