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THE SCHUR SUBGROUP OF THE BRAUER GROUP

J. WILLIAM PENDERGRASS

Let K be a subfield of a cyclotomic extension L of the
rational field Q. The Schur subgroup, S(K), of the Brauer
group of K, B(K), consists of those algebra classes which
contain an algebra which is isomorphic to a simple component
of a group algebra QG for some finite group G.

In this paper we describe a set of generators for S(K).
We then use this theorem to determine the 2-primary part
of S(K) when L\K is cyclic and the fourth roots of unity
are not in K.

NOTATION. In this paper K is a field contained in Q(εn) where
ew is a primitive nth root of unity. The completion of K at a prime
P is denoted KP. If p is the integral prime dividing P, then the
residue class degree of P over p is written f(p) = f(pf K/Q). The
ramification index of p in Q(en) over K is e(p) = e(p, Q(ε%)/K).

If A is a central simple algebra over K, then [A] will denote
the class of A in B(K). A class [A] in B(K) is said to have uniformly
distributed invariants of values 0 or 1/2 if for each rational prime
p, [A] has the same Hasse invariant at each of the primes of K
which divide p, and these invariants are either 0 or 1/2. The
common value of the invariant of [A] at the primes of K dividing
p is called the p-local invariant of [A] and is denoted: inVj, [A].

If L is an extension field of K, then the Galois group of L over
K is denoted by Gal {LjK)9 and the Frobenius automorphism of a
prime p unramified in L over K is written [L/K, p]. Let a be a
factor set Gal (L/K) x Gal (L/K) into L. Then the crossed product
algebra made with L and a is denoted by (L/K, a). This is a central
simple K algebra having L basis {uσ} for σ e Gal (L/K) with multi-
plication given by

uσuτ = a(σ, τ)uσr

uσx — σ(x)uσ for σ, τ e Gal (L/K) , n e L .

In case Gal (L/K) = <σ> is cyclic, we shall write (L, σ, a) for the
crossed product in which

— a i — \σ\ .

If j> is a rational prime which splits into an even number of
primes in K over Q, then i2(p) denotes the class of B(K) with
invariant 1/2 at each of the primes of K dividing p and invariant
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0 elsewhere. If px and p2 are rational primes which split into an
odd number of primes in K over Q, then Ω(plf p2) denotes the class
in B(K) with invariant 1/2 at each of the primes of K dividing pφ2

and invariant 0 elsewhere.
Finally j m |2 denotes the highest power of 2 which divides the

integer m, and t(q) = qf{q) — 1 for all rational primes q.

2* The generator theorem* In this section we give a set of
generators for S(K). This is a useful refinement of a result by
Janusz [6].

LEMMA 1. Let K be a field contained in Q(εn) where n is odd.
Suppose that Gal (Q(εn)/K) = ΠJU (Φi> and Mat Gal (Q(eJ/Q(βJ) = <<o>.
i f [Q(εJ/if, 2] = Π Φi*9 then the 2-local index of an algebra (Q(εin)/K, a)
is equal to 2 if and only if Σ 0t%i + ^/(2) is odd where uPuΦi = εl*uΦiUp
and u% = εf.

Proof. Set 37 = [Q(εJ/£", 2] and suppose that η has order s.
Then w ^ = ε}upuη where

>• = Σ

If λ is even we have

uP(ei/2uv) = e r i / 8 e X ^ =

Let π be a prime of K dividing 2, then

Σ

Σ
i=0 /=0

= (Σ x.(O
= (JS;(ef), ft ttj) 0 , , , (Qf(e.), 57, (βί/2^,)8) .

Now (εί/2^7)
8 is a root of unity and Q2(εn) is unramified over Kπ,

hence by [1, Chap. V, Thm. 9.14] (Q8(eΛ), 07, (eί/2%v) ) has index 1.
Further

[(Kπ(ε4), ft εf)] = [Kπ ®, 2 (Q2(ε4), A ej )]

and (Q2(ε4), ft εf) has index 2 if and only if z is odd, since — 1 is
not a norm from Q2(ε4). Thus iΓπ φ * (Q(εin)/K, a) has index 2 if and
only if f(2)z is odd in the case that λ is even.

Now suppose that λ is odd. We have that
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uP((l + εϊ)uη) = (1 + εϊχ)εluηup = ((1 + εl)uv)up .

Hence

[Kπ ®κ (Q(εJ/K, a)] = [(Kπ(εt), p, u») ®Kπ (Q(εJ, 57, ((1 + ei)«,) )]

by the same reasoning used above. We have already seen that
(Kx(ε4), p, ul) has index 2 if and only if f(2)z is odd; we must look
at (<Me.), η, ((1 + εl)uv)>).

Let F £ denote the exponential valuation in the 2-adic field L.
Then

V((l + e i W - ^ ( ( l + εϊ)uγ

ei) + -i-FXit(£4,(tt3,)

since u'v is a unit in Kπ(ε4). Further, (1 + εϊ) is a prime element in
ifπ(ε4) since λ is odd. Thus VKπu4)Q- + ej) = 1 and

^ ( ( 1 + εiK) 8 = β/2 .

Hence, by the definition of the Hasse invariant,

inv (Qa(en), η, ((1 + εί)^,)s) - ^ mod Z
s

= — mod Z .

Therefore, if λ is odd, we have that the index of Kπ ®^ (Q(εin)/K, a)
is 2 if and only if f(2)z is even.

This completes the proof of the lemma.

We will let S(K)P denote the p-primary part of S(K), and W(K9 p)
denote the roots of unity in K with p-power order.

THEOREM 1. Let p be a rational prime. Then S(K)P is generat-
ed by algebra classes which contain an algebra of the form
(Q(εnq)/K> a) where the values of a are in W(Q(εnq), p), q is either
4 or an odd prime, and q does not divide n.

Proof. This is a refinement of Theorem 3 of [6]. In that
theorem Janusz showed the following:

1. If p is odd, or p = 2 and 4 divides n, then S(K)P is generat-
ed by classes which contain algebras of the following types:

(a) (Q(εnq)/K, a), the values of a in W(Q(εn), p) and q a prime
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not dividing n.
(b) (K(εqr)/K, β), the values of β in W(K, p) and q and r

distinct primes not dividing- n.
2. If p = 2.and n is odd, then S{K)P is generated by classes

which contain an algebra of type (b), or of type (a') (Q(εinq)/K, a),
the values of a in TF(Q(ε4), 2) and q an odd prime not dividing n.

In order to prove Theorem 1, we must look closely at algebras
of types (b) and (a').

Let Gal (K(εqr)/K) = (σ) x <r> where (σ) = Gal (K(εq)/K) and
<r> = Gal (K(εr)/K). Also let ζ be a pdth root of unity, the highest
p-power root of unity in K. Consider the algebra

Δqr = (K(εqr)/K, 0) = Σ K(6qr)ur (7 e (σ) x <r»

where uσur = ζxuτuσ, uΓ1 = ζy, and ^Γ 1 = C By [8, §1], the only
restrictions on x, y, and z are (ζ 2)" 1 = (CT(Γ) and (ζ^- 1 = (ζ- yw
where JV(̂ ) = 1 + ^2 + 4- 0lφl~ι. However both o and τ fix ζ, so
we get that pd divides both x(r — 1) and x(q — 1).

Now Δqr can have nonzero invariant only at the primes of K
which divide q and r. This is because these are the only primes
ramified in K(εqr)/K.

Suppose that q is odd. Let τ9 = [K(εr)/K, q], the Frobenius auto-
morphism of q in K{εr)IK, and set t = qf{q) — 1. We have that

where μ = (g — l)/prf and v = α;̂  + τ/(ί/(g — 1)).
The inertia group of q in K(εqr)/K is<<τ>, so [7, Thm 3] implies

that the g-local index of Δqr is max {pd~% 1} where ps exactly divides
v.

Now suppose that pa exactly divides f{q). Then pa divides g
since [K(er)/K, q] = [JBΓ(er)/Q, ̂ ] / ( ? ) . Moreover, if p = 2, /(g) is even,
and g = 3 mod 4, then 2α+1 exactly divides ĵ /(g — 1), otherwise pa

exactly divides t/(q — 1). In the case where p = 2, /(#) is even and
g == 3 mod 4, we either have 2d > 2 so that a; is even, or 2d = 2 so
that J g r has g-local index 1.

Hence in all cases, max {pd~% 1} takes its highest possible value
when ps exactly divides t/(q — 1).

Now consider the algebra (K(εq), σ, ζ). Applying [7, Thm. 3] we
see that the g-local index is max {pd~% 1} where pc exactly divides
t/(q — 1). Further, the local index of (K(εq), σ, ζ) at any prime
unequal to q is 1. Note that (K(εq), σ, ζ) inflated to Q(εnq)/K has the
form described in Theorem 1.

If r is even, then K(εqr) = K(εq) so that the r-local index of Δqr
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is 1. Thus, in this case, some power of (K(sq), σ, ζ) has exactly the
same set of invariants as Δqr.

If r is odd, then we may replace q by r in the above argument.
Hence, some power of (K(εr), τ, ζ) has the same invariants at primes
dividing r as Δqr does, and some power of (K(εq)9 σ, ζ) has the same
invariants as Aqr at primes dividing q.

Thus [Aqr\ is contained in the group generated by the classes
described in the theorem.

Now suppose that p = 2 and n is odd. Let G = Gal (Q(εn)/K)
be given by the direct product

G = <&> x (φ2) x x (φk)

where (φt} has order nt. Further, set (p) = Gal (Q(εin)/Q(εn)) and
(a) = Gal (Q(εnq)/Q(εn)), were q is an odd prime not dividing n. Let
ζ be a primitive fourth root of unity.

Consider the algebra

9 α) =

where

upuσ = ζx°uσup , upuφ% = ζXiuφ.up ,

uσuΦi = ζVίuφ.uσ , uφ.uφj = ζnmφjuφ. ,

for i, j = 1, 2, •••, & and i ^ i . The conditions in [8, §1] imply
that

z, yif and #<i are even for ί, j = 1,2, , k and i Φ j ,

2zQ = xQ(q — 1) m o d 4 ,

2zt ΞΞ α;έ% mod 4 for i = 1,2, •••,&.

We have that J2? can have nonzero invariants only at those
primes of K which divide 2, q, or some prime which ramifies in
Q(εn)/K. Moreover, the invariants of Δ2q can only be 0 or 1/2 since
the only 2-power roots of unity in K are {±1}.

Let

Λ - (Q(εnq)/K, 7) -

be the algebra such that

vσvφ. = ζyivφ.vσ , vφ.vφj = ^ . ^
φj

for ί, j — 1, 2, , & where
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zQ if q = 1 mod 4

ZQ — 0 if q = 3 mod 4 and /(g) is even

20 + xor if # = 3 mod 4 and /(#) is odd

where

r"1 == -̂  —— mod 4 .
q - 1

Note that the 2/* are all even, and that z0 + xQr is even when g = 3
mod 4 and /(#) is odd. Thus the values of 7 are all +1 or —1, and
Δq is in S(K).

Further, let

4 = (Q(e*«W, 7') = Σ Q(e«)wr

be the algebra such that

WPWΦ. = ζXiWΦiWp , W^W^. = ζyiiWφ.WΦi ,

for i, j = 1,2, , & and i ^ j" where

^ * = 2; + #o if tf Ξ 3 or 5 mod 8 and /(2) is odd

= z otherwise .

Observe that both Δq and J2 belong to classes of the type
described in the theorem.

Claim. The algebra Azq is equivalent to A2d&κΔq in B(K).

Proof of Claim. We will show that Δlq and 4 ® Λ have the
same set of invariants. This is the same as showing that the local
indices of these algebras are the same at q, 2, and the primes
ramified in Q(εn)/K because the invariants can be only 0 or 1/2.

First consider the g-local indices of Δ2q and Δt ® Δq. Let the
Frobenius automorphism for q in Q{ein)jK be ηq = p9 Π ΦPt and set
t = qfw - 1. Then

where

yo = ^ o + /^ΣΰiVi + «o(t/(β - i))

where
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μ = - 1 if g = 1

= 1 if fir = 0 .

By [6, Thm. 3], the g-local index of Δzq is given by

q — 1 = 1 if yo = O mod Z

0>o(ϊ - 1), « - 1) 2 if v0 Ξ= 1/2 mod Z .

Now g does not ramify in Q(εAn)/K, so the g-local index of
Δ% ® Λ is equal to the g-local index of Δq.

The restriction of rjq to Q(εJ is the Frobenius automorphism of
q in Q(εn)/K; we will denote this by ^ .

We have that

where

zf(t/(q - 1))] .

Hence the #-local index of Δ% (x) Δq is given by

q - 1 _ 1 if V Ξ O mod Z

W ( ϊ - l ) , ϊ - l ) 2 if v'0~l/2moάZ.

Now if ^ = 1 mod 4, then # = 0 and #0* = ZQ, SO VQ = yj and J2 g

has the same #-local index as Δ2 (g) Jβ . If # = 3 mod 4 and f(q) is
even, then g = 0 and 4 divides £/(# — 1), so that i/ Ξ yj mod Z. Thus
again i 2 ? and Δ% ® r J ? have the same g-local index. Finaliy suppose
that g = 3 mod 4 and f(q) is odd. In this case g = 1 so that

flr«B + «0(ί/(ϊ ~ 1)) = zί(t/(q - 1)) mod 4 .

Hence u0 = v'o mod Z and Δzq has the same g-local index as J2 ® z/g.
Now let ί be a prime which ramifies in Q(en)/K. We will com-

pare the Z-local indices of Δ2q and Δ2 ® Δq. Let <α>> be the inertia
group of I in Q(en)/K where ω = Π Φt*t and let ηt = /Ô σ170 Π ί̂ !ί be a
Frobenius automorphism of I in Q(εM)/K. Then $ = p* Π ?̂* and
Vΐ = ^σ o Π ί̂* are Probenius automorphisms of ί in Q{εin)/K and
Q(enq)/K respectively. Let β be the ramification index of I in
Q(en)/K. Then we have vi = 1 and w% = ue

ω. Moreover

]\\ ω) Ύ(η\', ώ) Ύ'(η'h ω) '

Hence, by [7, Thm. 3], we see that Δ%q and Δ%®Δq have the same
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Z-local index.
Finally, we must compare the 2-local indices of Δn and Δ2 (x) Δq.

Let σ90 Π Φi* be the Frobenius automorphism of 2 in Q(εng)/K, then
Lemma 1 implies that the 2-local index of Δ2q is 2 if and only if
v = g0χ0 + Σ #A + («/2)/(2) ί s °dd. Further, the 2-local index of
A ®κ Λ> which is the 2-local index of Δ2y is 2 if and only if
v' = Σ α<0* + («*/2)/(2) is odd.

If /(2) is even, then g0 is even since

[Q(enq)/K, 2] - [Q(eM)/Q, 2]™ .

Thus v = vf mod 2 and z/2g has the same 2-local index as Δ20 Δq. If
/(2) is odd and q = 1 or 7 mod 8, then 2 is a square modulo g, so
that g must be even. Hence, once again v Ξ V' mod 2 and J2g and
J2 (g) z/g have the same 2-local index. Finally suppose that /(2) is
odd and that q = 3 or 5 mod 8. Then g is odd and 2* = z0 + #0> so
gxQ + («/2)/(2) is equivalent to (s*/2)/(2) modulo 2. Thus again j; = v'
mod 2.

This completes the proof of the claim and of the theorem.

3* S(K)2 when Q(εn)/K is cyclic* In this section we will
completely chararacterize the classes in S(K)2 by the behavior of
of their invariants in the case where Gal (L/K) is cyclic. Before
beginning these calculations we need to prove the following lemma.

LEMMA 2. Suppose that Kc. F are sub fields of a cyclotomic
field and that [F: K] is not divisible by the rational prime p. If
there are no p-powβr roots of unity in F which are not in K, then

Proof. Clearly S(F)P S ί 7 ® ^ S(K)P. We need to show contain-
ment in the other direction.

Let L be the smallest cyclotomic field containing F, and let
G - Gal (L/K) be given by

G = Π <Φt> x Π <irj>

where the order of each <^> is a power of p and the order of each
(ψj)> nj> is relatively prime to p. It follows that H = Gal (L/K) is
given by

t=l 3=1

where Π;=i <fj) is a subgroup of Πj=i Oi>
By Theorem 1, S(F)P is generated by classes containing algebras
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of the form

where q is either 4 or an odd prime and the values of a are p-power
roots of unity.

Suppose that Uψi = ζZj where ζ is a primitive pdth root of unity.
The order of ψd is prime to p, so ψ3 (ζ) = ζ unless ζ is not in F, in
which case S(F)P = Fφκ S(K)P = 1. Set 7 = — zjnύ modulo pd.
Now replace Uψ. by ζ^CT .̂ in (L(sq)/F, a). This gives an equivalent
algebra, but now

Hence we might as well have started with z9- = 0 for j — 1, 2, , s.
Now suppose that Uψs Uτ = ζ*ί ί7r C/̂ .̂ for some τ in Gal (L(εq)/F),

τ not in <ψv>. Then

1 = up. = (UT'U+.Ur)** = U Ψΐ(ζxή
J 0 n

However ns is prime to p, so a ̂  must be 0. Thus Uψi Uτ = UT Uψd

for all τ e Gal (L(eq)/F). This is true for all ψjf j = 1, 2, , s.
Therefore

[(L(eq)/F, a)] = [(EJF, a,) ®F (EJF, a2)]

where Eλ is the field fixed by Π*=i (Φί) and E2 is the field fixed by
IΠ=i <Ψv) Moreover aγ is the trivial factor set, so [{EJF, a^] = [F].

Further, [(EJF, a%)\ — [F (&κ (EJKf a'2)] where af

2 restricted to
Πί=i (Φi) equals a2 and a2 is trivial on Gal (F/K). This makes a2 a
factor set by the same reasoning we used to ascertain that a is
equivalent to a factor set with nontrivial values only on Πi=i (φi)

This completes the proof of the lemma.
Notice that this lemma implies that an algebra class [A] in S(F)P

has grlocal index pH for some sets of primes qlf •••,?* if and only
if there is an algebra class [D] in S(K)P with exactly the same local
indices. Hence, if we can find the possible local indices for classes
in S(F)P, then we have found them for classes in S(K)P.

In the following theorems we assume that [K: Q] is even. We
may do this because S{K) consists of all classes in B(K) with uni-
formly distributed invariants of value 0 or 1/2 if [K: Q] is odd.
This follows from [2].

A. S(K)2 when n is odd.

THEOREM 2. Let K be a field contained in L = Q(sn) where n
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is odd such that Gal (L/K) is cyclic and [K: Q] is even. Then the
2-primary part of S(K) consists of those classes [A] in B(K) with
uniformly distributed invariants of value 0 or 1/2 which satisfy
the following conditions.

( I ) For a prime p which divides n, invp [A] = 0 i/ e(P) is
odd or if [L: K]/e(P) is even.

(II) For any prime q, invg [A] — 0 if f(q) is even and a
Frobenius automorphism of q is a square in Gal (L/K).

(III) Let p be a prime which divides n to which (I) does not
apply. Suppose that f(p) is odd and that \ (p — l)/e(p) |2 ^ | pf — 112

for every prime pf which divides n and is unequal to p. Then
the invariant of [A] is 1/2 at an even number of primes in the set

{p} U {primes q: (q/p) = — 1 and (q, n) = 1}

where (q/p) is the Legendre symbol.

Proof. Let G = Gal (L/K) be (ψ) and have order m = 2V,
(2, c') = 1.

Step 1. We need to determine the invariants of the generators
of S(K)Z given in Theorem 1.

( a ) Let Δq = Δq(x, y, z) be an algebra

where q is an odd prime not dividing n and the values of a are in
{±1}. Let <7> = Gal (L(εq)/L). Then the factor set a is determined
by the integers x, y, and z where

uruΦ = (-iyuφur9

- (-1)*.

The restrictions given in [8, §1] reduce to:

x — 0 if m is odd .

Suppose that the Probenius automorphism of q in L/K is φ9.
Set t(q) = qf{q) - 1. Then

(V W Ύ

where v = xg + y(t(q)/(q — 1)). The inertia group of q in L(eq)/K is
<7>, so [8, Thm. 3] implies that the #-local index of [Jq] is given by
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— %f̂- — = 1 if v is even
(v(q - l)/2, g - 1)

= 2 if v is odd .

Now t(q)/(q — 1) is odd if and only if f(q) is odd, so we get

(3.1) invg [Aq] = 1/2 — xg + y/fa) is odd .

Now suppose that p divides n. Let Ύhφh' be a Frobenius auto-
morphism for p in L(eg)/K, and let <^α) be the inertia group of p
in L(eq)/K. Then

)
{Uφ) "

)

where y' = xah + μz(t(p)/e(p)),

where μ = 0 if α = 0

= 1 if α Φ 0 .

Thus the p-local index of [Δq] is given by

, , , ff , λx = 1 if 1/ is even

= 2 if i/ is odd .

Hence

(3.2) inv,, [Δq] = 1/2 ~ α αfo + ^ f i ί δ l ) is odd .
\e(p)/

( b ) Let J2 = Δz{%, y, z) be the algebra

where the values of a are in {±1, ± ε j . If (̂ o) = Gal (L(ε4)/L), then
the factor set a is determined by the integers x, y, and z where

UPUΦ = (ed UΦUP ,

The restrictions on £, /̂, and z are

y is even

xm + 2z = 0 mod 4 .

Let [L/K, 2] = 0'. Then by Lemma 1,
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(3.4) inv2 [J2] - 1/2 <=> xy + (y/2)f(2) is odd .

Now let p be a prime dividing n. Let pkφk' be a Frobenius
automorphism of p in L(ε4)/K, and let (ώa) be the inertia group of
p in L/K. Then

where v" = xak +
e{p)J

μ = 0 if a = 0
wnere

= 1 if α =£ 0 .

Thus

(3.5) inv, [JJ = 1/2 - i | * + - | - ( | | ) is odd .

Finally observe that if I is a finite prime which does not divide
nq, then I does not ramify in L(εq)/K and so invz [Aq] = 0.

Now assume that [L: if] is odd. Then S{K\-= K ®Q S{Q) by
[5, Cor. 2]. This means that there is an algebra class [A] in S(K)2

with invg [A] = 1/2 if and only if the order of the decomposition
group of q in K/Q, f(q)e(q, K/Q), is odd.

For each prime p which divides n, we must have that e(p, K/Q)
is even and e(p) is odd. Thus condition (I) of the theorem applies,
and is satisfied. Further, every element in Gal (L/K) is a square,
so condition (II) reduces to: For any prime q, mvq [A] — 0 if f(q)
is even. Hence this condition is satisfied. Gondition (III) is trivially
satisfied since condition (I) applies to each prime p which divides n.

Suppose now that q is a prime not dividing n such that f(q) is
odd. Then the decomposition group of q in K/Q has odd order.
Thus the algebra K®Q (Q(εq,), 7, — 1) has invariant 1/2 at q and
invariant 0 elsewhere, where <7> — Gal (Q(εq,)/Q) and q' — q unless q is
even, in which case q' — 4. Note that K cannot be a real field in
this case, so that the invariants of any algebra in B(K) are 0 at
the infinite primes of K.

We have now shown that the theorem holds if [L: K] is odd.
For the rest of the proof we shall assume that [L: K] is even. By
Lemma 2, we may assume that [L: K] — 2° for c ^ 1.

Suppose that K is a real field. Pick a prime p such that
f(p)e(p, K/Q) is even. This can always be done since [K: Q] is
assumed to be even. Consider the algebra K ® ρ Dp where [Dp] e S(Q)
has invariant 1/2 only at p and the infinite prime p^. Then [K (x) Dp]
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has invariant 1/2 just at the infinite primes of K. Hence Ω(poo) is
in K. This settles the case with respect to the infinite primes since
B(C) = {1} where C is the complex numbers. For the remainder of
the proof, "prime" will mean "finite prime."

Step 2. Condition (I) is satisfied.

Suppose that p is a prime which divides n, and that e(p) Φ 2\
Then a is even where (φa) is the invertia group of p in L/K. Hence
(p — ί)/e(p) is even because it is divisible by a if e(p) Φ 1. Thus (3.2)
implies that invp [Aq] — 0 for all odd primes q which do not divide
n. Now consider A2. If a = 0, then (3.5) implies that inv^ [Δ2] = 0
since μ — 0. If α ^ O , then 2* ^ 4 so that p = 1 mod 4. Hence
[Q(ε*)/Q, p] = 1, so in (3.5) we have that k = 0. Moreover, (3.3)
implies that z is even, so inv^ [Δ2] = 0.

We have shown that each of the generators of S(K)2 has 0
invariant at p. Hence inv^ [A] — 0 for all [A] in S(JBL)2 and condition
(I) is satisfied.

Step 3. Condition (II) is satisfied.

Suppose that p is a prime dividing n such that f(p) is even and
condition (I) does not apply to p. Note that the identity element
in Gal (L/K) is a Frobenius automorphism for p in L/K in this case,
so condition (II) does apply to p.

Observe that t(p)/e(p) is even, and in the case where e(p) — 2,
t{p)/e(p) is divisible by 4. This is so because f(p) is even and
e(p) — 2* must divide p — 1.

Let I be either 4 or an odd prime not dividing n9 and suppose
that Ύh is a Frobenius automorphism for p in L(e^)/K where <7> =
Gal (L(εz)/L). If ϊ is an odd prime then h must be even since
f(p) is even. If I — 4, then A — 0. Further, by (3.3), 2 is even
when e(p) ^ 4. Thus (3.2) and (3.5) imply that inVj, [Δv\ = 0 where
V = I if I is odd or I' = 2 if ί = 4.

Hence, for p, condition (II) is satisfied on the generators of
S(K)2. Therefore condition (II) is satisfied for all primes which
divide n.

Now suppose that q is a prime which does not divide n such
that f(q) is even and [L/K, q] — φ9 is a square in Gal (L/K). Then
g is even so that gx + f(q)y, or ## + f(q)yβ in the case of g = 2, is
even for all permissible values of x and y. Thus, by (3.1) and (3.4),
invg [Δq] = 0.

Classes of the type [Δq] are the only classes amongst the
generating classes given by Theorem 1 which might possibly have
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nonzero invariant at primes of K dividing g. Hence inv? [A] = 0
for all [A] in S(K)2, and condition (II) is satisfied for primes which
do not divide n.

Step 4. For each prime I to which conditions (I) and (II) do not
apply, there is a class [A] in S(K)2 such that invz [A] = 1/2.

First suppose that q is a prime which does not divide n. If
f(q) is odd, then the algebra

4 - 4 ( 0 , 2 , 0 ) if j = 2

= 4,(0, 1,0) if g ^ 2

has invariant 1/2 at q and invariant 0 elsewhere. Hence Ω(q) = [J°q]
if /(g) is odd.

Suppose that f(q) is even and that [L/K, q] - φ9 where g is odd.
By (3.1) and (3.4), the algebra

4 = 4(1, 0, 1) if q = 2 and 2C = 2

= 4(1, 0, 0) otherwise

has invariant 1/2 at g.
Now let p be a prime which divides w such that neither condi-

tion (I) nor condition (II) applies to p. Hence, f(p) is odd. Pick an
odd prime q not dividing n such that [Q(εip)/Q, q] = f where (ψ) =
Gal (Q(εp)/Q). There exist infinitely many such g by the Tchebotarev
density theorem. This choice of q insures that q = Imod4 and that
(q/p) = — 1. Hence, by quadratic reciprocity, (p/q) = — 1. Thus h
must be odd where Ίh is a Frobenius automorphism of p in L(εg)/K.
Then by (3.2) invp [4] = 1/2 where Δ\ is the algebra described above.
This is because a is odd if condition (I) does not apply.

Step 5. If condition (III) does not apply, then Ω(ΐ) is in S(JBL)2

for every prime I to which conditions (I) and (II) do not apply.

Let p be a prime which divides n such that condition (I) does
not apply to p. This means that p is totally ramified in L/K.
Hence p is the only prime which is ramified in L/K, and so p is the
only prime dividing n to which condition (I) does not apply.

Now suppose that condition (II) does not apply to p. We saw
in Step 3 that this means that f(p) is odd. Further suppose that
\(p — l)/e(p)\2 < \p' — 1|2 for some prime pf Φ p which divides n.
Pick an odd prime g0 which does not divide n such that [L(ε4)/Q, g0] =
ψψ' where ψ generates Gal (Q(εp)/Q) and ψ' generates Gal (Q(εp,)/Q).
Now /(g0) is divisible by the same power of 2 as pr — 1 is, hence
[L/K, g0] = φ9 where g is even. Thus inv^ [Δ\o] = 0. However our
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choice of qQ insures that q0 = lmod4: and that (qo/p) = —1. Thus
the argument at the end of Step 3 gives inv^ [Δqo] = 1/2. Since p is
the only prime dividing n at which Δqo can have nonzero invariants,
we have that Ω(p) = [JJ0J.

Now let q be a prime which does not divide n such that condition
(II) does not apply to q. We saw in Step 3 that Ω(q) is in S(K)2

if f(q) is odd. Further, if f(q) is even, we have that inv? [Δ\\ = 1/2.
Thus, if invp [A\] = 0, we have Ω(q) = [A\\. If inv, [4] = 1/2, then

Step 6. Condition (III) is satisfied.

Let p be a prime dividing n to which condition (I) does not
apply. Further suppose that 'f(p) is odd and that | {p — l)/e{p) |2 ^
|j>' — 1|2 for every prime pf Φ p which divides n. This hypothesis,
and the assumption that [K: Q] is even, forces p ^ l mod 4. We
also have that (φ) is the inertia group of p in L/K.

Let q be a prime not dividing n such that inv^ [Δq] = 1/2 where
Jg is one of the generators of S(K)2 given in Theorem 1. Let
[L/K, q] = φ9 and let 7h be a Frobenius automorphism of p in L(εq)/K
where <7> = Gal (L(εq,)/K), q' = q if q is odd, and #' = 4 if q = 2.

( a ) Suppose that q is odd. Then by (3.2), hx must be odd.
However, ft is odd if and only if (p/q) = —1 since f(p) is odd. So,
by the law of quadratic reciprocity, (q/p) = — 1 and so f(q) is divisi-
ble by the same power of 2 as (p — l)/e(p) is. This implies that g
is odd. Hence invg [Δ'q] = 1/2.

( b) Suppose that q = 2. Then ft = 0 since [Q(ε4)/Q, p] = 1.
Thus z/2(t(p)/e(p)) must be odd. This means that t(p)/e(p) = 2 mod 4
and z is odd. By (3.3), this can only occur when x is odd and
e(p) = 2. Thus p = 5 mod 8, so that (2/p) = - 1 . This implies that
/(2) is even and that q is odd. Hence, by (3.4) inv2 [4] = 1/2.

Now let q be a prime not dividing n such that (q/p) — — 1 and
invg [//] = 1/2 where Δq is one of the algebras described in Theorem
1. Let [L/K, q] — φ9 and let Ύh be a Frobenius automorphism of p
in L{εq)jK where <7> = Gal (L(ep,)/K) and #' = q if # is odd or q' = 4
if g = 2.

By (3.1) and (3.4), ## is odd. If g is odd, then h is odd so
that inVp [^'] = 1/2. So suppose that q ~ 2. Then we must have
p ΞΞ 5 mod 8. This implies that t(p)Je(p) = 2 mod 4, and, by (3.3),
that z is odd. Hence (3.5) implies that inv^ [Δ"\ = 1/2.

We have now shown that

p [Δq] = 1/2 <=> inv, [Δq] = 1/2 and (ϊ/p) = - 1 .

Since every algebra class [A] in S(iΓ)2 is generated by classes of
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this form, we have shown that condition (III) is satisfied.
Further, this proves that Ω(q) is in S(K)2 if (q/p) = 1 and

condition (II) does not apply to q. This is because [Δq] can have
nonzero invariants only at p and q; we saw in Step 3 that we could
arrange for nonzero invariants at q and we have just seen that we
cannot get nonzero invariants at p.

This completes the proof of the theorem.

B. S(K)2 when n is even.

Now suppose that L = Q(en) is a cyclotomic field containing ζ, a
primitive 2sth root of unity for s ^ 2. Further suppose that KaL
does not contain a fourth root of unity, and that Gal (L/K) = (φ)
has order 2V, (c', 2) = 1.

Let Gal(Q(ζ)/Q) = </t>>x<^> where p(ζ) = ζ"1 and ψ{ζ) = ζB.
Then we may assume that φ — pψ2r V where the order of (ψ2r 2> =
2 s" r divides the order of <r>. Thus ψ(ζ) = ζ~h where h = 52r~2. We
will keep this notation for the rest of this section.

We must determine the invariants of the generators of S(K)2

given in Theorem 1.
Let Δq = Jq(x, y, z) be the algebra

where q is a prime not dividing n and the values of a are in <ζ>.
Let <7> = Gal (L(eq)/L). The factor set a is determined by the
integers x, y, and z where

TJX* = Zz

The conditions in [8, §1] require that

( in) 1 — \Q ) — (C /

where N(τ) = 1 + r2 + + τlτl~ι for a group element τ.
Hence

(3.6) (a ) 2 s"1 divides z ,

( b ) y(h + 1) - x(q - 1) = 0 mod 2s ,

( c) 2 divides α; if c — s — r .
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Now suppose that [L/K, q] = φ". Then

where

„ = lΓx(λ^±z!UL\ + JJMJ]\

2*L V 1 + h I \q - 1/J "

Thus the Q'-local index of Aq is given by

•= = 1 if v == 0 mod ^

= 2 if y = 1/2 mod Z .

Hence

(3.7) inv« [Λl = 1/2 <- v Ξ 1/2 mod ^ .

Now suppose that p is an odd prime which divides n. Let Ύbφb'
be a Frobenius automorphism of p in L{εg)/K, and let <^α> be the
inertia group of p in L(εq)/K.

Then

where

where

μ = 0 if α = 0

= 1 if a Φ 0 .

Hence

(3.8) inv,, \Δq\ = 1/2 -=> vp = 1/2 mod Z .

Finally suppose that 2 is ramified in UK. Our assumption that
the order of (ψzr~2) divides the order of <τ> implies that in this
case Gal (L/K) = (p).

Let η = 7δ be a Frobenius automorphism of 2 in L(εq)jK. Let
/ be the order of (γ). We have

UP((1 + ζ

= (l + ζ-*%*>UvUP

= [(l + z«)u,]uP.



494 J. WILLIAM PENDERGRASS

Let π be a prime of K which divides 2. Then

Kx <g) Δq = Σ Σ

z=0 j=Q

p, 17?) ®Kr (Kπ(εq), 7], [(1 + ζ*)UηY)

Now [(Kπ{ε,\ p, Ul)] = Kπ ®, 2 (Q2(ε4), p, ζ% Hence inv (^(e 4), p, Ul)
may be assumed to be 0, since otherwise e(2, ^/Q) would be odd
which would mean that K = Q(εΛ/4). The Schur subgroup of a
cyclotomic field is given in [5].

Now let V and V be the exponential valuations of Kx(ε4) and
Kπ respectively. Since e(Kπ(ε4)/K) = 2, we have

Now V ( l + ζα&) is odd if and only if xb is odd since 1 + ζx& is a
prime element of Kπ{ε^) when && is odd. Thus from the definition
of the Hasse invariant we get

Thus

(3.9)

where

inv (Kπ

inv2

®Δ

=

= 0
- 1 / 2

1/2 —

if xb
if xb

=> μQxb

is
is

even

odd.

is od(

μQ ~ 0 if 2 is unramified in L/K

= 1 if 2 is ramified in L/K.

Observe that q and the primes which divide n are the only
primes which might ramify in L(εq)/K. Hence, these are the only
primes at which Δq can have nonzero invariants.

THEOREM 3. The 2-primary part of S(K) consists of all classes
[A] in B(K) with uniformly distributed invariants of value 0 or
1/2 which satisfy the following conditions.
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( I ) For a prime p which divides n, \ΠYP[A] = 0 if any of
the following hold:

( a ) e(p) is odd;
( b ) f(p) is even;
( c ) [L: K(ζ)]/e(p) is an even integer.
(II) For q a prime which does not divide n, invq[A] = 0 if

either
( a ) t — s — r and f{q) is even, or
( b ) t Φ s — r, f{q) is even, and qf{9) = ( — h)9 mod2 s + 1 where

[L/K, q] = φ°.
(III) Let p be a prime which divides n such that condition (I)

does not apply to p. If \ e{p, K/Q) |2 ^ | e(p', K/Q) |2 for every prime
<p' Φ pt then the invariant of [A] is 1/2 at an even number of primes
in the set

{p} U {primes q: (p/q) = - 1 , (q, n) = 1}

where (p/q) is the Legendre symbol.

Proof. We have assumed that (φ) has even order. Hence, by-
Lemma 2, we may assume that [L: K] = 2C.

First suppose that K is a real field. Pick an odd prime of q
such that f(q)e(q, K/Q) is even. There will always be such a prime
since [K: Q] must be even. Then the algebra K ® Q (Qfo), τ, — 1)
where <τ> = Gal (Q(εq)/Q) has invariant 1/2 only at the infinite primes
of K. Thus Ω{pw) is in S(K)2 when K is real.

For the rest of the proof, "prime" will mean "finite prime."

Step 1. Condition (I) is satisfied.

Let p be a prime which divides n. If e(p) = 1, then p is un-
ramified in L(εq)/K for any prime q not dividing n. Hence
inVp [A] = 0 for all [A] in S(K)2. Now suppose that e(p) is even.

If p Φ 2 and (ψa) is the intertia group of p in L/K, then 28~r

divides a, or if s = r, 2 divides α. Since the power of 2 dividing α
must divide (p — l)/e(p), we have that t(p)/e(p) is even. Further
h = 52r~2 so (ftα - 1)/(Λ + 1) is not divisible by 2s if and only if 2s~r+1

does not divide a, or if s = r, if and only if 4 does not divide a.
However this happens if and only if [L: K] = 2s~re(p), or if s = r,
if and only if [L: K] = 2e(p). Thus we have

h l l o mod 2s ~=> [L: K(ζ)]/e(p) is odd .
h + 1

Let q be a prime which does not divide n and let 7bφb' be a
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Frobenius automorphism of p in L(eq)/K where <7> = Gal (L(εq)/L).
Then we may rewrite (3.8) to read

(3.10) invp [Δq] = 1/2 — ([L: K(ζ)]/e(p))xb is odd

since 2s"1 divides z. Since b is even if f(p) is even, (3.10) implies
condition (I) for p Φ 2.

If 7δ is a Frobenius automorphism for 2 in L(εq)/K, then 6 is
even if /(2) is even. Thus (3.9) gives condition (I)(b). Since
Gal (L/K) = (p) when 2 is ramified in L/K, we see that condition
(I) (c) never applies to 2.

Step 2. Condition (II) holds.

Let q be a prime not dividing n and let [L/K, q] = 0*. We
consider the invariants of algebras of the form Aq = Δq(x, y, z). We
have

φ*(ζ) = ζ<-*>* = ζ«f(9) .

Hence g/(9) = (—h)9 + F2S for some integer V.
Further, by (3.6) (b), we have

1 + h

for some integer W. Thus we may rewrite (3.7) to read

(3.11) invg [Δq\ = 1/2 <=> ( W V ^ ' " " 1 ) + Ί

XV = 1/2 mod Z .
\1 + h/\ q - 1 / h + 1

Now t(q)/(q — 1) is even if f(q) is even. Moreover x is even if
t = s — r and V is even if qfiq) = (—h)9 mod28+1. Hence condition
(II) is obtained directly from (3.11).

Step 3. For each prime I to which conditions (I) and (II) do
not apply, there is a class [A] in S(K)2 such that invj [A] = 1/2.

Suppose that q is a prime which does not divide n such that
condition (II) does not apply to q. If f(q) is odd, then the algebra

Δ\ = Λ(0, 2s-1, 0)

has invariant 1/2 at q since W = (h + l)/2 is odd.
If f(q) is even, t Φ s — r, and g/(9) ^ ( — fe)ff mod 2S+1, then consider

the algebra

h + 1 α — 1
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We have that t(q)/(q — 1) is even and that V is odd, thus (3.11)
implies that invg [Δ'q] — 1/2.

Now let p be a prime which divides n such that condition (I)
does not apply to p. Pick a prime q which does not divide n such
that [Q(eip)/Q, q] = ψp, where ψp generates Gal (Q(εip)/Q(ε4)). This
choice of q insures that q = I m o d 4 and that (q/p) = — 1. Hence,
by quadratic reciprocity, (p/q) = —1 so that b is odd where Ίhφh' is
a Frobenius automorphism of p in L(εq)/K and <7> — Gal (L(εg)/L).
Hence, by (3.10) and (3.9) invp [Δ\] = 1/2.

Step 4. If condition (III) does not apply, then Ω(l) is in S(K)2

for every prime I to which conditions (I) and (II) do not apply.

Let p be a prime dividing n to which condition (I) does not
apply. Then p is totally ramified in L/K(ζ). Further, since the
inertia group of a prime in Q(εn)/K must be a subgroup of its inertia
group in Q(εn)/Q, we have that p is the only prime which is ramified
in L/K. Thus p is the only prime dividing n to which condition (I)
does not apply.

Suppose that | e(p, K/Q) \2 < | e(p', K/Q) |2 for some prime p' Φ p
which divides n. Let 2X = | e(p, K/Q) |2.

( a ) Assume that pf is odd.
Pick a prime q0 not dividing n such that [L/Q, q0] = ψ9ψ9, where

<ψy> = Gal (Q(ep,)/Q) and ψ9 = ψ if p = 2 or <^> - Gal (Q(εp)/Q) if
p Φ 2. There are infinitely many such q0 by the Tchebotarev density
theorem. Our choice of qQ insures that qQ = 5 mod 8 if p = 2 or
(QQIP) — — 1 if p =?* 2. Thus (p/g0) = — 1 since qQ = 1 mod 4 by choice.
Let 7 generate Gal (L(εqo)/L) and let 7V6' be a Frobenius auto-
morphism for p in L(εqo)/K. Then δ must be odd. Thus inv^ [Λqo] =
1/2 by (3.9) and (3.10). On the other hand, f(q0) is divisible by
\p'-l\2 since [L/iΓ, g0] 6 Gal (L/K(Q) if p Φ 2 and [L/ίΓ, ?0] = 1 if
p = 2. Hence g{(go) and &σ, where [L/K, qQ] = φ\ are both equivalent
to 1 modulo 28+1. This is clear if p = 2; if p ^ 2, then g o ^ l mod 2s

and 0* must be a square in Gal(L/iΓ(ζ)) by our choice of qQ. Thus
condition (II) applies to q0, so invff0{Jff0] = 0. Hence J2(p) = [JJJ.

( b ) Assume that pf = 2, that is that 2 s"2 > 2λ.
Pick a prime QΊ not dividing n such that [L(ε2s+ι)/Q, qf] —

ψPfΐ>~~λ~2, where ψp is the generator of the Sylow-2 subgroup of
Gal(Q(εp)/Q) such that ψ2

P

+r~8(εp) = φ(εp), and ψ2> is the automorphism
sending ε2*+i to ε2s+i. Now

for some g, 2 ^ g ^ 2s~r. Hence [L/ίΓ, g-J = <**. Further,
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so h9 = q{(?l) mod 2S+1. This implies that invgi [Δqi] = 0 since we
arranged for /(gj to be even.

On the other hand, we picked q^ so that qι = 1 mod 4 and
(ίi/p) = - 1 . Hence ' (p/q,) = - 1 . Thus, by (3.10), inv, [JJJ = 1/2.
Therefore Ω(p) = [4,].

Now let g be a prime which does not divide n such that condition
(II) does not apply to q. By Step 3, there is an algebra Δq such
that invg [Δ*] = 1/2. If invp [J*] = 0, then Ω(q) = [Δ*\. If inv^ [J*] =
1/2, then Ω{q) = [Δ*]®κΩ(p).

Step 5. Condition (III) holds.

Suppose that p is a prime dividing w to which condition (I) does
not apply. Further suppose that | e(p, K/Q) |2 ^ | e(p', K/Q) |2 for every
prime pf Φ p which divides n.

Let q be a prime not dividing n. Let <7> = Gal (L(εq)/L) and
Ίhφh' be a Frobenius automorphism for p in L(εq)/K.

First suppose that invp [J*] = 1/2 where Δ* is an algebra of
the form Δq. From (3.9) and (3.10) we see that this implies that xb
is odd. Thus 6 is odd, which means that (p/q) = — 1. Further, if
p Φ 2, then our hypotheses insure that p = 1 mod 4. Thus (q/p) = — 1
if p =£ 2, or # ΞΞ 3 or 5 mod 8 if p = 2. Suppose p ^ 2, then
e(p, K/Q)/2*-r |2 > 2r~2, so the full 2-part of e(p, K/Q) is equal to

|/(<?) |2. Hence g/(?) = 1 mod 28+1 and \L\Ky q] = ^2S"r. Since
Λ,28~r gt 1 mod 28+1, we have by (3.11) that invg [Δ*] = 1/2. In the
case where p = 2, |/(g) |2 = 2s"2 so qnq) φ, 1 mod 2S+1. However

J == 1. Thus, by (3.11), inv, [Δ*\ = 1/2.
Now suppose that (p/q) = — 1 and invg [J*] = 1/2. Since

= ~ 1 we have that b is odd. Further, (q/p) = —1 if p Φ 2 or
g = 3or 5 mod 8 if p = 2. Hence /(g) is divisible by |e(p, iΓ/Q)/28"r|2
if p ^ 2 or by 2s~r if p = 2. This means that /(g) is even so that
xv is odd. Thus a δ is odd. Hence (3.9) and (3.10) imply that
invp [4*] = 1/2.

We have just shown that

invp [Δg] - 1/2 «—* inv, [Jg] = 1/2 and (q/p) = - 1 .

Since every algebra class [A] in S(K)2 is a product of classes of the
form [Δq], this gives condition (III).

In addition, this shows that Ω(q) is in S(K)2 where q is a prime
not dividing n such that (q/p) = 1 and condition (II) does not apply
to q. This is because there is an algebra [Δ*] with invg [zί*] = 1/2
by Step 3, and we have just seen that inVpfzί*] = 0.
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This completes the proof of the theorem.

We have now determined the Schur subgroup of all fields K,
not containing a fourth root of unity, which have a cyclic extension
of the form Q(εn). Observe that subfields of Q(εpd) are included as
special cases. The Schur group of these fields was first found by
Yamada [8].
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