A FORMULA FOR THE NORMAL PART OF THE LAPLACE-BELTRAMI OPERATOR ON THE FOLIATED MANIFOLD

HARUO KITAHARA AND SHINSUKE YOROZU

In this paper, we give a formula for the normal part of the Laplace-Beltrami operator with respect to the second connection on a foliated manifold with a bundle-like metric. This formula is analogous to the formula obtained by S. Helgason.

1. Itroduction. We shall be in C^{∞} -category and manifolds are supposed^t to be paracompact, connected Hausdorff spaces.

Let M be a complete (p + q)-dimensional Riemannian manifold and H a compact subgroup of the Lie group of all isometries of M. We suppose that all orbits of H have the same dimension p. Then H defines a p-dimensional foliation F whose leaves are orbits of H, and the Riemannian metric is a bundle-like metric with respect to the foliation F. A quotient space B = M/F is a Riemannian V-manifold [5]. Let L_D be the Laplace-Beltrami operator on Mwith respect to the second connection D[8], and let $\Delta(L_D)$ denote the operator defined by (*) in § 4. Our goal in this paper is the following theorem:

THEOREM. Let L_D be the Laplace-Beltrami operator on M with respect to the second connection D and L_B the Laplace-Beltrami operator on B with respect to the Levi-Civita connection associated with the Riemannian metric defined by the normal component of the metric on M. Then

$$\Delta(L_D) = \delta^{-1/2} L_B \circ \delta^{1/2} - \delta^{-1/2} L_B (\delta^{1/2})$$

where δ is the function given by (**) below.

This theorem is analogous to the following result obtained by S. Helgason [2]: Suppose V is a Riemannian manifold, H a closed unimodular subgroup of the Lie group of all isometries of V (with the compact open topology). Let $W \subset V$ be a submanifold satisfying the condition: For each $w \in W$,

$$(H\!\cdot w)\cap \,W=\{w\}$$
 , $\,\,V_w=(H\!\cdot w)_w\oplus W_w$,

where \oplus denotes orthogonal direct sum. Let L_v and L_w denote the Laplace-Beltrami operators on V and W, respectively. Then

$$\Delta(L_{v}) = \delta^{-1/2} L_{w} \circ \delta^{1/2} - \delta^{-1/2} L_{w}(\delta^{1/2})$$

where $\Delta(L_v)$ denotes the operator called the radial part of L_v and δ is the function given by $d\sigma_w = \delta(w)dh$ ($d\sigma_w$ is the Riemannian volume element on the orbit $H \cdot w$ and $d\dot{h}$ is an H-invariant measure on each orbit $H \cdot w = H/\{$ the isotropy subgroup of H at $w\}$).

2. Definition of V-manifold [1, 6, 7]. The concept of V-manifold is defined by I. Satake. Let M be a Hausdorff space. A C^{∞} local uniformizing system $\{\tilde{U}, G, \varphi\}$ for an open set U in M is a collection of the following objects:

- U: a connected open set in the *m*-dimensional Euclidean space (or C^{∞} -manifold).
- G: a finite group of C^{∞} -transformations of \widetilde{U} .
- φ : a continuous map from \tilde{U} onto U such that $\varphi \circ \sigma = \varphi$ for all $\sigma \in G$, inducing a homeomorphism from the quotient space \tilde{U}/G onto U.

Let $\{\tilde{U}, G, \varphi\}$, $\{\tilde{U}', G', \varphi'\}$ be local uniformizing systems for U, U' respectively, and let $U \subset U'$. By a C^{∞} -injection λ : $\{\tilde{U}, G, \varphi\} \rightarrow \{\tilde{U}', G', \varphi'\}$ we mean a C^{∞} -isomorphism from \tilde{U} onto an open subset of \tilde{U}' such that for any $\sigma \in G$ there exists $\sigma' \in G'$ satisfying relations $\varphi = \varphi' \circ \lambda$ and $\lambda \circ \sigma = \sigma' \circ \lambda$.

A C^{∞} -V-manifold consists of a connected Hausdorff space M and a family \mathscr{F} of C^{∞} -local uniformizing systems for open subsets in M satisfying the following conditions:

(I) If $\{\tilde{U}, G, \varphi\}$, $\{\tilde{U}', G', \varphi'\} \in \mathscr{F}$ and $U \subset U'$, then there exists a C^{∞} -injection λ : $\{\tilde{U}, G, \varphi\} \rightarrow \{\tilde{U}', G', \varphi'\}$.

(II) The open sets U, for which there exists a local uniformizing system $\{\tilde{U}, G, \varphi\} \in \mathscr{F}$, form a basis of open sets in M.

The set R of all real numbers is regarded as a V-manifold defined by a single local uniformizing system $\{R, \{1\}, 1\}$, then a C^{∞} -function on a V-manifold (M, \mathscr{F}) is defined as a C^{∞} -map $M \to R$ defined by a C^{∞} -V-manifold map $(M, \mathscr{F}) \to (R, \{R, \{1\}, 1\})$.

A C^{∞} -V-bundle over C^{∞} -V-manifold is also defined, and in particular the tangent bundle (TM, \mathscr{F}^*) of a C^{∞} -V-manifold (M, \mathscr{F}) is defined. Let (M, \mathscr{F}) be a C^{∞} -V-manifold, then an *h*-form ω on (M, \mathscr{F}) is a collection of *h*-forms $\{\omega_{\widetilde{U}}\}$, where $\omega_{\widetilde{U}}$ is a *G*-invariant *h*-form on \widetilde{U} such that $\omega_{\widetilde{U}} = \omega_{\widetilde{U}} \circ \lambda$ for any injection $\lambda: \{\widetilde{U}, G, \varphi\} \rightarrow$ $\{\widetilde{U}', G', \varphi'\}(\{\widetilde{U}, G, \varphi\}, \{\widetilde{U}', G', \varphi'\} \in \mathscr{F})$, and if the support of ω is contained in $U = \varphi(\widetilde{U})$,

$$\int_{M} \omega := rac{1}{N_G} \int_{\widetilde{U}} \omega_{\widetilde{U}}$$
 ,

where $N_{\mathcal{G}}$ denotes the order of G. A Riemannian metric g on (M, \mathcal{F}) is a collection of Riemannian metrices $\{g_{\tilde{\mathcal{U}}}\}$, where $g_{\tilde{\mathcal{U}}}$ is a G-invariant Riemannian metric on \tilde{U} satisfying some condition with

any injection $\lambda: \{ \widetilde{U}, G, \varphi \} \rightarrow \{ \widetilde{U}', G', \varphi' \}.$

3. Review of the results from [4, 5]. Let M be a complete (p+q)-dimensional manifold with a "bundle-like matric" with respect to a p-dimensional foliation F. We suppose that each leaf of the foliation F is closed.

The quotient space B = M/F is the space formed from M by identifying each leaf to a point, and let $\pi: M \to B$ denote the identification map. H(S) denotes the holonomy group of a leaf S. Since M has the bundle-like metric with respect to F and all leaves are closed, H(S) is a finite group for any S and B is a metric space defining the distance between two points of B to be the minimum distance between them considered as leaves is M. B is a connected Hausdorff space, since it is metric space and is the continuous image of M under π . Given any point $b \in B$, let $S = \pi^{-1}(b)$. Let U be a flat coordinate neighborhood of some point of S. Since H(S)may be considered as a group of isometries of the sphere of unit vectors orthogonal to the leaf S at some arbitrary point of S, H(S)operates the q-ball orthogonal to S. Thus we may consider that H(S) operates on U such a manner that $\{U, H(S), \pi\}$ is a local uniformizing system for the neighborhood $\pi(U)$ in B. The natural injection map of two such local uniformizing systems are of C^{∞} . Thus B is a C^{∞} -V-manifold. Since H(S) is an isometry on the normal vectors at a point of S, the normal component of the metric of M defines a Riemannian structure on B. Thus B is a Riemannian V-manifold.

4. Laplace-Beltrami operator with respect to the second connection. Let M be a (p+q)-dimensional manifold with a Riemannian metric \langle , \rangle and a p-dimensional foliation F. Let $(U, (x^1, \dots, x^p, y^1, \dots, y^p))$ be a flat coordinate neighborhood system, that is, in U, the foliation F is defined by $dy^{\alpha} = 0$ for $1 \leq \alpha \leq q$. Hereafter we will agree on the following ranges of indices: $1 \leq i, j$, $k \leq p, 1 \leq \alpha, \beta, \gamma, \delta \leq q$.

We may choose in each flat coordinate neighborhood system $(U, (x^1, \dots, x^p, y^1, \dots, y^q))$ 1-forms w^1, \dots, w^p such that $\{w^1, \dots, w^p, dy^1, \dots, dy^q\}$ is a basis for the cotangent space, and vectors v_1, \dots, v_q such that $\{\partial/\partial x^1, \dots, \partial/\partial x^p, v_1, \dots, v_q\}$ is the dual base for the tangent space. Then we may get

$$w^i := dx^i + A^i_lpha dy^lpha$$
 , $v_lpha := rac{\partial}{\partial y^lpha} - A^i_lpha rac{\partial}{\partial x^i}$.

We may choose A^i_{lpha} such that $\langle \partial/\partial x^i, v_{lpha} \rangle = 0$, then the metric has the local expression

 $ds^{\scriptscriptstyle 2}=g_{\scriptscriptstyle ij}(x,\,y)w^{\scriptscriptstyle i}w^{\scriptscriptstyle j}+\,g_{\scriptscriptstyle lphaeta}(x,\,y)dy^{\scriptscriptstyle lpha}dy^{\scriptscriptstyle eta}$

where

$$g_{\imath j} := \left\langle rac{\partial}{\partial x^i}, rac{\partial}{\partial x^j}
ight
angle, \;\; g_{lpha eta} := \left\langle v_{lpha}, \, v_{eta}
ight
angle$$

and $x:=(x^{1}, \dots, x^{p}), y:=(y^{1}, \dots, y^{q}).$

We may uniquely define the "second connection" D on M as follows (cf. [8]);

(a)
$$D_{\partial/\partial x^i} \frac{\partial}{\partial x^j} = \Gamma^k_{ji} \frac{\partial}{\partial x^k}$$
, $D_{v_\alpha} \frac{\partial}{\partial x^j} = \Gamma^k_{\alpha j} \frac{\partial}{\partial x^k}$,
 $D_{\partial/\partial x^i} v_\beta = \Gamma^r_{i\beta} v_\gamma$, $D_{v_\alpha} v_\beta = \Gamma^r_{\alpha \beta} v_\gamma$,

$$\begin{array}{ll} (\ \mathrm{b} \) & \quad \frac{\partial}{\partial x^i} \Bigl\langle \frac{\partial}{\partial x^j}, \, \frac{\partial}{\partial x^k} \Bigr\rangle = \Bigl\langle D_{\scriptscriptstyle \partial/\partial x^i} \frac{\partial}{\partial x^j}, \, \frac{\partial}{\partial x^k} \Bigr\rangle + \Bigl\langle \frac{\partial}{\partial x^{\scriptscriptstyle \gamma}}, \, D_{\scriptscriptstyle \partial/\partial x^i} \frac{\partial}{\partial x^k} \Bigr\rangle \,, \\ & \quad v_\alpha \langle v_\beta, \, v_\gamma \rangle = \langle D_{v_\alpha} v_\beta, \, v_\gamma \rangle + \langle v_\beta, \, D_{v_\alpha} v_\gamma \rangle \,, \end{array}$$

$$egin{aligned} (\,{
m c}\,) & Tigg(rac{\partial}{\partial x^i},rac{\partial}{\partial x^j}igg) = T_{\,\,ij}^{\,\,\gamma}v_\gamma\,\,, \quad Tigg(rac{\partial}{\partial x^i},\,v_etaigg) = 0\,\,, \ Tigg(v_lpha,rac{\partial}{\partial x^j}igg) = 0\,\,, \quad T(v_lpha,\,v_eta) = T_{\,lphaeta}^krac{\partial}{\partial x^k}\,, \end{aligned}$$

where T denotes the torsion of D, that is, for any vector fields X, Y on M, $T(X, Y) := D_X Y - D_Y X - [X, Y]$ ([,] denotes the usual bracket operator). Note that, in general, the torsion of D doesn't vanish. If the metric has the local expression

$$ds^{\scriptscriptstyle 2}=\,g_{\scriptscriptstyle ij}(x,\,y)w^{\scriptscriptstyle i}w^{\scriptscriptstyle j}+\,g_{\scriptscriptstyle lphaeta}(y)dy^{\scriptscriptstyle lpha}dy^{\scriptscriptstyle eta}$$
 ,

the metric is called a "bundle-like metric" with respect to the foliation F. Hereafter we suppose that M has a bundle-like metric with respect to F. Then we get

$$rac{\partial}{\partial x^i} \langle v_lpha,\,v_eta
angle = \langle D_{\partial/\partial x^i}v_lpha,\,v_eta
angle + \langle v_lpha,\,D_{\partial/\partial x^i}v_eta
angle \;.$$

For a vector field X on M, $\operatorname{div}_D X$ is defined by

$$\operatorname{div}_{D} X := \operatorname{Trace} (Y \longrightarrow D_{Y} X)$$

for any vector field Y on M. For a function f on M, $\operatorname{grad}_{D} f$ is defined by

$$egin{aligned} \operatorname{grad}_{\scriptscriptstyle D} f \colon = (\widetilde{g}^{\,ij} D_{\scriptscriptstyle \partial/\partial x^j} f) rac{\partial}{\partial x^i} + (\widetilde{g}^{\,lpha eta} D_{v_eta} f) v_lpha \ &= \Big(\widetilde{g}^{\,ij} rac{\partial}{\partial x^j} (f) \Big) rac{\partial}{\partial x^i} + (\widetilde{g}^{\,lpha eta} v_eta (f)) v_lpha \end{aligned}$$

428

where (\tilde{g}^{ij}) and $(\tilde{g}^{\alpha\beta})$ are inverse matrices of (g_{ij}) and $(g_{\alpha\beta})$ respectively. We define the Laplace-Beltrami operator L_D with respect to the second connection D by

$$L_{\scriptscriptstyle D}(f)$$
: = div_D grad_D f ,

that is,

$$L_{\scriptscriptstyle D}(f) = \widetilde{g}^{\,ij} rac{\partial}{\partial x^i} \Bigl(rac{\partial}{\partial x_j}(f) \, \Bigr) - \widetilde{g}^{\,ij} \Gamma^k_{\,ij} rac{\partial}{\partial x^k}(f) \ + \, \widetilde{g}^{\,lpha eta} x_{lpha}(f)) - \, \widetilde{g}^{\,lpha eta} \Gamma^r_{\,lpha eta} y_{\gamma}(f) \; .$$

Let B be the C^{∞} -V-manifold M/F. Let $\mathscr{C}(B)$ (resp. $\mathscr{D}(B)$ be the space of C^{∞} -functions (resp. C^{∞} -functions of compact support) on B, and let $\mathscr{C}_{s}(M)$ be the space of C^{∞} -functions on M which are constants on leaves. We may define a map $\Phi: \mathscr{C}_{s}(M) \to \mathscr{C}(B)$ by $\Phi(f)(\pi(m)): = f(m)$ where $f \in \mathscr{C}_{s}(M)$, $m \in M$ and $\pi: M \to B$, then Φ is of one-to-one. Let $\mathscr{C}_{s}^{\circ}(M): = \Phi^{-1}(\mathscr{D}(B))$.

It is clear that $f \in \mathscr{C}_{s}(M)$ if and only if $\partial/\partial x^{i}(f) = 0$ for $1 \leq i \leq p$.

LEMMA. If $f \in \mathcal{C}_{s}(M)$, then $L_{D}(f) \in \mathcal{C}_{s}(M)$.

Proof. For $f \in \mathcal{C}_{s}(M)$, we get

$$L_{\scriptscriptstyle D}(f) = \widetilde{g}^{\scriptscriptstylelphaeta} v_{\scriptscriptstylelpha}(v_{\scriptscriptstyleeta}(f)) - \widetilde{g}^{\scriptscriptstylelphaeta} \Gamma^{\scriptscriptstyle\gamma}_{\scriptscriptstylelphaeta} v_{\scriptscriptstyle\gamma}(f) \; .$$

Since $g_{\alpha\beta} = g_{\alpha\beta}(y)$ and $\Gamma^{\gamma}_{\alpha\beta} = (1/2)\tilde{g}^{\gamma\delta}\{v_{\alpha}(g_{\delta\beta}) + v_{\beta}(g_{\alpha\delta}) - v_{\delta}(g_{\alpha\beta})\}$, we get $\tilde{g}^{\alpha\beta} = \tilde{g}^{\alpha\beta}(y)$ and so $\partial/\partial x^{i}(L_{D}(f)) = 0$. Thus we get $L_{D}(f) \in \mathscr{C}_{S}(M)$.

REMARK. Let L be the Laplace-Beltrami operator with respect to the Levi-Civita connection associated with the bundle-like metric. In general $L(f) \notin \mathscr{C}_s(M)$ for $f \in \mathscr{C}_s(M)$.

For L_D and $f \in \mathcal{C}(B)$, we define $\Delta(L_D)$ by

$$(*)$$
 $\varDelta(L_D)(f)(b): = L_D(\Phi^{-1}(f))(\pi^{-}(b))$, $b \in B$.

This is well-defined by lemma. Roughly speaking, $\Delta(L_D)$ seems to be an operator projected on B of the normal part of L_D .

5. Proof of theorem. Using the same notations as above sections, we give a proof of our theorem.

The isotropy subgroup H_m at each point $m \in M$ is compact and the orbit $H \cdot m$ is compact. We fix a Haar measure on H and a Haar measure on H_m , we get an H-invariant measure $d\dot{h}$ on each orbit $H \cdot m = H/H_m$. Since M has the bundle-like metric, $ds^2 =$ $g_{ij}(x, y)w^iw^j + g_{\alpha\beta}(y)dy^{\alpha}dy^{\beta}$, the volume element dM of M is given by

$$dM = G(x, y) dx^1 \wedge \cdots \wedge dx^p \wedge dy^1 \wedge \cdots \wedge dy^q \ (= G(x, y) w^1 \wedge \cdots \wedge w^p \wedge dy^1 \wedge \cdots \wedge dy^q)$$

where

$$\mathit{G}(\mathit{x}, \mathit{y}) ext{:} = \sqrt{\det igg(egin{smallmatrix} g_{\imath} & _{j} 0 \ 0 & g_{lphaeta} \end{pmatrix}} \,.$$

For a flat coordinate system $(U, (x^1, \dots, x^p, y^1, \dots, y^q))$ and the projection $\pi: M \to B$,

$$d\sigma = G'(y) dy^{_1} \wedge \cdots \wedge dy^{_q}$$
 ,

where $G'(y) := \sqrt{|\det(g_{\alpha\beta})|}$, is regarded as the volume element dB of B, since $\{U, H(S), \pi\}$ is a local uniformizing system for $\pi(U)$ in B. Also we get

$$G(x, y) = \sqrt{|\det(g_{ij}(x, y))|} \cdot G'(y) .$$

However

$$\sqrt{|\det{(g_{{\scriptscriptstyle i}{\scriptscriptstyle j}}(x,\,y))}|}\;w^{\scriptscriptstyle 1}\wedge\cdots\wedge w^{\scriptscriptstyle p}$$

is the volume element dS_m on the leaf S_m through a point m = (x, y) (that is, on the orbit $H \cdot m$). Thus, if $f \in \mathscr{C}^{\circ}_{S}(M)$ we get from the Fubini's theorem that

$$\int_{M} f dM = \int_{B} \left[\underbrace{\int_{H \cdot m} f dS_{m}} dB(\pi(m))
ight]$$

where "__" denotes the image under Φ . dS_m is invariant under H, so it must be a scalar multiple of $d\dot{h}$,

 $dS_m = \overline{\delta}(m)d\dot{h}$.

Then the function $\overline{\delta}$ belongs to $\mathscr{C}_{\mathcal{S}}(M)$. We put

$$(^{**})$$
 $\delta := \varPhi(ar{\delta})$.

Thus we get

$$\int_{\kappa} f dM = \int_{B} \left[\underbrace{\int_{H \cdot m} f(h \cdot m) dh}_{B(\pi(m))} \right] \delta(\pi(m)) dB(\pi(m)) \, .$$

The normal component of the bundle-like metric $ds^2 = g_{ij}(x, y)w^iw^j + g_{\alpha\beta}(y)dy^{\alpha}dy^{\beta}$ is $ds_N^2 = g_{\alpha\beta}(y)dy^{\alpha}dy^{\beta}$, thus L_B is defined by the Levi-Civita connection associated with the metric defined from dS_N^2 . Thus we observe that

$$arDelta(L_{\scriptscriptstyle D}) = L_{\scriptscriptstyle B} + ext{lower order terms}$$
 .

The operator L_D restricted to $\mathscr{C}^{\circ}_{S}(M)$ is symmetric with respect to dM(cf. [8]), that is,

$$(***) \qquad \qquad \int_{M} L_{D}(f_{1})f_{2}dM = \int_{M} f_{1}L_{D}(f_{2})dM$$

for $f_1, f_2 \in \mathscr{C}^{\circ}_{S}(M)$. For $f \in \mathscr{C}_{S}(M)$

For $f \in \mathscr{C}_{s}(M)$ and $m \in M$, we get

$$\int_{H \cdot m} f d\dot{h} = \underline{f}(\pi(m))c$$

where c denotes a nonzero constant $\int_{H \cdot m} d\dot{h}$. Putting $\underline{f}_1 = \Phi(f_1), \underline{f}_2 = \Phi(f_2)$ for $f_1, f_2 \in \mathscr{C}^{\circ}_{S}(M)$, we get

$$egin{aligned} &\int_M L_D(f_1)f_2 dM = \int_B iggl[\int_{H\cdot m} L_D(f_1)f_2 d\dot{h} \ iggr] \delta dB \ &= \int_B iggl[\underbrace{\int_{H\cdot m} L_D(f_1) d\dot{h}} iggr] c \delta f_2 dB \ &= c^2 \int_B iggrL_D(f_1) f_2 \delta dB \ . \end{aligned}$$

Thus we get from (***)

$$\int_{B} \underline{L_{D}(f_{1})f_{2}} \delta dB = \int_{B} \underline{f_{1}} \underline{L_{D}(f_{2})} \delta dB$$

for f_1 , $f_2 \in \mathscr{C}^0_s(M)$. By the definition of $\Delta(L_D)$ we get $\underline{L_D(f)} = \Delta(L_D)(f)$ for $f \in \mathscr{C}_s(M)$, so

$$\int_{B} {arDeta}(L_{\scriptscriptstyle D})({\displaystyle f_1}) {\displaystyle f_2} \delta dB = \int_{B} {\displaystyle f_1} {arDeta}(L_{\scriptscriptstyle D})({\displaystyle f_2}) \delta dB \; .$$

This expression implies that $\Delta(L_D)$ is symmetric with respect to δdB . Since L_B is symmetric with respect to dB, $\delta^{-1/2}L_B \circ \delta^{1/2}$ is symmetric with respect to δdB and it clearly agrees with L_B up to lower order terms. The symmetric operators $\Delta(L_D)$ and $\delta^{-1/2}L_B \circ \delta^{1/2}$ agree up to an operator of order ≤ 1 , thus this operator, being symmetric, must be a function. By applying the operators to the constant function 1, we get

$$arDelta(L_{\scriptscriptstyle D})(1) - \delta^{_{-1/2}}L_{\scriptscriptstyle B} \circ \delta^{_{1/2}}(1) = - \delta^{_{-1/2}}L_{\scriptscriptstyle B}(\delta^{_{1/2}})$$
 .

Thus

$$arDelta(L_{\scriptscriptstyle D})=\delta^{\scriptscriptstyle -1/2}L_{\scriptscriptstyle B}\circ\delta^{\scriptscriptstyle 1/2}-\delta^{\scriptscriptstyle -1/2}L_{\scriptscriptstyle B}(\delta^{\scriptscriptstyle 1/2})$$
 .

This completes the proof of our theorem.

REMARK. The example of "RS-manifold of almost fibered type"

given by S. Kashiwabara (Apendix 5 in [3]) is a foliated manifold with a 1-dimensional foliation and bundle-like metric. Each leaf of the foliation is a "S-geodesic." This example is constructed from the space D which consists of all points $x_1e_1 + x_2e_2 + x_3e_3 + te_4$ such that $|x_i| \leq 1 (i = 1, 2, 3), 0 \leq t \leq 1$, where (e_1, e_2, e_3, e_4) denotes an orthonormal frame with origin o in Euclidean 4-space. If S-geodesics are of direction of e_4 , a leaf through the origin o has nontrivial holonomy group. Then $\delta = 1$.

REMARK. The semi-reducible Riemannian space are a special class of foliated manifolds with bundle-like metrices. The metric of such a space has the local expression

$$d \hspace{0.1in} s^{\scriptscriptstyle 2} = \sigma(y) q_{\scriptscriptstyle ij}(x) dx^{\scriptscriptstyle i} dx^{\scriptscriptstyle j} + \hspace{0.1in} g_{\scriptscriptstyle lpha eta}(y) dy^{\scriptscriptstyle lpha} dy^{\scriptscriptstyle eta}$$

(cf. [4]). Then δ is defined from σ .

References

1. W. J. Baily, Jr., The decomposition theorem for V-manifolds, Amer. J. Math., 78 (1956), 862-888.

2. S. Helgason, A formula for the radial part of the Laplace-Beltrami operator, J. Differential Geometry, **6** (1972), 411-419.

 S. Kashiwabara, The structure of a Riemannian manifold admitting a parallel field of one-dimensional tangent vector subspaces, Tohoku Math. J., 11 (1959) 327-350.
 B. L. Reinhart, Foliated manifolds with bundle-like metrices, Ann. of Math., 66 (1959), 119-132.

5. ____, Closed metric foliations, Michigan Math. J., 8 (1961), 7-9.

 I. Satake, On generalization of the notion of manifolds, Proc. Nat. Acad. Sci. U. S. A., 42 (1956), 359-363.

7. ____, The Gauss-Bonnet theorem for V-manifolds, J. Math. Soc. of Japan, 9 (1957), 464-492.

8. I. Vaisman, Cohomology and Differential Forms, Marcel Dekker, Inc., New York, 1973.

Received July 6, 1976 and in revised form October, 25, 1976.

KANAZAWA UNIVERSITY Marunouchi, Kanazawa 920, Japan