A FORMULA FOR THE NORMAL PART OF THE LAPLACE-BELTRAMI OPERATOR ON THE FOLIATED MANIFOLD

Haruo Kitahara and Shinsuke Yorozu

Abstract

In this paper, we give a formula for the normal part of the Laplace-Beltrami operator with respect to the second connection on a foliated manifold with a bundle-like metric. This formula is analogous to the formula obtained by S. Helgason.

1. Itroduction. We shall be in C^{∞}-category and manifolds are supposed to be paracompact, connected Hausdorff spaces.

Let M be a complete ($p+q$)-dimensional Riemannian manifold and H a compact subgroup of the Lie group of all isometries of M. We suppose that all orbits of H have the same dimension p. Then H defines a p-dimensional foliation F whose leaves are orbits of H, and the Riemannian metric is a bundle-like metric with respect to the foliation F. A quotient space $B=M / F$ is a Riemannian V-manifold [5]. Let L_{D} be the Laplace-Beltrami operator on M with respect to the second connection $D[8]$, and let $\Delta\left(L_{D}\right)$ denote the operator defined by (*) in §4. Our goal in this paper is the following theorem:

Theorem. Let L_{D} be the Laplace-Beltrami operator on M with respect to the second connection D and L_{B} the Laplace-Beltrami operator on B with respect to the Levi-Civita connection associated with the Riemannian metric defined by the normal component of the metric on M. Then

$$
\Delta\left(L_{D}\right)=\delta^{-1 / 2} L_{B} \circ \delta^{1 / 2}-\delta^{-1 / 2} L_{B}\left(\delta^{1 / 2}\right)
$$

where δ is the function given by (**) below.
This theorem is analogous to the following result obtained by S. Helgason [2]: Suppose V is a Riemannian manifold, H a closed unimodular subgroup of the Lie group of all isometries of V (with the compact open topology). Let $W \subset V$ be a submanifold satisfying the condition: For each $w \in W$,

$$
(H \cdot w) \cap W=\{w\}, \quad V_{w}=(H \cdot w)_{w} \oplus W_{w}
$$

where \oplus denotes orthogonal direct sum. Let L_{V} and L_{W} denote the Laplace-Beltrami operators on V and W, respectively. Then

$$
\Delta\left(L_{V}\right)=\delta^{-1 / 2} L_{W} \circ \delta^{1 / 2}-\delta^{-1 / 2} L_{W}\left(\delta^{1 / 2}\right)
$$

where $\Delta\left(L_{V}\right)$ denotes the operator called the radial part of L_{V} and δ is the function given by $d \sigma_{w}=\delta(w) d h$ ($d \sigma_{W}$ is the Riemannian volume element on the orbit $H \cdot w$ and $d \dot{h}$ is an H-invariant measure on each orbit $H \cdot w=H /\{$ the isotropy subgroup of H at $w\}$).
2. Definition of V-manifold $[1,6,7]$. The concept of V-manifold is defined by I. Satake. Let M be a Hausdorff space. $A C^{\infty}$ local uniformizing system $\{\tilde{U}, G, \varphi\}$ for an open set U in M is a collection of the following objects:
$\widetilde{U}:$ a connected open set in the m-dimensional Euclidean space (or C^{∞}-manifold).
$G: \quad$ a finite group of C^{∞}-transformations of \tilde{U}.
φ : a continuous map from \tilde{U} onto U such that $\varphi \circ \sigma=\varphi$ for all $\sigma \in G$, inducing a homeomorphism from the quotient space \widetilde{U} / G onto U.
Let $\{\widetilde{U}, G, \varphi\},\left\{\tilde{U}^{\prime}, G^{\prime}, \varphi^{\prime}\right\}$ be local uniformizing systems for U, U^{\prime} respectively, and let $U \subset U^{\prime}$. By a C^{∞}-injection $\lambda:\{\widetilde{U}, G, \varphi\} \rightarrow$ $\left\{\widetilde{U}^{\prime}, G^{\prime}, \varphi^{\prime}\right\}$ we mean a C^{∞}-isomorphism from \widetilde{U} onto an open subset of \tilde{U}^{\prime} such that for any $\sigma \in G$ there exists $\sigma^{\prime} \in G^{\prime}$ satisfying relations $\varphi=\varphi^{\prime} \circ \lambda$ and $\lambda \circ \sigma=\sigma^{\prime} \circ \lambda$.

A $C^{\infty}-V$-manifold consists of a connected Hausdorff space M and a family \mathscr{F} of C^{∞}-local uniformizing systems for open subsets in M satisfying the following conditions:
(I) If $\{\tilde{U}, G, \varphi\},\left\{\tilde{U}^{\prime}, G^{\prime}, \varphi^{\prime}\right\} \in \mathscr{F}$ and $U \subset U^{\prime}$, then there exists a C^{∞}-injection $\lambda:\{\widetilde{U}, G, \varphi\} \rightarrow\left\{\widetilde{U}^{\prime}, G^{\prime}, \varphi^{\prime}\right\}$.
(II) The open sets U, for which there exists a local uniformizing system $\{\tilde{U}, G, \varphi\} \in \mathscr{F}$, form a basis of open sets in M.

The set R of all real numbers is regarded as a V-manifold defined by a single local uniformizing system $\{R,\{1\}, 1\}$, then a C^{∞}-function on a V-manifold (M, \mathscr{F}) is defined as a C^{∞}-map $M \rightarrow R$ defined by a $C^{\infty}-V$-manifold map $(M, \mathscr{F}) \rightarrow(R,\{R,\{1\}, 1\})$.

A $C^{\infty}-V$-bundle over $C^{\infty}-V$-manifold is also defined, and in particular the tangent bundle ($T M, \mathscr{F}^{*}$) of a $C^{\infty}-V$-manifold (M, \mathscr{F}) is defined. Let (M, \mathscr{F}) be a $C^{\infty}-V$-manifold, then an h-form ω on (M, \mathscr{F}) is a collection of h-forms $\left\{\omega_{\tilde{U}}\right\}$, where $\omega_{\tilde{U}}$ is a G-invariant h-form on \tilde{U} such that $\omega_{\tilde{U}}=\omega_{\tilde{U}}, \circ \lambda$ for any injection $\lambda:\{\widetilde{U}, G, \varphi\} \rightarrow$ $\left\{\widetilde{U}^{\prime}, G^{\prime}, \varphi^{\prime}\right\}\left(\{\widetilde{U}, G, \varphi\},\left\{\tilde{U}^{\prime}, G^{\prime}, \varphi^{\prime}\right\} \in \mathscr{F}\right)$, and if the support of ω is contained in $U=\varphi(\tilde{U})$,

$$
\int_{M} \omega:=\frac{1}{N_{G}} \int_{\widetilde{U}} \omega_{\widetilde{U}},
$$

where N_{G} denotes the order of G. A Riemannian metric g on (M, \mathscr{F}) is a collection of Riemannian metrices $\left\{g_{\tilde{U}}\right\}$, where $g_{\tilde{U}}$ is a G invariant Riemannian metric on \tilde{U} satisfying some condition with
any injection $\lambda:\{\widetilde{U}, G, \varphi\} \rightarrow\left\{\widetilde{U}^{\prime}, G^{\prime}, \varphi^{\prime}\right\}$.
3. Review of the results from $[4,5]$. Let M be a complete ($p+q$)-dimensional manifold with a "bundle-like matric" with respect to a p-dimensional foliation F. We suppose that each leaf of the foliation F is closed.

The quotient space $B=M / F$ is the space formed from M by identifying each leaf to a point, and let $\pi: M \rightarrow B$ denote the identification map. $H(S)$ denotes the holonomy group of a leaf S. Since M has the bundle-like metric with respect to F and all leaves are closed, $H(S)$ is a finite group for any S and B is a metric space defining the distance between two points of B to be the minimum distance between them considered as leaves is $M . \quad B$ is a connected Hausdorff space, since it is metric space and is the continuous image of M under π. Given any point $b \in B$, let $S=\pi^{-1}(b)$. Let U be a flat coordinate neighborhood of some point of S. Since $H(S)$ may be considered as a group of isometries of the sphere of unit vectors orthogonal to the leaf S at some arbitrary point of $S, H(S)$ operates the q-ball orthogonal to S. Thus we may consider that $H(S)$ operates on U such a manner that $\{U, H(S), \pi\}$ is a local uniformizing system for the neighborhood $\pi(U)$ in B. The natural injection map of two such local uniformizing systems are of C^{∞}. Thus B is a $C^{\infty}-V$-manifold. Since $H(S)$ is an isometry on the normal vectors at a point of S, the normal component of the metric of M defines a Riemannian structure on B. Thus B is a Riemannian V-manifold.
4. Laplace-Beltrami operator with respect to the second connection. Let M be a $(p+q)$-dimensional manifold with a Riemannian metric 〈, > and a p-dimensional foliation F. Let ($U,\left(x^{1}\right.$, $\left.\cdots, x^{p}, y^{1}, \cdots, y^{p}\right)$) be a flat coordinate neighborhood system, that is, in U, the foliation F is defined by $d y^{\alpha}=0$ for $1 \leqq \alpha \leqq q$. Hereafter we will agree on the following ranges of indices: $1 \leqq i, j$, $k \leqq p, 1 \leqq \alpha, \beta, \gamma, \delta \leqq q$.

We may choose in each flat coordinate neighborhood system $\left(U,\left(x^{1}, \cdots, x^{p}, y^{1}, \cdots, y^{q}\right)\right) 1$-forms w^{1}, \cdots, w^{p} such that $\left\{w^{1}, \cdots, w^{p}\right.$, $\left.d y^{1}, \cdots, d y^{q}\right\}$ is a basis for the cotangent space, and vectors v_{1}, \cdots, v_{q} such that $\left\{\partial / \partial x^{1}, \cdots, \partial / \partial x^{p}, v_{1}, \cdots, v_{q}\right\}$ is the dual base for the tangent space. Then we may get

$$
w^{i}:=d x^{i}+A_{\alpha}^{i} d y^{\alpha}, \quad v_{\alpha}:=\frac{\partial}{\partial y^{\alpha}}-A_{\alpha}^{i} \frac{\partial}{\partial x^{i}}
$$

We may choose A_{α}^{i} such that $\left\langle\partial / \partial x^{i}, v_{\alpha}\right\rangle=0$, then the metric has the local expression

$$
d s^{2}=g_{i j}(x, y) w^{i} w^{j}+g_{\alpha \beta}(x, y) d y^{\alpha} d y^{\beta}
$$

where

$$
g_{2 j}:=\left\langle\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right\rangle, \quad g_{\alpha \beta}:=\left\langle v_{\alpha}, v_{\beta}\right\rangle
$$

and $x:=\left(x^{1}, \cdots, x^{p}\right), y:=\left(y^{1}, \cdots, y^{q}\right)$.
We may uniquely define the "second connection" D on M as follows (cf. [8]);
(a)

$$
\begin{aligned}
& D_{\partial / \partial x^{i} i} \frac{\partial}{\partial x^{j}}=\Gamma_{j i}^{k} \frac{\partial}{\partial x^{k}}, \quad D_{v_{\alpha}} \frac{\partial}{\partial x^{j}}=\Gamma_{\alpha j}^{k} \frac{\partial}{\partial x^{k}}, \\
& D_{\partial / \partial x^{i}} v_{\beta}=\Gamma_{i \xi}^{\gamma} v_{\gamma}, \quad D_{v_{\alpha}} v_{\beta}=\Gamma_{\alpha \hat{\beta}}^{\gamma} v_{\gamma},
\end{aligned}
$$

$$
\begin{align*}
& \frac{\partial}{\partial x^{i}}\left\langle\frac{\partial}{\partial x^{j}}, \frac{\partial}{\partial x^{k}}\right\rangle=\left\langle D_{\partial / \partial x^{i}} \frac{\partial}{\partial x^{j}}, \frac{\partial}{\partial x^{k}}\right\rangle+\left\langle\frac{\partial}{\partial x^{\gamma}}, D_{\partial / \partial x^{i}} \frac{\partial}{\partial x^{k}}\right\rangle, \tag{b}\\
& v_{\alpha}\left\langle v_{\beta}, v_{\gamma}\right\rangle=\left\langle D_{v_{\alpha}} v_{\beta}, v_{r}\right\rangle+\left\langle v_{\beta}, D_{v_{\alpha}} v_{\gamma}\right\rangle,
\end{align*}
$$

$$
\begin{align*}
& T\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right)=T_{i j}^{\gamma} v_{r}, \quad T\left(\frac{\partial}{\partial x^{i}}, v_{\beta}\right)=0 \tag{c}\\
& T\left(v_{\alpha}, \frac{\partial}{\partial x^{j}}\right)=0, \quad T\left(v_{\alpha}, v_{\beta}\right)=T_{\alpha \beta}^{k} \frac{\partial}{\partial x^{k}}
\end{align*}
$$

where T denotes the torsion of D, that is, for any vector fields X, Y on $M, T(X, Y):=D_{X} Y-D_{Y} X-[X, Y]$ ([,] denotes the usual bracket operator). Note that, in general, the torsion of D doesn't vanish. If the metric has the local expression

$$
d s^{2}=g_{i j}(x, y) w^{i} w^{j}+g_{\alpha \beta}(y) d y^{\alpha} d y^{\beta},
$$

the metric is called a "bundle-like metric" with respect to the foliation F. Hereafter we suppose that M has a bundle-like metric with respect to F. Then we get

$$
\frac{\partial}{\partial x^{i}}\left\langle v_{\alpha}, v_{\beta}\right\rangle=\left\langle D_{\partial / \partial x^{i}} v_{\alpha}, v_{\beta}\right\rangle+\left\langle v_{\alpha}, D_{\partial / \partial x^{i} i} v_{\beta}\right\rangle
$$

For a vector field X on $M, \operatorname{div}_{D} X$ is defined by

$$
\operatorname{div}_{D} X:=\operatorname{Trace}\left(Y \longrightarrow D_{Y} X\right)
$$

for any vector field Y on M. For a function f on $M, \operatorname{grad}_{D} f$ is defined by

$$
\begin{aligned}
\operatorname{grad}_{D} f: & =\left(\widetilde{g}^{i j} D_{\partial / \partial x} f\right) \frac{\partial}{\partial x^{i}}+\left(\widetilde{g}^{\alpha \beta} D_{v_{\beta}} f\right) v_{\alpha} \\
& =\left(\widetilde{g}^{i j} \frac{\partial}{\partial x^{j}}(f)\right) \frac{\partial}{\partial x^{i}}+\left(\widetilde{g}^{\alpha \beta} v_{\beta}(f)\right) v_{\alpha}
\end{aligned}
$$

where ($\widetilde{g}^{i j}$) and ($\widetilde{g}^{\alpha \beta}$) are inverse matrices of ($g_{i j}$) and ($g_{\alpha \beta}$) respectively. We define the Laplace-Beltrami operator L_{D} with respect to the second connection D by

$$
L_{D}(f):=\operatorname{div}_{D} \operatorname{grad}_{D} f,
$$

that is,

$$
\begin{aligned}
L_{D}(f)= & \widetilde{g}^{i j} \frac{\partial}{\partial x^{i}}\left(\frac{\partial}{\partial x_{j}}(f)\right)-\widetilde{g}^{i j} \Gamma_{i j}^{k} \frac{\partial}{\partial x^{k}}(f) \\
& +\widetilde{g}^{\alpha \beta} v_{\alpha}\left(v_{\beta}(f)\right)-\widetilde{g}^{\alpha \beta} \Gamma_{\alpha \beta}^{i} v_{\gamma}(f) .
\end{aligned}
$$

Let B be the $C^{\infty}-V$-manifold M / F. Let $\mathscr{E}(B)$ (resp. $\mathscr{D}(B)$ be the space of C^{∞}-functions (resp. C^{∞}-functions of compact support) on B, and let $\mathscr{E}_{s}(M)$ be the space of C^{∞}-functions on M which are constants on leaves. We may define a map $\Phi: \mathscr{E}{ }_{s}(M) \rightarrow \mathscr{E}(B)$ by $\Phi(f)(\pi(m)):=f(m)$ where $f \in \mathscr{E}_{s}(M), m \in M$ and $\pi: M \rightarrow B$, then Φ is of one-to-one. Let $\mathscr{E}{ }_{S}^{0}(M):=\Phi^{-1}(\mathscr{D}(B))$.

It is clear that $f \in \mathscr{E}_{s}(M)$ if and only if $\partial / \partial x^{i}(f)=0$ for $1 \leqq i \leqq p$.
Lemma. If $f \in \mathscr{E}{ }_{s}(M)$, then $L_{D}(f) \in \mathscr{E}{ }_{s}(M)$.
Proof. For $f \in \mathscr{E}{ }_{s}(M)$, we get

$$
L_{D}(f)=\widetilde{g}^{\alpha \beta} v_{\alpha}\left(v_{\beta}(f)\right)-\widetilde{g}^{\alpha \beta} \Gamma_{\alpha \beta}^{\doteqdot} v_{r}(f) .
$$

Since $g_{\alpha \beta}=g_{\alpha \beta}(y)$ and $\Gamma_{\alpha \beta}^{\gamma}=(1 / 2) \widetilde{g}^{\gamma \delta}\left\{v_{\alpha}\left(g_{\partial \beta}\right)+v_{\beta}\left(g_{\alpha \bar{\delta}}\right)-v_{\dot{\delta}}\left(g_{\alpha \beta}\right)\right\}$, we get $\widetilde{g}^{\alpha \beta}=\widetilde{g}^{\alpha \beta}(y)$ and so $\partial / \partial x^{i}\left(L_{D}(f)\right)=0$. Thus we get $L_{D}(f) \in \mathscr{E}_{s}(M)$.

Remark. Let L be the Laplace-Beltrami operator with respect to the Levi-Civita connection associated with the bundle-like metric. In general $L(f) \notin \mathscr{E}_{s}(M)$ for $f \in \mathscr{E}_{s}(M)$.

For L_{D} and $\underline{f} \in \mathscr{E}(B)$, we define $\Delta\left(L_{D}\right)$ by

$$
\begin{equation*}
\Delta\left(L_{D}\right)(\underline{f})(b):=L_{D}\left(\Phi^{-1}(\underline{f})\right)\left(\pi^{-}(b)\right), \quad b \in B \tag{*}
\end{equation*}
$$

This is well-defined by lemma. Roughly speaking, $\Delta\left(L_{D}\right)$ seems to be an operator projected on B of the normal part of L_{D}.
5. Proof of theorem. Using the same notations as above sections, we give a proof of our theorem.

The isotropy subgroup H_{m} at each point $m \in M$ is compact and the orbit $H \cdot m$ is compact. We fix a Haar measure on H and a Haar measure on H_{m}, we get an H-invariant measure $d \dot{h}$ on each orbit $H \cdot m=H / H_{m}$. Since M has the bundle-like metric, $d s^{2}=$ $g_{i j}(x, y) w^{i} w^{j}+g_{\alpha \beta}(y) d y^{\alpha} d y^{\beta}$, the volume element $d M$ of M is given by

$$
\begin{aligned}
d M & =G(x, y) d x^{1} \wedge \cdots \wedge d x^{p} \wedge d y^{1} \wedge \cdots \wedge d y^{q} \\
& \left.=G(x, y) w^{1} \wedge \cdots \wedge w^{p} \wedge d y^{1} \wedge \cdots \wedge d y^{q}\right)
\end{aligned}
$$

where

$$
G(x, y):=\sqrt{\operatorname{det}\left(\begin{array}{ll}
g_{2} & j^{0} \\
0 & g_{\alpha \beta}
\end{array}\right)} .
$$

For a flat coordinate system ($U,\left(x^{1}, \cdots, x^{p}, y^{1}, \cdots, y^{q}\right)$) and the projection $\pi: M \rightarrow B$,

$$
d \sigma=G^{\prime}(y) d y^{1} \wedge \cdots \wedge d y^{q}
$$

where $G^{\prime}(y):=\sqrt{\left|\operatorname{det}\left(g_{\alpha \beta}\right)\right|}$, is regarded as the volume element $d B$ of B, since $\{U, H(S), \pi\}$ is a local uniformizing system for $\pi(U)$ in B. Also we get

$$
G(x, y)=\sqrt{\left|\operatorname{det}\left(g_{i j}(x, y)\right)\right|} \cdot G^{\prime}(y)
$$

However

$$
\sqrt{\left|\operatorname{det}\left(g_{i j}(x, y)\right)\right|} w^{1} \wedge \cdots \wedge w^{p}
$$

is the volume element $d S_{m}$ on the leaf S_{m} through a point $m=(x, y)$ (that is, on the orbit $H \cdot m$). Thus, if $f \in \mathscr{E}{ }_{S}^{0}(M)$ we get from the Fubini's theorem that
where "_" denotes the image under $\Phi . d S_{m}$ is invariant under H, so it must be a scalar multiple of $d \dot{h}$,

$$
d S_{m}=\bar{\delta}(m) d \dot{h}
$$

Then the function $\bar{\delta}$ belongs to $\mathscr{E}_{s}(M)$. We put

$$
\begin{equation*}
\delta:=\Phi(\bar{\delta}) . \tag{**}
\end{equation*}
$$

Thus we get

$$
\int_{K} f d M=\int_{B}\left[\int_{H \cdot m} f(h \cdot m) d \dot{h}\right] \delta(\pi(m)) d B(\pi(m)) .
$$

The normal component of the bundle-like metric $d s^{2}=g_{i j}(x, y) w^{i} w^{j}+$ $g_{\alpha \beta}(y) d y^{\alpha} d y^{\beta}$ is $d s_{N}^{2}=g_{\alpha \beta}(y) d y^{\alpha} d y^{\beta}$, thus L_{B} is defined by the LeviCivita connection associated with the metric defined from $d S_{N}^{2}$. Thus we observe that

$$
\Delta\left(L_{D}\right)=L_{B}+\text { lower order terms . }
$$

The operator L_{D} restricted to $\mathscr{E}_{S}^{\circ}(M)$ is symmetric with respect to $d M$ (cf. [8]), that is,

$$
\begin{equation*}
\int_{M} L_{D}\left(f_{1}\right) f_{2} d M=\int_{M} f_{1} L_{D}\left(f_{2}\right) d M \tag{**}
\end{equation*}
$$

for $f_{1}, f_{2} \in \mathscr{E}{ }_{s}^{0}(M)$.
For $f \in \mathscr{E}{ }_{s}(M)$ and $m \in M$, we get

$$
\int_{H \cdot m} f d \dot{h}=\underline{f}(\pi(m)) c
$$

where c denotes a nonzero constant $\int_{H \cdot m} d \dot{h}$. Putting $\underline{f}_{1}=\Phi\left(f_{1}\right), \underline{f}_{2}=$ $\Phi\left(f_{2}\right)$ for $f_{1}, f_{2} \in \mathscr{E}_{s}^{0}(M)$, we get

$$
\begin{aligned}
\int_{M} L_{D}\left(f_{1}\right) f_{2} d M & =\int_{B}\left[\int_{F \cdot m} L_{D}\left(f_{1}\right) f_{2} d \dot{h}\right] \delta d B \\
& =\int_{B}\left[\int_{H \cdot m} L_{D}\left(f_{1}\right) d \dot{h}\right] c \bar{\delta} \underline{f}_{2} d B \\
& =c^{2} \int_{B} \underline{L_{D}\left(f_{1}\right) f_{2} \delta d B .} .
\end{aligned}
$$

Thus we get from (***)

$$
\int_{B} L_{D}\left(f_{1}\right) f_{2} \delta d B=\int_{B^{-}} f_{1} L_{D}\left(f_{2}\right) \delta d B
$$

for $f_{1}, f_{2} \in \mathscr{E}_{s}^{0}(M)$. By the definition of $\Delta\left(L_{D}\right)$ we get $\underline{L_{D}(f)}=$ $\Delta\left(L_{D}\right)(\underline{f})$ for $f \in \mathscr{E}{ }_{s}(M)$, so

$$
\int_{B}\left(L_{D}\right)\left(\underline{f}_{1}\right) \underline{f}_{2} \delta d B=\int_{B} \underline{f}_{1} \Delta\left(L_{D}\right)\left(\underline{f}_{2}\right) \delta d B .
$$

This expression implies that $\Delta\left(L_{D}\right)$ is symmetric with respect to $\delta d B$. Since L_{B} is symmetric with respect to $d B, \delta^{-1 / 2} L_{B^{\circ}} \delta^{1 / 2}$ is symmetric with respect to $\delta d B$ and it clearly agrees with L_{B} up to lower order terms. The symmetric operators $\Delta\left(L_{D}\right)$ and $\delta^{-1 / 2} L_{B} \delta^{1 / 2}$ agree up to an operator of order $\leqq 1$, thus this operator, being symmetric, must be a function. By applying the operators to the constant function 1, we get

$$
\Delta\left(L_{D}\right)(1)-\delta^{-1 / 2} L_{B} \circ \delta^{1 / 2}(1)=-\delta^{-1 / 2} L_{B}\left(\delta^{1 / 2}\right) .
$$

Thus

$$
\Delta\left(L_{D}\right)=\delta^{-1 / 2} L_{B^{\circ}} \circ \delta^{1 / 2}-\delta^{-1 / 2} L_{B}\left(\delta^{1 / 2}\right) .
$$

This completes the proof of our theorem.
Remark. The example of " $R S$-manifold of almost fibered type"
given by S. Kashiwabara (Apendix 5 in [3]) is a foliated manifold with a 1 -dimensional foliation and bundle-like metric. Each leaf of the foliation is a "S-geodesic." This example is constructed from the space D which consists of all points $x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}+t e_{4}$ such that $\left|x_{i}\right| \leqq 1(i=1,2,3), \quad 0 \leqq t \leqq 1$, where ($e_{1}, e_{2}, e_{3}, e_{4}$) denotes an orthonormal frame with origin o in Euclidean 4 -space. If S-geodesics are of direction of e_{4}, a leaf through the origin o has nontrivial holonomy group. Then $\delta=1$.

Remark. The semi-reducible Riemannian space are a special class of foliated manifolds with bundle-like metrices. The metric of such a space has the local expression

$$
d s^{2}=\sigma(y) q_{i j}(x) d x^{i} d x^{j}+g_{\alpha \beta}(y) d y^{\alpha} d y^{\beta}
$$

(cf. [4]). Then δ is defined from σ.

References

1. W. J. Baily, Jr., The decomposition theorem for V-manifolds, Amer. J. Math., 78 (1956), 862-888.
2. S. Helgason, A formula for the radial part of the Laplace-Beltrami operator, J. Differential Geometry, 6 (1972), 411-419.
3. S. Kashiwabara, The structure of a Riemannian manifold admitting a parallel field of one-dimensional tangent vector subspaces, Tohoku Math. J., 11 (1959) 327-350.
4. B. L. Reinhart, Foliated manifolds with bundle-like metrices, Ann. of Math., 66 (1959), 119-132.
5. ——, Closed metric foliations, Michigan Math. J., 8 (1961), 7-9.
6. I. Satake, On generalization of the notion of manifolds, Proc. Nat. Acad. Sci.
U. S. A., 42 (1956), 359-363.
7. The Gauss-Bonnet theorem for V-manifolds, J. Math. Soc. of Japan, 9 (1957), 464-492.
8. I. Vaisman, Cohomology and Differential Forms, Marcel Dekker, Inc., New York, 1973.

Received July 6, 1976 and in revised form October, 25, 1976.
Kanazawa University
Marunouchi, Kanazawa 920, Japan

