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THE EXTENDABILITY AND UNIQUENESS OF SOLUTIONS
OF ORDINARY DIFFERENTIAL EQUATIONS

STEPHEN R. BERNFELD

The extendability of solutions of ordinary differential
equations is a fundamental and important property since
the analysis of stability and boundedness of solutions requi-
res extendability. This paper is concerned with the preser-
vation of the extendability and uniqueness of solutions under
perturbations. In particular conditions on the right hand
side of x=f(x)Jrh(t) are exhibited which guarantee the
extendability of solutions whenever the solutions of the
unperturbed equation x—f(x) extend.

This paper continues the author's previous study [1] and also
includes the question of uniqueness of the zero solution of perturbed
equations satisfying an Osgood condition [5] (See also [2] for recent
results on the uniqueness of perturbed systems.) Examples are
provided to demonstrate the strength of our results. The interested
reader may look in [4], [5], [6] for other results on extendability.

2* Notation and preliminaries• Let Rd denote d-dimensional
space. We represent solutions of the Cauchy problem x — f(t, x),
x(Q = χQ by x(t, ί0, xQ). We shall usually be analyzing the equations

(U) x = f(x) ,

(P) x = f(x) + hit) ,

where f:R—*R+ is continuous and h:R—+R is Lebesgue measura-
ble, and

( * )
J fir)

Condition (*) is equivalent to the extendability of all solutions of
(U) ([1]). We investigate the class of functions hit) which preserve
the extendability of solutions and show by example that this class
is, in a meaningful sense, "maximal." Again if we substitute the
word uniqueness for extendability in each of our theorems, the
results hold by noting condition (*) is essentially the Osgood condi-
tion at infinity.

3* Results and examples* Before we state our results we
will need the following definitions.
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DEFINITION 3.1. Let S(T) be the class of continuous functions
hit), such that k: R+ —> R and there exists toeR+ such that h(tQ) >

DEFINITION 3.2. Let S(T) be the class of continuous functions
h{t) where h: R+-+R such that k{t) < T almost everywhere, T ;> 0.

DEFINITION 3.3. Let *S(T) be the class of continuous functions
hit), where k: R+ —> R such that there exists t0 such that h(t0) <

DEFINITION 3.4. Let S(T) be the class of continuous functions
hit), where h:R+-+R such that k(t)>-T almost everywhere, Γ^O.

Using these definitions we see that S(T) Γ\ *S(B) is the set of
continuous functions hit), where h: R+ —* R, such that there exists
a ί0 > 0 and a £, > 0 such that h(t0) > T ^ 0 and fofo) < - ΰ ^ 0.
Similarly, S(Γ) Π S(B) is the set of continuous functions h(t), where
h:R+->R, such that -R<h(t)< T almost everywhere (T and B
can both assume + °°).

We now state our results leaving the proofs to § 4.

THEOREM 3.1. Assume f;R~+R such that

lim inf f(x) ^ - T , T ^ 0

lim sup fix) £ B , J5 ^ 0 .
X—>—oo

αiί solutions of

(P) x - f(x) +

m the future for one h(t) e S(T) Π *S(B) i/ and only if all
solutions of (P) exist in the future for all h(t) e S{T) Π

REMARK. An immediate consequence of Theorem 3.1 is the
following: we assume fix) > 0 for all x > 0 and fix) < 0 for all
x < 0, and all solutions of x = /(a?) exist in the future. The set
S(0) Π *S(0) is the set of all continuous functions hit) which change
sign. Thus, according to Theorem 3.1, if we know there exists a
continuous function h^t) such that \hAf)\ is very "small" on a
very "small" interval and such that all solutions of

x = fix) + hjt)
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exist in the future, then no matter how "large" we allow I MO I to
be we still have that all solutions of

* = fix) + h(t)

exist in the future. On the other hand, if we suppose there exists
a function gx(t) such that \gxit)\ is very large and such that there
exist solutions of

x = fix) + &(ί)

which do not exist in the future, then no matter how "small"
|flr2(ί)l is made, there exist solutions of

* = fix) + git)

which do not exist in the future.
In [1], we considered the problem of the existence in the future

of all solutions of

(F) x = fit, x) + hit) ,

where f:R x R~>R and h:R—>R, and both / and h were conti-
nuous; and we provided sufficient conditions on / such that all
solutions of (P') existed in the future for all continuous h. Now
we will discuss the reduced problem in which f: R-+R and provide
weaker conditions on / to get similar results.

THEOREM 3.2. If lim i n f ^ fix) = - T and lim supa.__oβ fix)=B; T,
B ^ 0, then all solutions of

X = f(χ) + hit)

exist in the future if h(t)eS(T) Π SiB).

REMARK. If f:R+-+Rif: R~-+R) then let B = oo(Γ = oo).

We will now construct an example which shows that the set
SiT) cannot be extended to include those continuous functions {h(t)}
such that h{t) = T on an arbitrary interval [α, b] and 0 ^ hit) < T
everywhere else.

EXAMPLE 3.1. We define the following function f:R+—>R: for
each integer n ^ 1 such that n ^ x ^ n + 1

f(n)= - Γ

f(x) = x\ n + -±-^x^n
(n + I)8
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and f(x) is linear on

n Ξg x <; n +
nό

and on

n + 1 _ <ς x <; n + i f

in + I)3

and on [0, 1] such that /(0) = 0. Hence we have

lim inf fix) = - T ,

and all solutions of

* = /(*)

exist in the future. We claim that there exist solutions of

(P) x = fix) + hit)

which do not exist in the future for any hit) described above. For
t e [a, 6], (P) becomes

(3.1) x - fix) + T ,

and it suffices to show that there exist solutions of (3.1) which do
not exist on [α, b]; that is, if t0 = a, there exists a point xQ and a
solution x( , a, x0) of (3.1) such that

x(t9 to, χo) ̂ ^ °° as ί —> έ ^ 6 .

We shall prove \ dx/f(x) + T is finite, which will establish the claim.

We have

r dx _
T

+ X area of Rn ,

o fix) + T

2α;2 + Γ

where i2w is the rectangle of height n and base 2/n2. Therefore,
area of Rn = 2/^2 and

Σ area Rn

= Σ — Γ <2
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Hence, since

f°° dx .
I < oo
J*o T + X2

we have

dx
\: /?/ Λ i ATI

fix) + T

We can pick x so large that

dx
' fix) + T

< b - a

which implies, for the initial point (α, x), there exists a solution of
(3.1), a?( , α, #), such that

x{t, a, x) > oo a s t > t < b ,

thus proving our claim.

REMARK. When B = T = oo, Theorem 3.2 implies that all solu-
tions of

X = f(χ) + h(t)

exist in the future for all continuous functions h(t).
If we apply Theorems 3.1 and 3.2 to Example 3.1 we find that

if we consider

* = f(%) , x > 0

x = — /(—x) , x < 0 ,

then the only admissible perturbation term is h(t) = 0; that is, no
other continuous function can perturb this system and still preserve
existence in the future.

4* Proofs* We now state and prove two lemmas needed in
the proof of Theorem 3.1.

LEMMA 4.1. Assume liin^oo inf f(x) ^ — Γ, T^ 0, where f:R+—>R
is continuous. Then all solutions of

(P) * = f{x) + hit)

exist positively in the future for one hit) e <S(JΓ) if and only if all
solutions of (P) exist positively in the future for all hit) e S(Γ).
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Proof. The sufficiency follows immediately.
Conversely, assume all solutions exist positively in the future

for

x = f(χ) + j(t)

for some j(t)eS(T). Assume there exists g(t)eS(T), points t0, t, x0,
and a solution x( , t0, x0) of

x = fix) + 9(t)

such that x(t> t0, u ; 0 )^+oo as ί ^ ί . We define

h(χ) = f(x) + T .

There exists Kt> T such that g(t) ^ K, for t e [tQ, t]. Defining

we have

f{x) + g(t) ^ h(x) + K2

for ί e [ί0, ί]. Hence we have the existence of a solution z{ , ί0, x0)
of

/γ — 7j I/y i I Ί\
%kι — IvXtAjj \Γ -*-^-2

which does not exist on [tQ, t]. F r o m [1] we have

dx

dx ^ ->o for any C> 0 .
h(x) + C

Since j(t)eS(T), we have the existence of a ί1 such that
j{tι) > Γ. Hence there exists an interval [a, b] with ί1 e [α, 6], and
a constant Kz > 0 such that i(£) - T ^ K3 for all ί e[α, 6]. Thus,
we have

x = /(«) + i(
^ h(x) + if3, for t e [a, b] .

Since

there exists a;1 such that
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Using (4.1) we see that there exists a solution #( , a, xι) of

x = h{x) + K3

such that

x(ί, α, x1) > oo as t > ? <; 6 .

Since /(#) + i(ί) ̂  fe(α ) + K3 for ί 6 [a, &], we have the existence
of a solution of

x = /(a?) + i (ί)

which does not exist positively in the future, a contradiction.

LEMMA 4.2. Assume f:R~-+R is continuous such that lmw.00 sup
f(x) ^ Γ, Γ ^ 0. 2 7 ^ αiί solutions of

x = fix) + h(t)

exist negatively in the future for one h(t) e *S(T) if and onlf if
all solutions exist negatively in the future for all h(t) e

Proof. We shall reduce the hypotheses to an equivalent set of
hypotheses satisfying Lemma 4.1. If we let y = — x then the
equation x = f(x) becomes

y = - f ( - v ) , v > o .

Since

lim sup f(x) ^ T
X->— oo

<—>liminf -[/(a?)] ^ - Γ

and

A(ί) 6 *S(T)

<—>-h(t)eS(T);

we can reduce the hypotheses on f(x), h(t) and on

x = /(») + Λ(ί)

in Lemma 4.2 by considering the change of variables y = — x
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which transforms the above differential equation to

V = - / ( - » ) ~ M«)

in which —/(•) and — h( ) satisfy the hypotheses of Lemma 4.1.
Hence we have produced an equivalence between Lemmas 4.1 and
4.2, thus proving the result.

Proof of Theorem S.I. If lim inf._« f(x) ^ - T, T ^ 0, and if
lim sup^.oo f(x) <LB, B ^ 0, we can apply Lemmas 4.1 and 4.2
respectively to h(t) e S(T) and h(t) e *S(B). Since existence in the
future is equivalent to positively and negatively existence in the
future we arrive at the result of Theorem 3.1 for h(t) e S(T) Π
*S(B).

Proof of Theorem 3.2. It is sufficient to show that if
lim inf x^ f(x) = - T, T ^ 0, then all solutions of

x = f(x) + h(t)

exist positively in the future for h(t)eS(T). Once this is shown,
we can use the same techniques as were used in the previous
theorem to obtain the result.

Since h(t)eS(T), we have h(t) < T almost everywhere on [0, co).
Hence h(t) = Γ o n a set of measure zero and there exists no t such
that h(t) > T. We may in fact assume h(t) < T everywhere and
then readily verify the result for h(t) eS(T).

We assume the theorem is not true; that is, there exist an
initial point (t0, x0), a point t, and a solution x(-, tQ, xQ) of

X = f(χ) + h(t)

such that x(t, ί0, xQ) —> + oo as t —> t. When we consider the interval
[t0, t] we can find an ει > 0 such that

h(t) ^ T - ε, for all t e [tQ, t] .

Since lim inf^oo f(x) — — T, we have a sequence of points {xn} such
that α?Λ —> oo and lim^̂ ôo /(α;%) = — T.

Hence there exists N sufficiently large such that for n^N,

f(xn)< - Γ + e ι β

By the continuity of f(x) we have for each n, N(dn), a δn neigh-
borhood of xn, such that x e N(dn) —• /(a;) S — T + ε1# Consequently,

f{x) + λ(ί) ^ ( - Γ + ex) + (Γ - e,) = 0
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for ί 6 [tQ, t] and x e N(δn), for all n ^ N. There exists Nl > N
such that x0 ^ xNl and f(x) + Λ(ί) <; 0 for x e N(δm) and ,ί 6 [tQ, t].
Therefore,

α?(ί, ί0, »o) ^ α ? ^

for ί e [ί0, £], a contradiction to x(t, t0, x0) —-> + °° as £ —»ί.

5* Concluding remarks* We see that many results on per-
turbed differential equations that utilize integral conditions can be
obtained using the techniques in this paper, as well as in [1] In
addition to uniqueness and extendability, one can get results on the
boundedness of solutions of differential equations. A somewhat
different analysis can also be realized when considering boundary
value problems. It is known that the Nagumo condition [6] is
extremely important in obtaining bounds for the derivative of a
solution of a two point boundary value problem. We observe that
by using the results of [1] and this paper, bounds on the derivative
of solutions of a perturbed differential equation with two point
boundary conditions can be obtained. This may be quite useful in
applications and numerical approximations.
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