BICONTRACTIVE PROJECTIONS AND REORDERING OF L_{p}-SPACES

S. J. Bernau and H. Elton Lacey

Abstract

On a Banach space we call a projection, P, bicontractive, if $\|P\| \leqq 1$ and $\|I-P\| \leqq 1$. In this paper we completely describe bicontractive projections on an L_{p}-space ($1 \leqq p<\infty$) by showing that for every such bicontractive projection P, $2 P-I$ is an involutive linear isometry. Duality then gives the same result for pre-dual L_{1}-spaces (in particular for M spaces). The analysis of bicontractive projections is used, with $p \neq 2$, to describe all Banach lattices which are linearly isometric to an L_{p}-space.

Such projections on $L_{p}(\mu)$, when $1<p<\infty, p \neq 2$, and μ is a probability measure, have been considered by Byrne and Sullivan [2]. Their analysis gave the basic result, that $2 P-I$ is an isometry. Their methods are different from ours and depend heavily on Lamperti's description [6] of isometries of L_{p}-spaces; and their approach is weighted much more towards independence of sub σ-algebras rather than the isometry property. Some minor changes in the formulation of their results were made later in Byrne's 1972 Ph. D dissertation at the University of Pittsburg. Our approach relies on our earlier complete description [1] of contractive projections on an L_{p}-space. We include, in §3, a rapid survey of some of the Byrne, Sullivan results where their approach is different and outline very simple deductions of their results from ours.

The question of Banach lattice orderings of L_{p}, under the usual norm, have been considered, with $1 \leqq p<\infty$ and $p \neq 2$, for the separable case by Lacey and Wojtaszczyk [5]. Their results also depend on the Lamperti isometry results and crucially on separability. Our analysis uses our previous discussion of contractive and bicontractive projections and gives a complete generalization of their work.

Throughout the paper we assume $1 \leqq p<\infty$ and $p \neq 2$. We will write $L_{p}=L_{p}(X, \Sigma, \mu)$ for the standard real or complex L_{p} space determined by a set X, a σ-ring, Σ, of subsets of X and a measure μ on Σ. If $f \in L_{p}, S(f)=\{t \in X: f(t) \neq 0\}$, as in [1] the ambiguity of a set of measure zero is irrelevant. Where our results are true for either choice of scalar field the field will not be specified. Where the scalar field is specified the result will be true only for the specified choice. The case $p=2$ is omitted because the theorems we prove are all trivially true, or trivially false, in this case.
2. Bicontractive projections. In this section we prove the following:

Theorem 2.1. If P is a bicontractive projection on L_{p}, then $U=2 P-1$ is an isometric involution on L_{p}.

The proof of this theorem will follow from the equivalent result.
Theorem 2.2. If P is a bicontractive projection on $L_{p}, f=P f$, and $g=(I-P) g$, then $\|f+g\|=\|f-g\|$.

The equivalence of these two is based on the observations $2 P-$ $I=P-(I-P)$ and for $f=P f, g=(I-P) g, f-g=(2 P-I)(f+g)$.

We obtain these results in a series of technical lemmas.

Lemma 2.3. If P is a bicontractive projection on L_{p} and J denotes the band projection on $\mathscr{R}(P)^{\perp \perp}$ (the band generated by the range of P), then $P=P J=J P$.

Proof. By [1, Theorem 3.5] this is true, if P is merely contractive, for $p \neq 1$. We assume then that $p=1$ and put $A=P-P J$. Suppose $x \perp \mathscr{R}(P)$

$$
\|x\|+\|A x\|=\|x-A x\|=\|x-P x\| \leqq\|x\|
$$

because P is bicontractive. Hence $A x=0$. Thus $A(I-J)=0$ and $A=A(I-J)+A J=0$.

Taking Lemma 2.3 and the uniqueness clause of [1, Theorem 3.5] into account we conclude that for all $p, 1 \leqq p<\infty, p \neq 2$, if $f=P f$ and $h \in f^{\perp \perp}$, then

$$
P h=f \mathscr{C}\left(\Sigma_{0},|f|^{p} \mu\right)(h / f),
$$

where $\Sigma_{0}=\{S(f): f \in \mathscr{R}(P)\}$ is the sub σ-ring of Σ consisting of supports of functions in $\mathscr{R}(P)$ and $\mathscr{E}\left(\Sigma_{0},|f|^{p} \mu\right)$ is the conditional expectation determined by the finite measure $|f|^{p} \mu$ and the sub σ ring Σ_{0}. It follows from this that if $f=P f$ or if $P f=0$ (so that $f=(I-P) f)$ and J_{f} is the band projection on $f^{\perp \perp}$, then $P J_{f}=J_{f} P$. (Again this is automatic for $p>1$ by [1, Lemma 2.3].)

Lemma 2.4. Let P be a bicontractive projection on L_{p}, suppose $f=P f, g=(I-P) g$, and $J_{f}=J_{g} . \quad$ If $\Sigma_{f}=\left\{S(h): h \in f^{\perp \perp} \cap \mathscr{R}(P)\right\}$, $\Sigma_{g}=\left\{S(k): k \in g^{1.1} \cap \mathscr{R}(I-P)\right\}$ then the sub σ-rings Σ_{f}, Σ_{g} are equal.

Proof. Since $P J_{f}=J_{f} P$ we have $\Sigma_{f}=\left\{A \cap S(f): A \in \Sigma_{0}\right\}$ and similarly for Σ_{g}. If $S(h) \subset S(f)$ and $h=P h$, then $P_{h}=J_{h} P=P J_{h}$ as noted above. Hence $(I-P) J_{h} g=J_{h}(I-P) g=J_{h} g$ so that $S(h)=$ $S\left(J_{h} g\right) \in \Sigma_{g}$. Similarly $\Sigma_{g} \subset \Sigma_{f}$ and equality follows.

Now we start on the proof of Theorem 2.2. Let $f \in \mathscr{R}(P)$, $g \in \mathscr{R}(I-P)$. Since J_{f}, J_{g} commute with each other and with P we have $J_{g} f \in \mathscr{R}(P), J_{f} g \in \mathscr{R}(I-P)$. Since $\|f+g\|=\|f-g\|$ if and only if $\left\|J_{g} f+J_{f} g\right\|=\left\|J_{g} f-J_{f} g\right\|$ we may, and will, assume that $J_{g}=J_{f}$. Writing Σ_{1} for $\Sigma_{f}=\Sigma_{g}$ (Lemma 2.4) we have

$$
P J_{f} h=f \mathscr{E}\left(\Sigma_{1},|f|^{p} \mu\right)(h / f)
$$

and

$$
\left(J_{f}-P J_{f}\right) h=g \mathscr{C}\left(\Sigma_{1},|g|^{p} \mu\right)(h / g) \quad\left(h \in L_{p}\right)
$$

Lemma 2.5. With notation as in Lemma 2.4, $(g / f)^{2}$ is Σ_{1-} measurable, and so is $|g / f|$.

Proof. Suppose first that $1 \leqq p<2$. Since $P g=0$ we have $f \mathscr{E}\left(\Sigma_{1},|f|^{p} \mu\right)(g / f)=0$; but $S(g)=S(f) \in \Sigma_{1}$ so $\mathscr{E}\left(\Sigma_{1},|f|^{p} \mu\right)(g / f)=0$. If $A \in \Sigma_{1}$

$$
\int_{A}(|f| /|g|)^{p}(g / f) \cdot|g|^{p} d \mu=\int_{A}(g / f) \cdot|f|^{p} d \mu=0 .
$$

This gives $\mathscr{E}\left(\Sigma_{1},|g|^{p} \mu\right)\left[(|f| /|g|)^{p}(g / f)\right]=0 . \quad$ Since $1 \leqq p<2$,

$$
\left|(|f| /|g|)^{p}\left(g^{2} / f\right)\right|=|f|^{p-1}|g|^{2-p} \leqq(|f|+|g|)^{p-1+2-p}=|f|+|g| \in L_{p}
$$

We conclude that $\left(J_{f}-P J_{f}\right)\left((|f| /|g|)^{p}\left(g^{2} / f\right)=0\right.$ so that $\left((|f| /|g|)^{p}\left(g^{2} / f\right)\right) \in$ $\mathscr{R}\left(P J_{f}\right)$. In particular $\left(|f| /|g|^{p}\left(g^{2} / f^{2}\right)\right.$ is Σ_{1}-measurable.

If $2<p<\infty$ we consider the bicontractive projection $\left(P J_{f}\right)^{*}$ on $L_{p^{\prime}}$ where $1 / p+1 / p^{\prime}=1$. By [1, Lemma 2.2] $f^{*}=|f|^{p-1} \operatorname{sgn} \bar{f} \in$ $\mathscr{R}\left(P J_{f}^{*}\right)$ and $g^{*}=|g|^{p-1} \operatorname{sgn} \bar{g} \in \mathscr{R}\left(\left(J_{f}-P J_{f}\right)^{*}\right)$. Since the map $h \mapsto$ $\mid h^{p-1} \operatorname{sgn} \bar{h}$ does not change supports we conclude from what we have just proved that $\left(g^{*} / f^{*}\right)^{2}$ is Σ_{1}-measurable, hence, so is $(g / f)^{2}$.

Our lemma follows:
Lemma 2.6. With notation as in Lemma 2.4, define $B=$ $\{t \in S(f): 0 \leqq \arg (g / f)<\pi\}$ and $B^{\prime}=S(f) \sim B$.
(i) The $\operatorname{map} h \mapsto h\left(\chi_{B}-\chi_{B^{\prime}}\right)$ is an involutive linear isometry of $\mathscr{R}\left(P J_{f}\right)$, onto $\mathscr{R}\left(J_{f}-P J_{f}\right)$.
(ii) If $h \in \mathscr{R}\left(P J_{f}\right),\left\|h \chi_{B}\right\|^{p}=1 / 2\|h\|^{p}=\left\|h \chi_{B^{\prime}}\right\|^{p}$, and $P\left(h \chi_{B}\right)=$ $(1 / 2) h=P\left(h \chi_{B^{\prime}}\right)$.

Proof. Consider $g\left(\chi_{B}-\chi_{B^{\prime}}\right) / f$. We have $\left|g\left(\chi_{B}-\chi_{B^{\prime}}\right) / f\right|=|g / f|$ which is Σ_{1}-measurable by Lemma 2.5. By definition of B, $\arg g\left(\chi_{B}-\chi_{B^{\prime}}\right) / f \in[0, \pi)$ so Σ_{1}-measurability of $g\left(\chi_{B}-\chi_{B^{\prime}}\right) / f$ follows from that of g^{2} / f^{2} (Lemma 2.5 again). Hence $g\left(\chi_{B}-\chi_{B^{\prime}}\right) / f$ is Σ_{1} measurable so that $P\left(g\left(\chi_{B}-\chi_{B^{\prime}}\right)\right)=f_{\mathscr{E}}\left(\Sigma_{1},|f|^{p} \mu\right)\left(g\left(\chi_{B}-\chi_{B^{\prime}}\right) / f\right)=$ $g\left(\chi_{B}-\chi_{B^{\prime}}\right)$.

Now if $h \in \mathscr{R}\left(J_{f}-P J_{f}\right), h / g$ is Σ_{1}-measurable and $h\left(\chi_{B}-\chi_{B^{\prime}}\right) / f=$ $(h / g)\left(g\left(\chi_{B}-\chi_{B^{\prime}}\right) / f\right)$ is Σ_{1}-measurable. It follows as above that $h\left(\chi_{B}-\chi_{B^{\prime}}\right) \in \mathscr{R}\left(P J_{f}\right)$. Similarly, if $h \in \mathscr{R}\left(P J_{f}\right), h\left(\chi_{B}-\chi_{B^{\prime}}\right) \in \mathscr{R}\left(J_{f}-P J_{f}\right)$. This proves (i).

For (ii) take $h \in \mathscr{R}\left(P J_{f}\right)$; by (i), $h\left(\chi_{B}-\chi_{B^{\prime}}\right) \in \mathscr{R}\left(J_{f}-P J_{f}\right)$ so $P\left(h \chi_{B}\right)=P J_{f}\left(h \chi_{B}\right)=P\left(h \chi_{B^{\prime}}\right)=(1 / 2) P\left(h\left(\chi_{B}+\chi_{B^{\prime}}\right)\right)=(1 / 2) P h$.

Apply this to the special case when $h=\chi_{A} f$ with $A \in \Sigma_{1}$. We have

$$
\begin{aligned}
\int_{A \cap B}|f|^{p} d \mu & =\int_{A}\left(h \chi_{B} \mid f\right)|f|^{p} d \mu \\
& =\int_{A} \mathscr{E}\left(\Sigma_{1},|f|^{p} d \mu\right)\left(h \chi_{B} / f\right)|f|^{p} d \mu \\
& =\int_{A}\left(P\left(h \chi_{B}\right) / f\right)|f|^{p} d \mu \\
& =\frac{1}{2} \int_{A}(P h / f)|f|^{p} d \mu \\
& =\frac{1}{2} \int_{A}|f|^{p} d \mu
\end{aligned}
$$

Hence, $\int_{B} \chi_{A}|f|^{p} d \mu=\int_{B} \chi_{A}|f|^{p} d \mu=1 / 2 \int|f|^{p} d \mu\left(A \in \Sigma_{1}\right)$. This extends to Σ_{1}-simple functions and hence to all elements of $L_{1}\left(\Sigma_{1},|f|^{p} \mu\right)$. In particular, if $h \in \mathscr{R}\left(P J_{f}\right),|h / f| \in L_{1}\left(\Sigma_{1},|f|^{p} \mu\right)$ and

$$
\left\|h \chi_{B}\right\|^{p}=\int_{B}|h / f|^{p}|f|^{p} d \mu=\left\|h \chi_{B^{\prime}}\right\|^{p}=1 / 2\|h\|^{p} .
$$

Proof of Theorem 2.2. We apply Lemma 2.6. By (i), $h=f \pm$ $g\left(\chi_{B}-\chi_{B^{\prime}}\right) \in \mathscr{R}\left(P J_{f}\right) . \quad$ By (ii)

$$
\int_{B}|f \pm g|^{p} d \mu=\left\|h \chi_{B}\right\|^{p}=\left\|h \chi_{B^{\prime}}\right\|^{p}=\int_{B^{\prime}}|f \mp g|^{p} d \mu
$$

Hence

$$
\begin{aligned}
\|f+g\|^{p} & =\int_{B}|f+g|^{p} d \mu+\int_{B^{\prime}}|f+g|^{p} d \mu \\
& =\int_{B^{\prime}}|f-g|^{p} d \mu+\int_{B}|f-g|^{p} d \mu \\
& =\|f-g\|^{p}
\end{aligned}
$$

Our next lemma will be used in $\S \S 3$ and 4.
Lemma 2.7. Let P be a bicontractive projection on L_{p} such that $f \in \mathscr{R}(P), g \in \mathscr{R}(I-P)$ and $f^{\perp \perp}=g^{\perp \perp}$, and suppose $B \in \Sigma$ is chosen as in Lemma 2.6. If $h \in L_{p}$, and $S(h) \subset B$, then $h=2 \chi_{B} P h$; while if $S(h) \subset B^{\prime}, h=2 \chi_{B^{\prime}} P h$.

Proof. By Lemma 2.6, $h-\left(\chi_{B}-\chi_{B^{\prime}}\right) P h=\left(\chi_{B}-\chi_{B^{\prime}}\right)(I-P) h \in$ $\mathscr{R}(P)$. Hence, $h-\left(\chi_{B}-\chi_{B^{\prime}}\right) P h=P\left(h-\left(\chi_{B}-\chi_{B^{\prime}}\right) P h\right)=P h$ so that $h=2 \chi_{B} P h$ as required. The case $S(h) \subset B^{\prime}$ is similar.

We now answer a question raised in conversation with David Dean and Bill Johnson.

Theorem 2.8. Let X be a predual L_{1}-space and P a bicontractive projection on X; then $2 P-I$ is an isometry on X.

Proof. The dual space X^{*} of X is an L_{1}-space and the adjoint operator P^{*} is a bicontractive projection on X^{*}. By Theorem 2.2, $2 P^{*}-I^{*}$ is an isometry on X^{*}. A routine computation shows that any linear operator whose adjoint is an isometry of X^{*} onto X^{*}, is itself an isometry. Our theorem is proved.
3. The results of Byrne and Sullivan. We first summarise the main definitions and results from [2]. For this discussion $1<$ $p<\infty \quad p \neq 2$ and μ is a probability measure.

An isometry U of L_{p} is reduced if for every $A \in \Sigma$ with $\mu A>0$, there exists $E \in \Sigma$ such that $E \subset A$ and $S\left(U \chi_{E}\right) \neq E$ (meaning $\left.\mu\left(E \Delta S\left(U \chi_{E}\right)\right)>0\right)$. A bicontractive projection is total if $\mathscr{R}(P)^{\perp \perp}=$ $L_{p}=\mathscr{R}(I-P)^{\perp \perp}$, and independent if it is total and the σ-ring $\Sigma_{1}=\{S(f): f \in \mathscr{R}(P)\}$ and the ratio g / f, for some $f \in \mathscr{R}(P), g \in$ $\mathscr{R}(I-P)$, are independent for the measure $|f|^{p} \mu$. The theorems concerned follow.
(A) A total bicontractive projection is independent.
(B) The following are equivalent.
(a) There is a reduced reflection U with invariant subspace M.
(b) There is an independent bicontractive projection P with range M.
(c) There is a sub σ-ring, Σ_{1}, of Σ and a set $B \in \Sigma$ such that for every $E \in \Sigma$ there exist unique $A, C \in \Sigma_{1}$ (up to sets of measure zero) such that $E=(A \cap B) \cup\left(C \cap B^{\prime}\right)$. (One way to achieve uniqueness is to require that B satisfies the condition, if $A \in \Sigma_{1}$ and $\mu(A \cap B)=0$ or $\mu\left(A \cap B^{\prime}\right)=0$, then $\mu A=0$.)

For (A) our analysis in §2 applies directly. The totality hypothesis lets us choose $f \in \mathscr{R}(P), g \in \mathscr{R}(I-P)$ such that $J_{f}=J_{g}=I$. Then we use Lemma 2.6 to find B such that $f\left(\chi_{B}-\chi_{B^{\prime}}\right) \in \mathscr{R}(I-P)$ and check that Σ_{1} and $\chi_{B}-\chi_{B^{\prime}}\left(=f\left(\chi_{B}-\chi_{B^{\prime}}\right) / f\right)$ are independent for $|f|^{p} \mu$.

To show that (b) implies (c) in (B) we use Lemma 2.7. We have f, g, B as above and take $h=f \chi_{E_{\cap B}}(E \in \Sigma)$. Then $f \chi_{E \cap B}=h=2 \chi_{B} P h_{\text {. }}$. Hence $A=S(P h) \in \Sigma_{1}$ and $E \cap B=A \cap B$. Similarly $C=S\left(P\left(f \chi_{E \cap B}\right)\right)$ satisfies $E \cap B=C \cap B$.

To show that (a) implies (b) put $P=(1 / 2)(I+U)$. Since U is isometric and $U^{2}=I, P$ is a bicontractive projection with range M. If $g \perp \mathscr{R}(P)$ put $A=S(g)$ and find $E \in \Sigma$ such that $E \subset A$ and $S\left(U \chi_{E}\right) \neq E$. Then $\chi_{E} \in \mathscr{R}(P)^{\perp} \subset \mathscr{R}(I-P)$ and $U \chi_{E}=-\chi_{E}$. This gives $S\left(U \chi_{E}\right)=E$ contrary to our choice of E. We conclude that $L_{p}=\mathscr{R}(P)^{\perp \perp}$. Since U reduced implies $-U$ reduced we see also that $L_{p}=\mathscr{R}(I-P)^{+\perp}$; thus P is total and (b) follows from (A).

Finally for (c) implies (a) we can argue as in [2]. For $E \in \Sigma$ define $\quad T(E)=\left(A \cap B^{\prime}\right) \cup(C \cap B)$ for $E=(A \cap B) \cup(C \cap B)$ with $\left.A, C \in \Sigma_{1}\right)$. Now set $\mu^{*}(E)=\mu(T(E))$ and let f^{p} be the Radon Nikodym derivative of μ^{*} with respect to μ. Then define U by $U \chi_{E}=f \cdot \chi_{T(E)}(E \in \Sigma)$ and extend the definition to L_{p} in the obvious way. It is easy to check that U is an isometry. If $A \in \Sigma$ take $E=A \cap B$, then $T(E) \subset B^{\prime}$ and $S\left(U \chi_{E}\right)=S\left(f \chi_{T(E)}\right) \subset B^{\prime}$ so $S\left(U \chi_{E}\right) \neq E$.
4. Reordering of L_{p}. Here we consider the question, what are the vector-lattice orderings on L_{p} such that, under its usual norm, L_{p} is a Banach lattice. The real separable case has been considered by Lacey and Wojtaszczyk [5] who show that up to linear isometry and lattice isomorphism all such are obtained as $\widetilde{L}_{p}(X, \Sigma, \mu)=$ $L_{p}(A, \Sigma, \mu) \oplus L_{p}\left(B, \Sigma, E_{p}(2), \mu\right)$. Hence \tilde{L}_{p} denotes L_{p} with its new Banach lattice ordering. The direct sum is in the sense of Banach lattices, and $A, B \in \Sigma, A \cap B=\varnothing$. Finally $L_{p}\left(B, \Sigma, E_{p}(2), \mu\right)$ is the $E_{p}(2)$ valued L_{p}-space on B, where $E_{p}(2)$ denotes R^{2} with its natural L_{p}-norm but ordered by $\left(\xi_{1}, \xi_{2}\right) \geqq 0$ if and only if $\xi_{1}+\xi_{2} \geqq 0$ and $\xi_{1}-\xi_{2} \geqq 0$ (equivalently $\left.\xi_{1} \geqq\left|\xi_{2}\right|\right)$. We shall show that, apart from measurability of A, B their result is true in general for real L_{p}. Also, for complex L_{p} spaces the natural complex Banach lattice structure is unique.

We now begin our analysis. We write, again \tilde{L}_{p} to denote the space L_{p} with its usual norm and some vector lattice structure such that \widetilde{L}_{p} is a Banach lattice. Since L_{p} is weakly complete and c_{0} is not [3], L_{p} contains no linearly isomorphic copy of c_{0}, and we see by a result of Meyer-Nieberg [7] that \widetilde{L}_{p} has order continuous norm. Hence every band M in \widetilde{L}_{p} has associated with it a natural band
projection P_{M}. (If $M=\{f\}$ we write P_{f}.) The letters P, Q with and without subscripts, will usually denote \widetilde{L}_{p}-band projections. The letters J, K with or without subscripts will denote natural (i.e., $L_{p^{-}}$) band projections. The symbol, ${ }^{\perp}$, refers to disjointness or polar sets (bands) in L_{p}.

Lemma 4.1. Let P be an \widetilde{L}_{p}-band projection, and suppose $M \subset$ $\mathscr{R}(P), M \neq \varnothing$; then, if J_{M} is the natural band projection on $M^{\perp \perp}$, $P J_{M}=J_{M} P$.
(In fact Lemma 4.1 is valid for any bicontractive projective if $p=1$ and any contractive projection if $p>1$.)

Proof. From the discussion preceding Lemma 2.4 $P J_{f}=J_{f} P$ for all $f \in \mathscr{R}(P)$. Since the set of supports of elements of $\mathscr{R}(P)$ is a σ-ring [1, Lemma 3.1], the set $\left\{J_{f}: f \in \mathscr{R}(P)\right\}$ is upwards directed. (We only need a subspace of $\mathscr{R}(P)$, and the first paragraph of the proof of [1, Lemma 6.1] for this.) Since the norm in L_{p} is order continuous, J_{M} is the strong limit of a set of band projections each of which commutes with P. It follows that $P J_{M}=J_{M} P$.

Lemma 4.2. Let P, Q be bicontractive projections on L_{p} such that $\mathscr{R}(Q) \subset \mathscr{R}(P)$, then $\mathscr{R}(P) \cap \mathscr{R}(Q)^{\perp \perp} \cap \mathscr{R}(I-P)^{\perp \perp} \subset \mathscr{R}(Q)$.

Proof. Suppose $f \in \mathscr{R}(P) \cap \mathscr{R}(Q)^{\perp \perp} \cap \mathscr{R}(I-P)^{\perp \perp}$. By [1, Corollary 3.2] there exist $g \in \mathscr{R}(I-P)$ and $h \in \mathscr{R}(Q)$ such that $f \in$ $g^{\perp \perp} \cap h^{\perp \perp}$. Since $P J_{f}=J_{f} P$ we may assume $g^{\perp \perp}=f^{\perp \perp}$. Since $g \in$ $\mathscr{R}(I-P) \subset \mathscr{R}(I-Q),(I-Q) J_{g}=J_{g}(I-Q)$ so $J_{f} Q=Q J_{f}$ and we may also assume $h^{\perp \perp}=f^{\perp \perp}$.

Write $\Sigma_{P}=\left\{S(k): k \in f^{\perp \perp} \cap \mathscr{R}(P)\right\}$ and $\Sigma_{Q}=\left\{S(k): k \in f^{\perp \perp} \cap \mathscr{R}(Q)\right\}$. Clearly $\Sigma_{Q} \subset \Sigma_{P}$. By Lemma $2.4 \Sigma_{P}=\Sigma_{I-P} \subset \Sigma_{I-Q}=\Sigma_{Q}$ so $\Sigma_{P}=\Sigma_{Q}$.

Now, since $f, h \in \mathscr{R}(P), h^{\perp \perp}=f^{\perp \perp}$, and $h \in \mathscr{R}(Q)$, we have

$$
\begin{aligned}
f=P f & =h \mathscr{E}\left(\Sigma_{P},|h|^{p} \mu\right)(f / h) \\
& =h \mathscr{E}\left(\Sigma_{Q},|h|^{p} \mu\right)(f / h) \\
& =Q f
\end{aligned}
$$

Our lemma is proved.
Lemma 4.3. There is a minimal \tilde{L}_{p}-band projection P such that $\mathscr{B}(P)^{\perp \perp}=L_{p}$.
(Minimality is in the natural ordering of \widetilde{L}_{p}-band projections.)

Proof. Let \mathscr{I} denote the set of \widetilde{L}_{p}-band projections P such that $\mathscr{R}(P)^{\perp \perp}=L_{p}$ and let \mathscr{P} be a decreasing chain in \mathscr{F}. The infimum P_{0}, of \mathscr{P} in the set of \widetilde{L}_{p}-band projections has range $\bigcap\{\mathscr{R}(P): P \in \mathscr{P}\}$ Suppose $g \perp \mathscr{R}\left(P_{0}\right)$. Choose $P \in \mathscr{P}$ and put $h=$ $g-P g$. By [1, Corollary 3.2], using $\mathscr{R}(P)^{\perp \perp}=L_{p}$, there is $f \in \mathscr{R}(P)$ such that $f^{\perp \perp}=h^{\perp \perp}$. Hence $f \in \mathscr{R}(Q)^{\perp \perp} \cap \mathscr{R}(P) \subset \mathscr{R}(I-P)^{\perp \perp}$ $(Q \in \mathscr{P}, \mathscr{R}(Q) \subset \mathscr{R}(P))$. By Lemma $4.2, f \in \bigcap\{\mathscr{R}(Q): Q \in \mathscr{O}\}=\mathscr{R}\left(P_{0}\right)$ and $g \in f^{\perp}=h^{\perp}=(g-P g)^{\perp}$. Hence,

$$
\|g\|^{p} \geqq\|P g\|^{p}=\|P g-g\|^{p}+\|g\|^{p},
$$

so that $g=P g(P \in \mathscr{F})$. Thus,

$$
g \in \bigcap\{\mathscr{R}(P): P \in \mathscr{P}\}=\mathscr{R}\left(P_{0}\right) \perp g,
$$

and $g=0$ so that $P_{0} \in \mathscr{I}$. Zorn's lemma finishes our proof.
Now we must distinguish the real and complex cases.
Lemma 4.4. In the complex case, if f,g$\in L_{p}$ and $P_{f} g=0$, then $f \perp g$.

Proof. Let $h=J_{g} f, k=J_{f} g$. Then since J_{f}, J_{g} commute with P_{f}, P_{g} we have $h=P_{f} h$ and $P_{f} k=0$. Thus $P_{h} k=0$. Hence we may, and do assume that $f^{\perp \perp}=g^{\perp \perp}$. We have $f \in \mathscr{R}\left(P_{f}\right), g \in \mathscr{R}\left(I-P_{f}\right)$ and $f^{\perp \perp}=g^{\perp \perp}$. By Lemma 2.6, there is a set $B \in \Sigma$, such that $f\left(\chi_{B}-\chi_{B^{\prime}}\right) \in \mathscr{R}\left(I-P_{f}\right)\left(\right.$ where $\left.B^{\prime}=S(f) \sim B\right)$ and

$$
\int_{B}|f|^{p} d \mu=\int_{B^{\prime}}|f|^{p} d \mu=1 / 2 \int|f|^{p} d \mu=1 / 2\|f\|^{p}
$$

Since P_{f} is an \widetilde{L}_{p}-band projection,

$$
\begin{aligned}
\left\|f+f\left(\chi_{B}-\chi_{B^{\prime}}\right)\right\|^{p} & =\left\|f+i f\left(\chi_{B}-\chi_{B^{\prime}}\right)\right\|^{p} . \text { Now, by Lemma } 2.6 \text { again, } \\
\left\|f+f\left(\chi_{B}-\chi_{B^{\prime}}\right)\right\|^{p} & =\int_{B}|2 f|^{p} d \mu=2^{p-1}\|f\|^{p} ; \text { and } \\
\left\|f+i f\left(\chi_{B}-\chi_{B^{\prime}}\right)\right\|^{p} & =\int_{B}|(1+i) f|^{p} d \mu+\int_{B^{\prime}}|(1-i) f|^{p} d \mu \\
& =2^{p / 2}\|f\|^{p} .
\end{aligned}
$$

Since $p \neq 2$, we have $f=0$. This proves our lemma.
Corollary 4.5. In the complex case the minimal \widetilde{L}_{p}-band projection P such that $\mathscr{R}(P)^{+\perp}=L_{p}$ is the identity on L_{p}, and every \widetilde{L}_{p}-band is an L_{p}-band.

Lemma 4.6. Let P be an \tilde{L}_{p}-band projection, then
$\mathscr{R}(P) \cap \mathscr{R}(I-P)^{\perp \perp}$ is an \widetilde{L}_{p}-band with band projection $P K$ where K is the L_{p}-band projection on $\mathscr{R}(I-P)^{\perp \perp}$. In addition K is an \widetilde{L}_{p}-band projection.

Proof. Since the result is trivial in the complex case, by Corollary 4.5 , we assume we are working with real scalars. Since the norm in \widetilde{L}_{p} is order continuous and $\mathscr{R}(P) \cap \mathscr{R}(I-P)^{\perp \perp}$ is closed it is enough to show that $\mathscr{B}(P) \cap \mathscr{R}(I-P)^{\perp \perp}$ is a solid \widetilde{L}_{p}-sublattice of \widetilde{L}_{p}.

For this it is sufficient [5, Lemma 1] to show that if Q is an \widetilde{L}_{p}-band projection such that $\mathscr{R}(Q) \subset \mathscr{R}(P)$, then $Q(\mathscr{R}(P) \cap$ $\left.\mathscr{R}(I-P)^{\perp \perp}\right) \subset \mathscr{R}(P) \cap \mathscr{R}(I-P)^{\perp \perp}$. Let J be the L_{p}-band projection on $\mathscr{R}(Q)^{\perp \perp}$. By Lemma $4.1 J P=P J$. Hence, if $x \in \mathscr{R}(P) \cap$ $\mathscr{R}(I-P)^{\perp \perp}$, we have $J x=P J x=J P x \in \mathscr{R}(P) \cap \mathscr{R}(I-P)^{\perp \perp}$, and by Lemma 4.2,

$$
Q x=Q J x=J x \in \mathscr{R}(P) \cap \mathscr{R}(I-P)^{\perp \perp}
$$

Now $(I-P) K=I-P=K(I-P)$ so $P K=K P$ is a contractive projection with range $\mathscr{B}(P) \cap \mathscr{R}(I-P)^{\perp \perp}$. The uniqueness conditions of [1, Theorem 3.5], combined with Lemma 4.1, show that $P K$ is the \widetilde{L}_{p}-band projection on $\mathscr{R}(P) \cap \mathscr{R}(I-P)^{\perp \perp}$.

Finally $I-K=P-P K$ so that $I-K$ is an \tilde{L}_{p}-band projection and hence, so is K.

Lemma 4.7. Let P be a minimal \tilde{L}_{p}-band projection such that $\mathscr{R}(P)^{\perp \perp}=L_{p}$, and suppose $f, g \in \mathscr{R}(P)$ or $f, g \in \mathscr{R}(I-P)$, and $P_{f} g=0$, then $f \perp g$. (i.e., in the ranges of P and of $I-P, \widetilde{L}_{p^{-}}$ disjointness implies L_{p}-disjointness.)

Proof. Let J, K be the L_{p}-band projections on $\mathscr{R}\left(P_{f}\right)^{\perp \perp}$ and $\mathscr{R}\left(I-P_{f}\right)^{\perp \perp}$ respectively. By Lemma $4.6, J, K$ are \widetilde{L}_{p}-band projections. In particular J, K commute with all \widetilde{L}_{p}-band projections.

Suppose first that $f, g \in \mathscr{R}(P)$ and consider

$$
P_{0}=P(I-K)+P_{f} K+P(I-J)
$$

The summands are \widetilde{L}_{p}-band projections whose products in pairs are zero. Hence P_{0} is an \widetilde{L}_{p}-band projection with $\mathscr{R}\left(P_{0}\right) \subset \mathscr{R}(P)$. Suppose $x \in L_{p}$ and $x \perp \mathscr{R}\left(P_{0}\right)$. Since $P_{f} P_{0}=P_{f}$ we have $\mathscr{R}\left(P_{f}\right) \subset \mathscr{R}\left(P_{0}\right)$ so $J x=0$ and $x=(I-J) x$. Let $y \in L_{p}$, since $P J=J P, J P y=$ $P J y \perp x$ and $(I-J) P y=P(I-J) y \in \mathscr{R}\left(P_{0}\right) \perp x$. Hence $x \in \mathscr{R}(P)^{\perp}=$ $\{0\}$ and $x=0$.

By minimality, $P_{0}=P$, so that $J P K=P J K=P_{f} K$. Now we have $g \in \mathscr{R}\left(I-P_{f}\right) \cap \mathscr{R}(P)$ so $g=K g=P K g$. Hence $J g=J P K g=$ $P_{f} K g=P_{f} g=0$. Since $f=J f$ we have $f \perp g$ as required.

If $f, g \in \mathscr{R}(I-P)$ then by Lemma 4.6, $J(I-P)$ is an \widetilde{L}_{p}-band projection with range $\mathscr{R}\left(P_{f}\right)^{\perp \perp} \cap \mathscr{R}(I-P)=\mathscr{R}\left(P_{f}\right)^{\perp \perp} \cap \mathscr{R}(I-P) \cap$ $\mathscr{R}(P)^{\perp \perp}$. Since $\mathscr{R}\left(P_{f}\right) \subset \mathscr{R}(I-P)$, Lemma 4.2 shows that $\mathscr{R}\left(P_{f}\right)=$ $\mathscr{R}\left(P_{f}\right)^{\perp \perp} \cap \mathscr{R}(I-P)$. Hence $P_{f}=J(I-P)$. Since $g \in \mathscr{R}(I-P)$, $J g=J(I-P) g=P_{f} g=0$. Since $f=J f$, we have $f \perp g$ as required;

For the rest of this section we consider a fixed minimal $\widetilde{L}_{p}{ }^{-}$ band projection P such that $\mathscr{R}(P)^{\perp \perp}=L_{p}$. We write K for the L_{p}-band projection on $\mathscr{R}(I-P)^{\perp \perp}$. By Lemma $4.6, K$ is also an \widetilde{L}_{p}-band projection and by Corollary $4.5, K=0$ in the case of complex scalars.

Lemma 4.8. If $f, g \in \mathscr{R}(P)$ or if $f, g \in \mathscr{R}(I-P)$, then f and g are disjoint in L_{p} if and only if they are disjoint in \widetilde{L}_{p}. Consequently, $P_{f}=J_{f} P$ or $P_{f}=J_{f}(I-P)$ according as $f \in \mathscr{R}(P)$ or $f \in \mathscr{R}(I-P)$ and in either case J_{f} is an \widetilde{L}_{p}-band projection.

Proof. We consider $\mathscr{R}(P)$. By Lemma 4.7, the norm in $\mathscr{R}(P)$ is p-additive for the \widetilde{L}_{p}-ordering; i.e., if, $x, y \in \mathscr{R}(P)$ and $P_{x} y=0$ then

$$
\|x+y\|^{p}=\|x\|^{p}+\|y\|^{p}, \quad \text { (because } P_{x} y=0 \text { implies } x \perp y \text {). }
$$

By the well known characterisation of L_{p}-spaces, $\mathscr{P}(P)$, with its \widetilde{L}_{p}-order, is linearly isometric and lattice isomorphic to some L_{p} space [4, §15, Theorem 3]. Now if $f, g \in \mathscr{P}(P)$ and $f \perp g$ then $\|f+g\|^{p}+\|f-g\|^{p}=2\left(\|f\|^{p}+\|g\|^{p}\right)$ and the equality condition for Clarkson's inequality [6, Corollary 2.1] shows that f, g are $\widetilde{L}_{p}{ }^{-}$ disjoint. Continuing with $f \in \mathscr{R}(P)$ we see that J_{f} commutes with P_{f} and P so that $\mathscr{R}\left(P_{f}\right) \supset \mathscr{R}(P) \cap f^{\perp \perp}$ and $\mathscr{R}\left(P-P_{f}\right) \supset \mathscr{R}(P) \cap f^{\perp}$. It follows that $P_{f}=P J_{f}$, that $\mathscr{R}\left(P_{f}\right)^{\perp \perp}=f^{\perp \perp}$ and, by Lemma 4.6, that J_{f} is an \widetilde{L}_{p}-band projection.

The same argument works for $f, g \in \mathscr{R}(I-P)$.
Lemma 4.9. Let $f=P K f$, then there is a set $B_{f} \in \Sigma$ such that $f^{\perp \perp}$ with its \widetilde{L}_{p}-ordering is linearly isometric and lattice isomorphic to $L_{p}\left(B_{f}, \Sigma, E_{p}(2), \mu\right)$.

Proof. By Lemma 4.8, $f^{\perp \perp}$ is an \widetilde{L}_{p}-band. Since $f \in \mathscr{R}(I-P)^{\perp \perp}$ we can find $g \in \mathscr{R}(I-P)$ such that $g^{\perp \perp}=f^{\perp \perp}$. Define $B_{f}=\left\{t \in S_{f}\right.$: $0 \leqq \arg g / f<\pi\} ; \Sigma_{1}=\Sigma_{f}=\Sigma_{g}$ as in Lemmas 2.4, 2.5, 2.6, 2.7; write f_{1}, g_{1} for the \tilde{L}_{p}-absolute values of f, g respectively, and for $h \in f^{\perp \perp}$
define

$$
T_{f} h=\chi_{B} \cdot\left(\operatorname{sgn} \overline{f_{1}} \cdot P h \cdot u_{1}+\operatorname{sgn} \bar{g}_{1} \cdot(I-P) h \cdot u_{2}\right)
$$

with $u_{1}=(1,1), u_{2}=(1,-1) \in E_{p}(2)$. Since $K=0$ in the complex case we can assume we are in the real situation. Hence $\operatorname{sgn} \bar{f}_{1}+ \pm 1$, $\operatorname{sgn} \bar{g}_{1}= \pm 1$ and we have, using Lemma 2.6 as in the proof of Theorem 2.2.

$$
\begin{aligned}
\int \mid & \left.T_{f} h\right|^{p} d \mu \\
& =\int_{B}\left[\left|\operatorname{sgn} \bar{f}_{1} \cdot P h+\operatorname{sgn} \bar{g}_{1} \cdot(I-P) h\right|^{p}+\left|\operatorname{sgn} \bar{f}_{1} \cdot P h-\operatorname{sgn} \bar{g}_{1}(I-P) h\right|^{p}\right] d \mu \\
& =\int_{B}\left[|P h+(I-P) h|^{p}+|P h-(I-P) h|^{p}\right] d \mu \\
& =\int_{B}|P h+(I-P) h|^{p} d \mu+\int_{B^{\prime}}|P h+(I-P) h|^{p} d \mu \\
& =\|h\|^{p} .
\end{aligned}
$$

Hence T_{f} is an isometry of $f^{\perp \perp}$ into $L_{p}\left(B_{f}, \Sigma, E_{p}(2), \ell\right)$.
If $h \in f^{\perp \perp}$ and h is \widetilde{L}_{p}-positive, then $P h$ and $(I-P) h$ are $\widetilde{L}_{p^{-}}$ positive. Since $\mathscr{R}(P)$ and $\mathscr{R}(I-P)$ are abstract L_{p}-spaces and f_{1}, g_{1} are \widetilde{L}_{p}-positive, it follows as in the proof of [1, Theorem 4.1] that $P h$ and $(I-P) h$ are \widetilde{L}_{p}-positive if and only if $\operatorname{sgn} \bar{f}_{1} \cdot P h$ and $\operatorname{sgn} \bar{g}_{1} \cdot(I-P) h$ are positive in L_{p}. Thus T_{f} and T_{f}^{-1} are positive. To complete the proof it is sufficient to show that T_{f} is onto.

Suppose $u \in L_{p}\left(B_{f}, \Sigma, E_{p}(2), \mu\right)$, then $u=\operatorname{sgn} \overline{f_{1}} \cdot h_{1} u_{1}+\operatorname{sgn} \bar{f}_{2} \cdot h_{2} u_{2}$ with $h_{1}, h_{2} \in L_{p}\left(B_{f}, \Sigma, \mu\right)$.

Since $S\left(h_{1}\right) \cup S\left(h_{2}\right) \subset B_{f}$, Lemma 2.7 gives $h_{1}=2 \chi_{B} P h_{1}, h_{2}=2 \chi_{B} P h_{2}$. Put, $g=2 P h_{1}+2\left(\chi_{B}-\chi_{B^{\prime}}\right) P h_{2}$, then by Lemma 2.6, $\left(\chi_{B}-\chi_{B^{\prime}}\right) P h_{2} \in$ $\mathscr{R}(I-P)$ so that $T_{f} g=u$. Our lemma is proved.

Theorem 4.11. There are subsets A, B of X such that any σ finite subset of $A \cap B$ has measure zero and \widetilde{L}_{p} is linearly isometric and lattice isomorphic to $L_{p}(A, \Sigma, \mu) \oplus L_{p}\left(B, \Sigma, E_{p}(2), \mu\right)$. In the complex case $A=X$ and $B=\varnothing$.

Proof. \widetilde{L}_{p} decomposes into complementary \widetilde{L}_{p}-bands $\mathscr{R}(I-P)^{\perp}$ and $\mathscr{R}(I-P)^{\perp}$. Since $\mathscr{R}(I-P)^{\perp} \subset R(P)$, the \widetilde{L}_{p}-order on $\mathscr{R}(I-P)^{\perp}$ is that of an abstract L_{p}-space and $\widetilde{L}_{p^{-}}$and L_{p}-disjointness coincide in $\mathscr{R}(I-P)$.

Choose in $\mathscr{R}(I-P)^{\perp}$ a maximal \widetilde{L}_{p}-disjoint set $\left\{h_{\gamma}: \gamma \in \Gamma\right\}$ of \tilde{L}_{p}-positive elements, set $A=\bigcup\left\{S\left(h_{\gamma}\right): \gamma \in \Gamma\right\}$. Then as in the proof of [1, Theorem 4.1] the map $f \mapsto \sum_{r \in i} \operatorname{sgn} \bar{h}_{r} \cdot f$ is a linear isometry
and lattice isomorphism of $\mathscr{R}(I-P)^{\perp}$ with its \widetilde{L}_{p}-order to $\mathscr{R}(I-P)^{\perp}=L_{p}(A, \Sigma, \mu)$ with its natural order. (σ-finiteness of supports of integrable functions ensures that the summations are over countable sets and that all the relevant sums converge.)

For the \widetilde{L}_{p}-band, $\mathscr{R}(I-P)^{\perp \perp}$ we choose a maximal \widetilde{L}_{p}-disjoint subset $\left\{f_{0}: \delta \in \Delta\right\}$ in $\mathscr{R}(P) \cap \mathscr{R}(I-P)^{\perp \perp}$ and apply Lemma 4.10 to get sets $B_{\bar{\delta}}=B_{f_{\dot{\partial}}} \subset S\left(f_{\hat{\partial}}^{\prime}\right)$ and isometric isomorphisms $T_{\dot{\delta}}: f_{\hat{\delta}}^{\perp \perp} \rightarrow$ $L_{p}\left(B_{\dot{o}}, \Sigma, E_{p}(2), \mu\right)$. Then we put $B=\bigcup_{x}\left\{B_{\dot{o}}: \delta \in \Delta\right\}$ and check that $f \mapsto \sum_{\hat{j} \in!} T_{\bar{\delta}} f$ is a linear isometry and lattice isomorphism of $\mathscr{B}(I-P)^{\perp \perp}$ with its \widetilde{L}_{p}-ordering onto $L_{p}\left(B, \Sigma, E_{p}(2), \mu\right)$.

This shows that \widetilde{L}_{p} is linearly isometric and lattice isomorphic to $L_{p}(A, \Sigma, \mu) \oplus L_{p}\left(B, \Sigma, E_{p}(2), \mu\right)$ as claimed. In the complex case $P=I$ by Corollary 4.5.

Suppose $D \in \Sigma, D \subset A \cap B$ and $\mu(D)<\infty$, then $\chi_{D} \in L_{p}$. Because $D \subset A, \chi_{D} \in \mathscr{R}(I-P)$ and because $D \subset B, \chi_{D} \in \mathscr{R}(I-P)^{-1}$. Thus $\chi_{D}=0, \mu(D)=0$.

References

1. S. J. Bernau and H. Elton Lacey, The range of a contractive projection on an $L_{p^{-}}$ space, Pacific J. Math., 53 (1974), 21-41.
2. Charles Byrne, Jr. and Francis E. Sullivan, Contractive projeciions with contractive complement in L_{p}-space, J. Multivariate Anal., 2 (1972), 1-13.
3. Nelson Dunford and Jacob T. Schwartz, Linear Operators, Part I, Interscience, New York, 1958.
4. H. Elton Lacey, The Isometric Theory of Classical Banach Spaces, Springer-Verlag, Berlin, Heidelberg, New York, 1974.
5. E. Lacey and P. Wojtaszczyk, Banach lattice structures on separable L_{p} spaces, Proc. Amer. Math. Soc., 54 (1976), 83-89.
6. J. Lamperti, On the isometries of certain function spaces, Pacific J. Math., $\boldsymbol{8}$ (1958), 459-466.
7. P. Meyer-Nieberg, Charakteriserung einiger topologischer und ordnungs theoretischer Eigenschaften von Banachverbanden mit Hilfe disjunkter Folgen, Arch. Math., 24 (1973), 640-647.

Received June 24, 1975.
University of Texas at Austin
AUstin, TX 78712

