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BICONTRACTIVE PROJECTIONS AND REORDERING
OF ^-SPACES

S. J. BERNAU AND H. ELTON LACEY

On a Banach space we call a projection, P, bicontractive,
if | | P | | g 1 and \\I— P\\^l. In this paper we completely
describe bicontractive projections on an Lp-space ( l g p < ° ° )
by showing that for every such bicontractive projection P,
2P — I is an involutive linear isometry. Duality then gives
the same result for pre-dual I^-spaces (in particular for M-
spaces). The analysis of bicontractive projections is used,
with p Ψ 2, to describe all Banach lattices which are linearly
isometric to an Lp-space.

Such projections on Lp(μ), when l<p<°°,pΦ2, and μ is a
probability measure, have been considered by Byrne and Sullivan
[2]. Their analysis gave the basic result, that 2P — I is an isometry.
Their methods are different from ours and depend heavily on
Lamperti's description [6] of isometries of L^-spaces; and their ap-
proach is weighted much more towards independence of sub σ-algebras
rather than the isometry property. Some minor changes in the
formulation of their results were made later in Byrne's 1972 Ph. D
dissertation at the University of Pittsburg. Our approach relies on
our earlier complete description [1] of contractive projections on an
Lp-space. We include, in § 3, a rapid survey of some of the Byrne,
Sullivan results where their approach is different and outline very
simple deductions of their results from ours.

The question of Banach lattice orderings of Lp, under the usual
norm, have been considered, with 1 ^ p < °° and p Φ 2, for the
separable case by Lacey and Wojtaszczyk [5]. Their results also
depend on the Lamperti isometry results and crucially on separa-
bility. Our analysis uses our previous discussion of contractive and
bicontractive projections and gives a complete generalization of their
work.

Throughout the paper we assume 1 <; p < oo and p Φ 2. We
will write Lp ~ LP(X, Σ, μ) for the standard real or complex Lp space
determined by a set X, a σ-ring, Σ, of subsets of X and a measure
μ on Σ. If feLp, S(f) = {teX:f(t) Φ 0}, as in [1] the ambiguity
of a set of measure zero is irrelevant. Where our results are true
for either choice of scalar field the field will not be specified. Where
the scalar field is specified the result will be true only for the
specified choice. The case p — 2 is omitted because the theorems
we prove are all trivially true, or trivially false, in this case.
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2* Bicontractive projections* In this section we prove the fol-
lowing:

THEOREM 2.1. If P is a bicontractive projection on Lp, then
U = 2P — 1 is an isometric involution on Lp.

The proof of this theorem will follow from the equivalent result.

THEOREM 2.2. If P is a bicontractive projection on Lp, f = Pf,
and g = (I-P)g, then \\f+g\\ = \\f-g\\.

The equivalence of these two is based on the observations 2P —
I=P-(I-P) and for/=P/, g = (I- P)g, f-g = (2P-!)(/+ g).

We obtain these results in a series of technical lemmas.

LEMMA 2.3. If P is a bicontractive projection on Lp and J
denotes the band projection on &{P)LL (the band generated by the
range of P), then P = PJ = JP.

Proof. By [1, Theorem 3.5] this is true, if P is merely con-
tractive, for p Φ 1. We assume then that p = 1 and put A — P — PJ.
Suppose (P)

because P is bicontractive. Hence Ax = 0. Thus A(I — J) = 0 and
A = A{I - J) + AJ - 0.

Taking Lemma 2.3 and the uniqueness clause of [1, Theorem 3.5]
into account we conclude that for all p, 1 ̂  p < oo, p φ 2, if / = Pf
and hefL1, then

Ph = f&(Σ0,\f\>μ)(h/f),

where Σo = {£(/):/e<^?(P)} is the sub tf-ring of I7 consisting of
supports of functions in ^?(P) and &(Σ0, \f\pμ) is the conditional
expectation determined by the finite measure \f\pμ and the sub σ-
ring Σo. It follows from this that if / = Pf or if Pf=0 (so that
/ = (I — P)/) and // is the band projection on f11, then PJ/ = JfP.
(Again this is automatic for p > 1 by [1, Lemma 2.3].)

LEMMA 2.4. Let P be a bicontractive projection on Lp, suppose
f = p/, g = (I - p)^, αwd J/ = J,. 1/ J?/ - {iS(λ): Λ e / ^ n ^ ( P ) } ,
Σg = {S(k): kegL± f] &(I — P)} έfee^ ίAβ s^δ σ-rings Σf, Σg are

equal.
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Proof. Since PJf = JfP we have Σf = {A Π S(/): Ael o} and
similarly if or I7,. If S(h) c Si/) and h = Ph, then Ph = JhP = PJk

as noted above. Hence (7 — P)Λ# = Λ( Γ — P)# = Λ# so that S(h) =
I 3 . Similarly I f f c Σf and equality follows.

Now we start on the proof of Theorem 2.2. Let
g e &{I — P). Since Jf, Jg commute with each other and with P we
have Jgfe<^(P), Jfge^(I-P). Since | | / + g\\ - | | / - ff|| if and
only if \\Jgf + Jfg\\ = \\J9f — J/g\\ we may, and will, assume that
Jg = J/. Writing 2Ί for 21/ = Σg (Lemma 2.4) we have

and

(J7 - PJf)h = g&(Σlf I flr \*μ)(h/g) (h e Lp) .

LEMMA 2.5. With notation as in Lemma 2.4, (g/ff is Σx-
measnrable, and so is \g/f\.

Proof. Suppose first that 1 ̂  p < 2. Since Pg — 0 we have
/ ^ ( ^ , \f\pμ)(9/f) - 0; but Sfo) - S ( / ) e ^ so &(Σ» \f\pμ)(g/f) - 0.
If A eΣ,

\ (I / I/I <71)2'^//) I g \pdμ =
JA

I / I'd/* = 0 .

This gives ϊ?(Σίf \g\*μ)[(\f\/\g\y(g/f)] = 0. Since 1 ̂  p < 2,

^ (I/I + l ^ i r i + 2 - - I/I + \g\

We conclude that (Jf - PJf)((\f\/\g\y(g2/f) = 0 so that
In particular (l/l/l^l^g2//2) is Immeasurable.

If 2 < p < oo we consider the bicontractive projection {PJf)* on
I v where 1/p + 1/p'= 1. By [1, Lemma 2.2] /* = l/ l^sgn/e
^(PJf) and 0* = Iffl^sgnjJe^rίί T, - PJ/)*). Since the map ΛH->
I h l̂ "1 sgn A does not change supports we conclude from what we
have just proved that (^*//*)2 is Immeasurable, hence, so is (g/ff.

Our lemma follows:

LEMMA 2.6. With notation as in Lemma 2.4, define B =
{t e S(f): 0 ̂  arg (#//) < π) and Br - S(f) - 5.

(i) Γfeβ map hv-^h{χB~χB) is an involutive linear isometry
of &B(PJf), onto &{Jf - PJf).

(ii) // he^?(PJf), ||A&If = 1/21|λ||» = \\hχB,\\*>, and P(hχB) =
= P(hχB).
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Proof. Consider g(XB - XB,)/f. We have \g(χB - χB,)lf\ = \g/f\
which is ^-measurable by Lemma 2.5. By definition of B,
arg#(χβ - χ50//e[0, π) so Immeasurability of g(χB - χB,)jf follows
from that of g2//2 (Lemma 2.5 again). Hence g(χB — χB)lf is Σx-
measurable so that P(g(χB - χB)) = f^(Σlf \f\*μ)(g(χB - χB,)lf) =
0(XB - XB>)

Now if h e &(Jf — PJf), h/g is lΊ-measurable and h(χB — χB)lf —
(h/g)(g(XB ~ Xϋ)lf) is -ΣΊ-measurable. It follows as above that
KXB-XB) e ^(PJf). Similarly, if h e ^(PJf), h{χB-χB) e &(Jf-PJf).
This proves (i).

For (ii) take he^(PJf); by (i), h{χB - χB)e^{Jf - PJf) so
P(hχB) = PJf(hχB) - P(hχB) = (l/2)P(h(χB + χB)) - (1/2)PA.

Apply this to the special case when h = χAf with A e Σλ. We
have

t \f\'dμ= \ (hχB/f)\f\*da
JAΠB JA

= \ &(Σu\f\>dμ)(hχB!f)\f\>dμ
JA

= \ (P(hχB)/f)\f\'dμ
JA

Hence, ( %A\f\vdμ = \ xAfHμ = 1/2 \\f\'dμ (AeΣ,). This extends
to 2Ί-simple functions and hence to all elements of LSΣU \f\vμ). In
particular, if he&(PJf), ih/fleL^, \f\pμ) and

l* = ί \h/f\>\f\>dμ = \\hχB,\\» = 1 / 2 p | | " .
JB

Proof of Theorem 2.2. We apply Lemma 2.6. By (i), h = f±
9(XB - 1B) 6 <%{PJf) By (ii)

\ \f ± g\"dμ = \\hχB\\* = \\hχB,\\" = \ \f + g\'dμ .
JB Jj5'

Hence

ll/ + flr||'= \ \f + g\*dμ + \ \f+g\»dμ
JB JB'

= \ \f-g\'dμ+ \ \f-g\'dμ
JB' JB

= \\f-g\\!>.
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Our next lemma will be used in §§ 3 and 4.

LEMMA 2.7. Let P be a bίcontractίve projection on Lp such that
ge&(I — P) and fL1 = gL1

9 and suppose BeΣ is chosen
as in Lemma 2.6. If heLp, and S(h) c B , then h = 2χBPh; while
if S(h) czB\ h = 2χB,Ph.

Proof. By Lemma 2.6, h - (χB - χB)Ph = (χB - χB){I - P)h e
&(P). Hence, h - (χB - χB)Ph = P(h - (χB - χB)Ph) = Ph so that
h = 2χBPh as required. The case S(h) c Br is similar.

We now answer a question raised in conversation with David
Dean and Bill Johnson.

THEOREM 2.8. Let X be a predual Lx-space and P a bicontrac-
tive projection on X; then 2P — I is an isometry on X.

Proof. The dual space X* of X is an I^-space and the adjoint
operator P* is a bicontractive projection on X*. By Theorem 2.2,
2P* — I* is an isometry on X*. A routine computation shows that
any linear operator whose adjoint is an isometry of X* onto X*, is
itself an isometry. Our theorem is proved.

3* The results of Byrne and Sullivan* We first summarise
the main definitions and results from [2]. For this discussion 1 <
p < oo p Φ 2 and μ is a probability measure.

An isometry U of Lp is reduced if for every A e Σ with μA > 0,
there exists EeΣ such that EaA and S(UχE) Φ E (meaning
μ(EAS{UχE)) > 0). A bicontractive projection is total if ^ ( P ) 1 1 =
Lp = &(I — P ) 1 1 , and independent if it is total and the σ-ring
Σ, = {S(f):fe^(P)} and the ratio g/f, for some fe&(P), ge
&(I — P), are independent for the measure \f\pμ. The theorems
concerned follow.

(A) A total bicontractive projection is independent.
(B) The following are equivalent.

(a) There is a reduced reflection U with invariant subspace
M.

(b) There is an independent bicontractive projection P with
range M.

(c) There is a sub σ-ring, Σlf of Σ and a set BeΣ such that
for every EeΣ there exist unique A, CeΣt (up to sets of measure
zero) such that E = (A Π B) U (C Π B'). (One way to achieve uni-
queness is to require that B satisfies the condition, if AeΣx and
μ(A Π B) = 0 or μ(A Π B') = 0, then μA = 0.)
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For (A) our analysis in § 2 applies directly. The totality hy-
pothesis lets us choose fe &{P), g e &(I - P) such that Jf = Jg = I.
Then we use Lemma 2.6 to find B such that f(χs - χB) e &(I - P)
and check that Σ1 and χB — χB, (=/(χ jB — %*')//) a r e independent for
\f\pμ.

To show that (b) implies (c) in (B) we use Lemma 2.7. We have
/, g, B as above and take h = fχE^B(E e Σ). Then fχE[]B = h = 2χBPJL
Hence A - S(PΛ) 6 ^ a n d J S n δ = 4 n ί . Similarly C - £(P(/χ*n*'))
satisfies E Π -β = C n B.

To show that (a) implies (b) put P = (1/2)(I + Z7). Since U is
isometric and i72 = I, P is a bicontractive projection with range
M. If g 1 &{P) put A = S(g) and f i n d ί / e l such that EczA and
S(C7χ̂ ) Φ E. Then χ£ e &{Py c ^ ( 1 - P) and C/χ* - - χ^. This
gives S(UχE) = JE/ contrary to our choice of E. We conclude that
Lp = ^ ( P ) 1 1 . Since 17 reduced implies — 17 reduced we see also
that Lp = ^ ( / - P ) 1 1 ; thus P is total and (b) follows from (A).

Finally for (c) implies (a) we can argue as in [2]. For EeΣ
define T(E) - ( A n Br) U (C f) B) for E = (Af) B)Ό (C Γ\ B) with
AfCeΣJ. Now set μ*(E) = μ(T(E)) and let /* be the Radon
Nikodym derivative of μ* with respect to μ. Then define Z7 by
UχE = f'XnE) (EeΣ) and extend the definition to 1^ in the obvious
way. It is easy to check that U is an isometry. If A e Σ take
E = AnB, then T(E) c B' and S(UχE) = S(/χΓ(J)) c 5 ; so S( tfy*) ^ JS?.

4* Reordering of Lp+ Here we consider the question, what are
the vector-lattice orderings on Lp such that, under its usual norm,
Lp is a Banach lattice. The real separable case has been considered
by Lacey and Wojtaszczyk [5] who show that up to linear isometry
and lattice isomorphism all such are obtained as L9(X, Σ, μ) —
LP{A, Σ, μ) 0 LP(B, Σf Ep(2), μ). Hence Lp denotes Lp with its new
Banach lattice ordering. The direct sum is in the sense of Banach
lattices, and A, BeΣ, A Π B = 0 . Finally LP(B, Σ, EP(2), μ) is the
Ep(2) valued Lp-space on B, where Ep(2) denotes R2 with its natural
Lp-norm but ordered by (ξ19 f2) ^ 0 if and only if f 1 + ξ2 ^ 0 and
ξi — ξ2 Ξ> 0 (equivalently ζt ^ | ί 2 | ) . We shall show that, apart from
measurability of A, B their result is true in general for real Lp.
Also, for complex Lp spaces the natural complex Banach lattice
structure is unique.

We now begin our analysis. We write, again Lp to denote the
space Lp with its usual norm and some vector lattice structure such
that Lp is a Banach lattice. Since Lp is weakly complete and c0 is
not [3], Lp contains no linearly isomorphic copy of c0, and we see
by a result of Meyer-Nieberg [7] that Lp has order continuous norm.
Hence every band M in Lp has associated with it a natural band
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projection PM. (If M = {/} we write Pf.) The letters P, Q with and
without subscripts, will usually denote Lp-banά projections. The
letters J, K with or without subscripts will denote natural (i.e., Lp-)
band projections. The symbol, ±

f refers to disjointness or polar sets
(bands) in Lp.

LEMMA 4.1. Let P be an Lp-band projection, and suppose Ma
&(P), M Φ 0 ; then, if JM is the natural band projection on AT11,
PJM = J*P.

(In fact Lemma 4.1 is valid for any bicontractive projective if
p = 1 and any contractive projection if p > 1.)

Proof. From the discussion preceding Lemma 2.4 PJf = JfP for
all fe&(P). Since the set of supports of elements of &(P) is a
(7-ring [1, Lemma 3.1], the set {Jf: fe &(P)} is upwards directed.
(We only need a subspace of ^?(P), and the first paragraph of the
proof of [1, Lemma 6.1] for this.) Since the norm in Lp is order
continuous, JM is the strong limit of a set of band projections each
of which commutes with P. It follows that PJM — JMP.

LEMMA 4.2. Let P, Q be bicontractive projections on Lp such
that &{Q) c ^?(P), then ^?(P) n ̂ (Q)L1 Π ̂ ( 1 - P ) 1 1 c

Proof. Suppose fe &{P) n ̂ (Q)11 ΓΊ ̂ T(J ~ P ) 1 1 . By [1, Co-
rollary 3.2] there exist ge&(I—P) and he^(Q) such that / e
^ii η ̂ iiβ Since PJf = JfP we may assume g1A- — fL1. Since ge
&(I - P) c ^ ( 7 - Q), (I - Q)J, - J,(J - Q) so J>Q - Q«7> and we
may also assume h11 = f11.

Write J P = {S(k): kef11 n ̂ ( P ) } and 2^ - {S(fc): A? e/ 1

Glearly ^ c ΣP. By Lemma 2.4 ^ P = ΣX_P c J^ρ = ΣQ so I'p =
Now, since /, he^(P), h11 = f1L, and he^(Q), we have

f=Pf=h&(ΣP,\h\*μ)(f/h)

= h&(ΣQ,\h\>μ)(f/h)

Our lemma is proved.

LEMMA 4.3. There is a minimal Lp-band projection P such
that ^(P)11 = Lp.

(Minimality is in the natural ordering of Lp-band projections.)
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Proof. Let ^ denote the set of Z^-band projections P such
that &(P)lλ = Lp and let & be a decreasing chain in <jζ" The
infimum Po, of & in the set of L^-band projections has range
(\{&(P):Pe&} Suppose g±έ&(PQ). Choose Pe^ and put Λ =
# - P#. By [1, Corollary 3.2], using ^(P)11 = L99 there is fe &(P)
such that Z 1 1 = h11. Hence / e ^(Q)11 n ̂ T(P) c ^?(I - P ) 1 1

(Q 6 ̂  &(Q) c ^ ( P ) ) . By Lemma 4.2, / e f| {^(Q): Q e ̂ } =
and gefL = h1 = (g - Pg)1. Hence,

so that g^Pg (P e ̂ ) . Thus,

^ Π {^(P): P e ^ } - ^ ( P o ) _L g ,

and r̂ = 0 so that Poe^~. Zorn's lemma finishes our proof.

Now we must distinguish the real and complex cases.

LEMMA 4.4. In the complex case, if f, ge Lp and Pfg — 0, then
f±g.

Proof. Let h — Jgf, k — Jfg. Then since Jf, Jg commute with
P/, Pg we have h = Pfh and Pfk = 0. Thus Phk = 0. Hence we may,
and do assume that f11 = flr11. We have fe&(Pf), ge&(I- Pf)
and / 1 X = g11. By Lemma 2.6, there is a set JBGJ, such that

- ZBO € &(I - P/) (where β' = S(f) - B) and

\f\'dμ = \ \f\>dμ = 1/2 \\f\>dμ =

Since P/ is an Lp-band projection,

11/ + f(%B - ZBOII* - 11/ + ifiXn - %B')IIP. Now, by Lemma 2.6 again,

11/ + f(χB - ZBOII11 - JjOTίj" = 2-MI/ir; and

11/ + ifilB - XB>)\\* -

Since p Φ 2, we have / = 0. This proves our lemma.

COROLLARY 4.5. /% £foe complex case the minimal Lv-band pro-
jection P such that ^ ( P ) 1 1 = Lp is the identity on Lp, and every
Lp-band is an Lp-band.

LEMMA 4.6. Let P be an LP-band projection, then
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Π ̂ ?(I — P ) 1 1 is an Lp-band with band projection PK where
K is the Lp'band projection on &(I — P ) 1 1 . In addition K is an
Lp-band projection.

Proof. Since the result is trivial in the complex case, by Co-
rollary 4.5, we assume we are working with real scalars. Since the
norm in Lp is order continuous and ^?(P) Π &(I — P ) 1 1 is closed
it is enough to show that ^P(P) Π ^(1 - P ) 1 1 is a solid Z^-sublat-
tice of Lp.

For this it is sufficient [5, Lemma 1] to show that if Q is an
Z^-band projection such that &(Q) c ^?(P), then Q(&(P) f]
&(I-PYL)<z.&(P)ς\&(I-PyL. Let J be the L̂ -band projec-
tion on ^(Q)11. By Lemma 4.1 JP = PJ. Hence, if xe^(P)f]
&(I - P ) 1 1 , we have Jx = PJa; = JPα; 6 ̂ ( P ) Π ^ ( 1 - P ) 1 1 , and
by Lemma 4.2,

Qα; - QJα; - Jx e ̂ ( P ) n ^?(I - P)11

Now (J - P)K = I - P= K(I - P) so PK = XP is a contractive
projection with range ^?(P) Π ̂ ( 1 — P ) 1 1 . The uniqueness condi-
tions of [1, Theorem 3.5], combined with Lemma 4.1, show that PK
is the Lp-band projection on ^ ( P ) Π &{I — P)11.

Finally I — K — P — PK so that I — K is an Lp-band projection
and hence, so is K.

LEMMA 4.7. Let P be a minimal Lp-band projection such that
^?(P) X 1 = Lp, and suppose f,ge&(P) or f,ge&{I-P), and
Pfg = o, then fig. (i.e., in the ranges of P and of I — P, Lp-
disjointness implies L^-disjointness.)

Proof. Let J, K be the I^-band projections on ^(P/)11 and
— P/) 1 1 respectively. By Lemma 4.6, J, K are L^-band projec-

tions. In particular J, K commute with all Lp-band projections.

Suppose first that /, g e &(P) and consider

Po - P(I -K) + PfK + P(I - J) .

The summands are ί^-band projections whose products in pairs are
zero. Hence Po is an ί^-band projection with ^?(P0) c ^?(P). Sup-
pose xeLp and α?l^?(P0). Since PfP0 = P/ we have ^?(P/) c
so Jx — 0 and α; = (J — J)x. Let y e Lp, since P J = JP,
PJ?/1 x and (/ - J)Py = P(I - J)y e ̂ ( P o ) 1 a?. Hence x e
{0} and a? = 0.
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By minimality, Po = P, so that JPK = PJK = P/ίΓ. Now we
have g e &(I - Pf) f] ^ ( P ) so g = i£# = PZ"0. Hence /# = JPϋΓ^ =
P/ϋΓgr = P ^ = 0. Since / — Jf we have /_L # as required.

If /, g e ^ ( J - P) then by Lemma 4.6, J(I - P) is an j^-band
projection with range ^ ( P / ) 1 1 Π ̂ ?(I - P) = ^ ( P / ) 1 1 Π ̂ ( 1 - P) Π

. Since &{Pf) c ^P(J - P), Lemma 4.2 shows that
n ^P(I - P). Hence P, - J(J - P). Since ^

Jty = J(I — P)g = P ^ = 0. Since / = J/, we have / ± # as required;
For the rest of this section we consider a fixed minimal Lp~

band projection P such that ^ ( P ) 1 1 = Lp. We write iΓ for the
Lp-band projection on &(I — P ) 1 1 . By Lemma 4.6, K is also an
Z/p-band projection and by Corollary 4.5, ϋΓ = 0 in the case of com-
plex scalars.

LEMMA 4.8. If f,ge &(P) or if f,ge &(I - P), then f and
g are disjoint in Lp if and only if they are disjoint in Lp. Con-
sequently, Pf = JfP or Pf = Jf(I — P) according as fe&(P) or

— P) and in either case Jf is an Lp-band projection.

Proof. We consider ^?(P). By Lemma 4.7, the norm in
is p-additive for the L^-ordering; i.e., if, x, ye&(P) and Pxy — 0
then

\\x + y\\p = \\x\\* + \\y\\p , (because Pxy = 0 implies ajli/).

By the well known characterisation of I/^-spaces, ^ ( P ) , with
its Unorder, is linearly isometric and lattice isomorphic to some Lp

space [4, §15, Theorem 3]. Now if f,ge&(P) and fig then
11/ + 9\\p + 11/ - 9\\p = 2(||/||3) + | |^| |p) and the equality condition
for Clarkson's inequality [6, Corollary 2.1] shows that /, g are Lp-
disjoint. Continuing with fe&(P) we see that Jf commutes with
Pf and P so that ^P(P,) => ̂ ( P ) Π Z 1 1 and ^P(P - P,) D ̂ ( P ) n Z1.
It follows that Pf = PJ/, that ^ ( P / ) 1 1 = / X 1 and, by Lemma 4.6,
that Jf is an Lp-band projection.

The same argument works for /, g e &(I — P).

LEMMA 4.9. Let f = PKf, then there is a set BfeΣ such that
f11 with its Lp'θrdering is linearly isometric and lattice isomorphic
to Lp(Bf, Σ, Ep{2), μ).

Proof By Lemma 4.8, fL1 is an Lp-band. Since /e &(I - P ) 1 1

we can find g e ^?(7 - P) such that gL1 = Z 1 1 . Define J5/ = {t 6 S/i
0 ^ arg g/f < π}\ Σt = 2V = Jff as in Lemmas 2.4, 2.5, 2.6, 2.7; write
Zi, #1 for the Lp-absolute values of /, g respectively, and for hef11
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define

Tfh = XB-isgnf^Ph'U, + sgn # , . ( ! - P)h-u2)

with uγ = (1, 1), u2 = (1, — ϊ)eEp(2). Since K = 0 in the complex
case we can assume we are in the real situation. Hence sgn/i + ± 1,
sgn gλ = ± 1 and we have, using Lemma 2.6 as in the proof of
Theorem 2.2.

\Tfh\>dμ

|PΛ + (I- P)h\p + | P Λ - (I- P)h\p]dμ

= [ \Ph + (/ - P)h\*dμ + ( \Ph + (/ - P)h\*dμ
JB JB'

B

Hence Tf is an isometry of fL1 into 1/̂ (5/, J, Ep{2), μ).

If hef11 and λ is L^-positive, then P/̂  and (I — P)h are Lp-
positive. Since &{P) and ^ ( J — P) are abstract I^-spaces and
f19 gλ are L^-positive, it follows as in the proof of [1, Theorem 4.1]
that Ph and (I — P)h are Lp-positive if and only if sgnf^Ph and
sgng^il— P)h are positive in Lp. Thus Tf and Tj1 are positive. To
complete the proof it is sufficient to show that Tf is onto.

Suppose ueLp(Bf, Σ, Eφ(2), μ)9 then u = sgn/i-/^ + sgnf2-h2u2

with hlf h2 e Lp(Bf, Σ, μ).
Since SQi,) U S(fe2) c Bf, Lemma 2.7 gives h, = 2χBPhL, h2 = 2χBPh2.

Put, g = 2Ph, + 2(χB - χB,)Ph2, then by Lemma 2.6, (χΰ - χB)Ph2 e
— P) so that Tfg = u. Our lemma is proved.

THEOREM 4.11. There are subsets A, B of X such that any σ-
finite subset of A Π B has measure zero and Lv is linearly isometric
and lattice isomorphic to LP(A, Σ, μ) 0 LV{B, Σ, Ep(2)9 μ). In the
complex case A — X and B — 0 .

Proof. Lp decomposes into complementary Lp-bands &{l — P)L

and ^ ( J - P)11. Since ^(I-P)1 a R(P), the L^-order on ^(I-P)1

is that of an abstract Z^-space and Lp- and L^-disjointness coincide
in ^ ( J - P)-.

Ghoose in &(I — P ) 1 a maximal L^-disjoint set {hr:ΎeΓ} of
Lp-positive elements, set A = U {S(hr): Ύ eΓ}. Then as in the proof
of [1, Theorem 4.1] the map /h-> Σ r ey sgn hr f is a linear isometry
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and lattice isomorphism of &{I — P)~ with its Lp-order to
&{I—PY = LP(A, Σ, μ) with its natural order, (σ-finiteness of
supports of integrable functions ensures that the summations are
over countable sets and that all the relevant sums converge.)

For the L^-band, &{I — P ) 1 - we choose a maximal L^-disjoint
subset {/V.δG/ί} in &{P) Π &{I - P ) 1 1 and apply Lemma 4.10 to
get sets Bδ = BfδdS(fδ) and isometric isomorphisms Tδ:fi

L—+
Lp(Bδ, Σ, Ep(2), μ). ° Then we put B = \Jx{Bδ\ δ e A] and check that
/H->Σ*e/Ta/ i s a linear isometry and lattice isomorphism of
&{I - P ) i L with its Z^-ordering onto LP(B, Σ, Ep(2), μ).

This shows that Lp is linearly isometric and lattice isomorphic
to LP(A, Σ, μ) 0 LP(B, Σ, Ep{2), μ) as claimed. In the complex case
P = I by Corollary 4.5.

Suppose DeΣ, DaAnB and μ(D) < co, then χD e Lp. Because
DCLA, χDe&(I - P) and because ΰ c ΰ , χDe&(I - P)LL. Thus
χD - 0, μφ) = 0.
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