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ON OPERATOR ALGEBRAS CONTAINING CYCLIC
BOOLEAN ALGEBRAS

PETER ROSENTHAL AND A. R. SOUROUR

It is shown that a strongly closed algebra of operators which
contains a σ -complete Boolean algebra with a cyclic vector and
which has a totally-ordered invariant subspace lattice must be
reflective.

1. Introduction. We generalize Arveson's density theorem
for transitive algebras containing maximal Abelian von Neumann algeb-
ras to the Banach space case; in fact we generalize the totally-ordered
version of Arveson's result given in [10]. The main tool (Theorem 7) is a
characterization of the linear transformations (not necessarily bounded)
which commute with the uniformly closed algebra generated by a
Boolean algebra of projections with a cyclic vector. This characteriza-
tion requires several deep results of Bade on Boolean algebras of
projections. In what follows X will be a complex Banach space with
dual space X* and 28 (X) will be the algebra of all bounded operators on
X. A subspace means a closed linear manifold.

2. Some properties of cyclic Boolean algebras.
Throughout the following 2fo will denote a Boolean algebra of projections
on the Banach space X. Recall that 2ft is σ-complete if {En}"=0C2ft
implies that 33 contains projections onto Γ\ζ=0EnX and onto the closed
linear span of {EnX: n = 0,1,2 , }. A vector x0 E X is cyclic for 2k if
the closed linear span of {ExQ: E E 33} is all of X, and 33 is called cyclic if
33 has a cyclic vector.

The first three lemmas are due to W. G. Bade ([3]).

LEMMA 1 ([8], p. 2205). // 33 is a σ-complete Boolean algebra of
projections on X, then for each x E X there exists a bounded linear
functional x* E X* such that

(i) x*Ex^0 for all E(Ξ28
and

(ii) // x *Ex = 0 for some £ Έ 33 then Ex = 0.

LEMMA 2 ([8], p. 2207). // 33 is a σ-complete Boolean algebra of
projections on X and if JC0 is a cyclic vector for 33 and xt is the
corresponding linear functional of Lemma 1, then {JB*JC* E E 33} is total
in X*.
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LEMMA 3 ([8], p. 2204). Each σ-complete Boolean algebra of pro-
jections is the range of a regular spectral measure defined on a σ-field of
subsets of a compact space conversely, the range of each such spectral
measure is a σ-complete Boolean algebra.

The next lemma forms the basis of our approach to the main results
below.

LEMMA 4. Let E() be a spectral measure on a σ-field Σ of subsets
of a compact space, and assume that the vector x0 is cyclic for {E(σ):
σ E Σ}. Then for each y E X there is an increasing sequence {σn} of sets
in Σ and there are corresponding bounded operators Rn and Sn in the
uniformly closed algebra generated by {E{σ)\ σ E Σ} such that:

(i) E(UUσn)y = y
(ii) E{σn)y = Rnx0

(iii) Sny = E(σn)x0

(iv) RnSn = E(σn).

Proof Let x * be the linear functional associated to x0 by Lemma
1. Then the measure σ—>xtE(σ)y is absolutely continuous with
respect to the measure σ-> xtE(σ)xOj so the Radon-Nikodym
Theorem implies there is a Σ-measurable function g such that

x*0E(σ)y = ί g(λ)d(x*0E(λ)x0) for all σ E Σ. We define
Jσ

and

Λ= ί g(λ)dE(λ), 5 B = ί (l/g(A))dE(A).
J σn J σn

Let δ denote the complement of U*=i σn. Then g(λ) = 0 for λ E δ, so
for each σ E Σ we have

(E(σ)*xΐ)E(δ)y = x*0(E(σ)E(δ))y

= ί g(λ)d(x*oE(λ)x0) =
JσΠδ

By Lemma 2, then, E(δ)y =0, and (i) follows.
Now for each σ E Σ
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(E(σ)*x*0)[E(σΛ)y]= ί g(λ)d(x*0E(λ)x0)
J σΓ)σn

= x*o(E(σ)Rnxo)

= (E(σ)*x*o)Rnxo.

Lemma 2 again applies, and (ii) holds.
Note that (iv) is trivially true. Applying Sn to both sides of (ii) and

using (iv) yields (iii), so the lemma is proven.
The next lemma is a special case of the lemma on page 2215 of [8].

LEMMA 5. // E is a regular spectral measure such that {£(•)} is
cyclic, and if {δa} is a collection of measurable sets which is pairwise
disjoint, then E(δa) = 0 for all but countably many a.

Proof. Let x0 be cyclic for {£(•)} and choose x* as in Lemma
1. Then x*0E(δa)x0^0 for all a, and • Σ;=1 x*0E(δaj)x0^ x*oxo for all
countable subcollections {δα/}. Hence xtE(δa)x0 = 0 for all but count-
ably many a. Whenever x*E(δa)x0 = 0 then E(δa)x0 = 0 (by Lemma 1);
E(δa)x0 = 0 implies E(δa)E(σ)x0 = 0 for all σ, and x0 cyclic yields

THEOREM 6. // 38 is a σ-complete cyclic Boolean algebra and M is
an invariant subspace of 38, then M - EX for some E E 38.

Proof We first show that there is a nonzero F E Sft such that
FX CM. We can assume £8 is a spectral measure, by Lemma 3. Let JC0

be cyclic for 38, pick y Φ 0 in M, and use Lemma 4 to produce a σn such
that E(σn)y^0. Then Sny E M (since M is also invariant under the
strongly closed algebra generated by 38), so E(σn)xQE. M. Since x0 is
cyclic it follows that E(σn)X CM, so F can be E(σn).

Now choose a maximal collection {δα} of disjoint sets such that
E(δa)X CM and E(δa)^0; by Lemma 5 this collection is
countable. Let E = E(Uδa). Clearly EX CM. Suppose that
(/ - E)M/ {0}. Then (/ - E)M is an invariant subspace of 38, so by the
first paragraph of this proof there is an F E i with F/ 0 and FX C
(I - E)M. Then F = E(δ) for some δ disjoint from U δα and £(δ)X C
M, contradicting the maximality of {δα}. Hence (/ - E)M = {0}, or
M CEX.

3. Unbounded transformations commuting with
cyclic Boolean algebras. Let T be a linear transformation with
domain 2) (a linear manifold in X) and range a subset of X. We say that
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T commutes with the bounded operator A on X if A3) C3) and
ATx = TAx for all J C E ® ; T commutes with the collection if of
bounded operators if it commutes with each operator in ίf.

THEOREM 7. Let The a densely -defined linear transformation which
commutes with the uniformly closed algebra generated by the σ-complete
cyclic Boolean algebra 53. Then T is closable, and its closure is a
scalar-type spectral operator with the range of its resolution of the identity
contained in S8.

Proof By Lemma 3, SS is the range of a spectral measure defined
on a or-field Σ. Let x0 be a cyclic vector for 38 and let x* be the
corresponding linear functional given by Lemma 1. Denote the domain
of T by 3)\ 3) is invariant under all operators in the uniformly closed
algebra generated by 59.

Choose a maximal collection {δa} of disjoint sets such that E(8a)x{) E
3) for all a. By Lemma 5 at most countably many of the E(8a) are
different from 0; re-label them {δn}, and let Δ = U δ n ; (if there are no
such 8n, then take Δ = 0 ) .

We claim that £(Δ) = 1. Now if J - E ( Δ ) ^ 0 , choose z E 3) such
that (/ - E(Δ))z / 0. Apply Lemma 4 to y = (/ - E(Δ))z. Then for n
sufficiently large E(σn)x{)^0, and E(σn)x{) = Sn(I - E(Δ))z G 3).
Clearly E(Δ)E(σn)Ex = 0 for all E E 33, or E(Δ)E(σπ) = 0, so, within a
set of measure zero, σn is contained in the complement of Δ. This
contradicts the maximality of {δn}, so E ( Δ ) = /.

For each fixed n the Radon-Nikodym Theorem yields a Im-
measurable complex-valued function /„ such that

xtTE(σ)E(δn)x0= f fn(λ)d(xtE(λ)x(})
J CT

for all σ G l Clearly /n(λ) = 0 a.e. when A £ δn. Set /(A) = Σ;= 1 /n(λ),

define f=\ f(λ)dE(λ) and let 3) be the domain of T\ f is a closed

scalar-type spectral operator (cf. [8], p. 2238). We prove that 3) C 3) and
T = T\3), and then show that f is the closure of T.

For each integer n define an = (U,π

=1 δ; ) Π {A: | / ( A ) | ^ n}, so that
{an} is an increasing sequence of sets with union Δ. Clearly E(an)X C
% and for any σ E X we have
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Hence TE(an) and TE(an) agree on all vectors of the form E{σ)x0.
Now fix y £ D we must show that y £ S and Ty = Ty. For each

m choose a σm and an Rm as in Lemma 4. For each m and n, then,

E{σm)TE{an)y = TE{an)E{σm)y

= TE(an)RmE(σm)x0

= RmTE(an)E(σm)x0

= i?m7Έ(αn)£'(σm)xo; (as shown above,

f £ ( a n ) = TE(an) on all vectors E(σ)x0).

Hence

= E(σm)fE(an)y.

Thus

or

TE (an)y =

(since E(U^=1orn)y = y).

Now limn_ocJE:(αn) = I and E(an)XC% so limn_oo£(αn)y = y, and
limn̂ o= TE(an)y = limn_oo ΓE(αn)y = limn_oo £'(αn)Ty = Ty. Therefore,
y E S and fyj= Ty.

Now let T denote the closure of T. Clearly T C T , and we must
show equality.

For each n, E{an)X is contained in the domain of Γ, for
E(an)E(σ)x0 is in the domain of T for each σ and T\E(an)X is
densely-defined and bounded. Also E(an)X C3). For zE.%
TE(an)z = TE{an)z = E(an)fz. Thus {J£(αn)z 0 TjB(αn)z} converges
to 2 φ fz as n approaches oo, and z is in the domain of T. This proves
that T=t

4. Arveson's density theorem on Banach
spaces. Recall that a transitive algebra is a subalgebra of Sδ(X) with
no invariant subspaces other than {0} and X; (see Chapter 8 of [9] for a
discussion of this topic). Arveson [1] initiated the study of transitive
algebras with his proof of the following theorem in the case where X is a
Hubert space.
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THEOREM 8. If si is a transitive subalgebra of $ (X) and si contains
a σ-complete cyclic Boolean algebra, then si is strongly dense in

m (x).
Proof. Let si denote the strong closure of si. By Arveson's

lemma ([9], p. 143) it suffices to show that the only densely-defined linear
transformations commuting with si are multiples of the identity; (note
that the proof of Arveson's lemma applies without change on Banach
spaces). But if T is any such linear transformation then T is closable (by
Theorem 7) and its closure f is a scalar-type operator commuting with
si. If T were not a multiple of the identity then f would have a
nontrivial spectral projection E. For each A 6 i , then, AE = EA, ([8],
p. 2229), so the range of E would be a nontrivial invariant subspace of
si. Since si is transitive, T, and thus also T, must be a multiple of the
identity.

COROLLARY 9. If si is a transitive algebra which contains a scalar-
type operator A such that A has a cyclic vector and the spectrum of A is
nowhere dense and has connected complement, then si is strongly dense.

Proof. By the result of Dowson [7], the strongly closed algebra
generated by A contains the spectral measure E(λ) of A. Moreover,
since the span of {ΛΛJC} is clearly contained in the closed linear span of
{E(σ)x: σES},£(A) is cyclic. Hence the strong closure of si satisfies
the hypotheses of Theorem 8.

The theory of Hermitian operators on Banach spaces is treated
in [6].

COROLLARY 10. // si is a transitive subalgebra of Sft(X) with X
weakly complete, and if si contains a cyclic operator all of whose powers
are Hermitian, then si is strongly dense.

Proof. By a theorem of Berkson's [4] such a Hermitian operator is
scalar-type, so the result follows from Corollary 9.

There is a general question about transitive algebras on Banach
spaces which seems interesting. Given a Banach space X let %t(X)
denote the Hermitian operators on X. The question is: if si is a
transitive subalgebra of 35 (X) which contains 3€(X) must si be strongly
dense? If X is Hubert space then %(X)+i%(X)= ®(X), so si is
obviously Sδ(X). Corollary 10 shows that the answer to this question is
affirmative if X is weakly complete and S3 (X) contains a cyclic operator
whose powers are all Hermitian. In particular, the answer is affirmative
when X is a separable Lp(μ) space for 1 S p < ». On the other hand,
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there are Banach spaces X with W(X) = {λI: λ E R} (cf. [5]); on such
spaces the above question reduces to the transitive algebra
problem. We can answer the question in one other case.

THEOREM 11. If X is a C*-algebra and sέ is a transitive subalgebra
of $β(X) which contains %!(X), then sέ is strongly dense.

Proof Right and left multiplication by a Hermitian element of X is
in $f (X); (in fact, Sinclair [13] shows that Sίf(X) consists of sums of such
operators and *-derivations when X is a C*-algebra). Since every
member of X is the sum of a Hermitian member and / times a Hermitian
member, sέ contains left and right multiplications by all elements of
X. Hence the result follows from [12], (where it is observed to be a
trivial consequence of the Rickart-Yood Theorem).

5. Reflexivity of algebras containing cyclic Boolean
algebras. A subalgebra of 38(X) is reflexive if it contains all the
operators which leave its invariant subspaces invariant; (see Chapter 9 of
[9]). On Hubert space, Arveson's density theorem has been generalized
to show reflexivity of certain algebras whose invariant subspace lattices
are totally-ordered ([10]) or complemented ([11]) or, more generally,
have finite width ([12]). We show that the first of these generalizations
holds on Banach spaces too.

THEOREM 12. If sέ is a strongly closed subalgebra of 3β(X) which
contains a σ-complete cyclic Boolean algebra, and if the invariant
subspaces of sέ are totally -ordered, then sέ is reflexive.

Proof We follow the proof of the Hubert space case as given in [9],
beginning on page 181. An examination of this proof shows that it
depends on the several properties of sέ which we now list and prove.

(i) Every invariant subspace of sέ is the range of a projection in sέ.

Proof This follows from Theorem 6 above.
(ii) If T is any linear transformation commuting with sέ, then there

is a projection P E sέ such that the domain of T is a dense subset of PX
and T is a multiple of the identity on this domain.

Proof. The closure of the domain of T is invariant under sέ, so by
(i) there is a projection P €Ξ sέ whose range is the closure of the domain
of T. For x in the domain of T, (1 - P)Tx = T(ί - P)x = 0, so
TPXCPX. The restriction of the Boolean algebra to PX is again
σ-complete, ([8], p. 2204), so Theorem 7 implies that the closure of
TI PX is a scalar-type operator. If T is not a multiple of the identity
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then T has a nontrivial spectral projection E which commutes with
A\PX\ ([8], p. 2229). Pick nonzero vectors y = PEy and JC =
(I — E)Px, and continuous linear functionals φx and φy such that
<fc(jt)=l, φx(PEX) = {0} and φy(y)=l, φ y ( P ( J - £ ) X ) = {0}. Then,
for Λ G ̂ , ψx(Ay) = φx(APEy) = φx(PAPEy) = φx(PEAPy) = 0, so the
invariant subspace of ^ generated by y does not contain x. Similarly,
for any A E sέ

φy(Ax)=φy(A(I-E)Px)= φy(P(I - E)APx) = 0,

so the invariant subspace of sέ generated by x does not contain
y. Hence the invariant subspaces of sέ generated by x and y are not
comparable; this contradiction shows that T\PX is a multiple of the
identity.

(iii) If P is a projection whose range is invariant under si, then
sέ = {(I - P)A I (/ - P)X: A E si) satisfies the hypotheses of the
theorem.

Proof. As shown above, (I — P)E.sέ and the restriction of the
Boolean algebra to (/ — P)X is again <τ-complete. If x0 is cyclic for the
Boolean algebra then (/ — P)x0 is cyclic for the restriction. Now si is
clearly strongly closed. If M and M were noncomparable invariant
subspaces of si, then PX + M and PX + M would be noncomparable
invariant subspaces of sέ. Hence (iii) is proven.

Given (i), (ii), and (iii), the proof of the Hubert space case given on
pages 181-183 of [9] can be followed verbatim.

The following example is given in [10] (and in [9], p. 184) in the case
p = 2.

EXAMPLE 13. If 1 S p < <χ and V and M are the operators defined

on L" (0,1) by (V/)(JC)= ί' f(x)dt and (Mf)(x)= xf(x), then the
Jo

strongly closed algebra generated by {V, M} is the set of all operators A
such that, for each a E (0,1), (Af)(x) = 0 a.e. on [0, α] whenever
/(JC) = O a.e. on [0,a].

Proof. The operator M is scalar-type, and its resolution of the
identity is cyclic and contained in the strongly closed algebra generated
by M. Let sέ denote the strongly closed algebra generated by
{V, M}. It is easily seen that the invariant subspaces of {V, M} are the
subspaces of the form

{/:/ = 0a.e. on [0,α]}

for a E [0,1]. Hence the result follows from Theorem 12.
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EXAMPLE 14. Fix p with l ^ p < o c . Define Mn={{ak}Glp:
ak = 0 for k > n}, and say that A E 35 (P) is upper triangular if AMn CMn

for all n. Let {dk} and {vvk} be bounded sequences of nonzero complex
numbers with {dk}CR and {dk} distinct, and define D{ak} = {dkak} and
W{αfc} = {wfcαk+1}. Then the trianglular operators are the operators in
the strongly closed algebra generated by D and W.

Proof. This can be shown by direct computations. Alternatively,
let si denote the strongly closed algebra generated by D and W. Then
the nontrivial invariant subspaces of sd are {Mn} and si contains the
σ-complete Boolean algebra consisting of the diagonal operators with
diagonal elements 0 or 1. Hence Theorem 12 applies and si is reflexive.

Note that Example 14 also holds on the space c0.
E. Azoff has suggested the following question. If si is a strongly

closed subalgebra of 39 (X) and every invariant subspace of si has an
invariant complement, must sέ be reflexive? An affirmative answer
would obviously imply that every reductive algebra on Hubert space is
self-adjoint; (cf. [9], p. 167). The above technique might lead to an
affirmative answer to Azoff's question in the case where sd contains a
self-adjoint; (cf. [9], p. 167). The above techniques might lead to an
affirmative answer to Azoff's question in the case where si contains a
cyclic Boolean algebra, (following the proof of and generalizing [11]).

Note added in proof. The question of Azoff mentioned in the
preceding paragraph has been shown to have an affirmative answer in the
case where the algebra si contains a cyclic Boolean algebra. Also,
Theorems 6, 7 and 8 hold when β is a Boolean algebra of multiplicity one
in the sense of Bade. These results can be found in the author's 'On
operator algebras containing cyclic Boolean algebras Π", J. London
Math. Soc, to appear.
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