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All normal bundles of immersions Pm —> R2me for m ^ 7,

e ^ 2 are classified. Those represented by embeddings are

identified, and, for β ̂  1, those which compress to an immersion

1. Introduction. The notation of [10] and [11] is
used. Let all manifolds be differentiable, and all vector bundles
real. Write Pm for real projective m-space, and let h be the canonical
line bundle over Pm. If V is a manifold, let [V C Rn] and [V CJRΠ],
respectively, be the set of regular homotopy classes of immersions
V -» Rn and the set of isotopy classes of embeddings V -> Rn. If ξ is a
stable vector bundle over a complex X, let Ak(X\ξ) be the set of
equivalence classes of stabilized k -plane bundles over X representing
ξ. (Equivalently, let Ak{X\ξ) be the set of fiber-homotopy classes of
liftings of the classification map X^>BO to BOk.) Thus, if dim V =
m,[V CRn] = An-m(V\ vv\ where vw is the stable normal bundle of V.

Let Vk(X\ξ) be the set of equivalence classes of fc-plane bundles
over X which represent £, i.e., the set of equivalence classes of Ak(X\ ξ)
under ordinary bundle equivalence. There is a naturally defined action

y:

such that the orbits of γ are precisely the elements Vk(X\ξ)\ if
dimX ^2/c - 2 , Ak{X\ ξ) is an Abelian affine group and γ is an affine
action, i.e., for any a G KO\X), γ(α, ): Ak(X; ξ)^>Ak(X; ξ) is an
affine isomorphism. In that range, the so-called metastable range, let
A\(X\ξ)9 an Abelian group, be the difference group of Ak(X;ξ),
provided the latter is nonempty. Any nonempty Abelian affine group is
identified with its difference group by identifying some element with
0. This choice is arbitrary, and different choices may result in different
expressions of the action γ and the corresponding equivalence relation
on Ak(X;ξ). The statements of theorems 1 and 2 are based on some
choice.

Recall [11] that [Pm C R2m~€] = Am_€(F
m, v\ where v is the stable

normal bundle of Pm, and is an Abelian affine group (called the
immersion group) if m ̂  7 and e ̂  2 (the only cases considered here).
The orbits of the natural action of KO'\Pm) on that immersion group
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208 L. L. LARMORE AND R. D. RIGDON

then are the sets of classes which have equivalent normal bundles. Let
~ be the equivalence relation on pmR2m€ determined thereby.

THEOREM 1. (Main result). Let ra^7. Then the immersion
groups, [Pm C R2m~€] for e ^ 2, the subsets consisting of those immersions
which come from embeddings and those which compress (only if e ^ 1) to
immersions in j ? 2 m l €

? and the relation ~ on the immersion group can be
read off table 1.

Proof The immersion groups themselves and the embedding and
compressing facts are direct from theorem 0.1 of [11]. Using explicit
descriptions of the action of KO~\Pm) (as given in tables 2 & 3), the
equivalence questions can all be settled.

TABLE 1

Case

m =0(1)
not a
power of 2

—

m-2(4)

IP

[P

[P

[P

[P

[P

[P

[P
z2

[P
z2

IP

IP

[P

immersion

group

m QR2m] = Z

m Q R2m-2 = 0

m CI R J = Z

m C -R m ] — Z 2

sτ\ ^ζ (ΐ) Z

®z2

m CR2m] = Z

m C i? m J = Z 2

those which

come from

embeddings

odds

none

-

evens

just 0

0

just 0

(0, i, 0),

all i G Z 2

those which

compress

just 0

none

-

just 0

just 0

9

both

(i,y,0),

all i, / G Z 2

if m = T + I , ?

none. Otherwise,

(0,0) and (0,1)

evens

just 0

just 0

just 0

0 and 2

9

generators

of the

relation ~

i i, all / G Z

0 - 1

-

i i, all i G Z

none

-

none

(0, i ,/)~ (1, i, /)

unless i = / = 0

i ~ - i, all / G Z

1 - 3

none

number of

distinct

normal

bundles

0 0

1

0

CO

2

1

2

5

3

CO

3

2
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TABLE 1

Case immersion

group

those which

come from

embeddings

those which

compress

generators

of the

relation ~

number of

distinct

normal

bundles

m =1

m = 2 r - l ,

other

than 7

m =3(4),

m + 1 not a

Dower of 2

[PΊ

[P7

[P7

[Pn

[Pn

Z 2 (

[ P "

[P~

[P™

[p-

CRλ4]

CR13]

CRί2]

CR2n

CR2"

CR2"

CR2n

CR2n

=

' -] =

-»]=«

']-«,

- ] »

just 0

(i,0),

all i G Z 2

all i G Z 4

just 0

(i, 0),

all i G Z 2

(ϊ,0),

all i G Z 4

just 0

all i G Z 2

all i G Z 4

both

all

7

both

all

7

both

all

7

0 - 1

all are

equivalent

(0,0) ~ (0, ί ) ~ (1, 0

(2,0)~(2,£)~(3,0

all i G Z 8

0 - 1

all i G Z 4

all i G Z 8

none

all i G Z 4

all i G Z 8

1

1

2

1

4

16

2

6

20

The method. In the proof of Theorem 2, two different approaches
for enumeration of immersions are used. We need the methods of [11]
to determine which regular homotopy classes of immersions contain
embeddings; while in the context of [10], one may determine the actions
which relate different immersions with the same normal bundle. The
appendix of this paper, §4, relates these two approaches, when an Adams
resolution is used. Note that in the range of dimensions considered in
[11], the Atiyah-Hirzebruch spectral sequence agrees with the Adams
spectral sequence for jfC(Z).
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2. Explicit description of the action. Recall that (in the
notation of [10]) for m ̂  1:

KOι(Pm) =
Z2φZ2 if m^3(4), generated by p and ψ

Z 2 0 Z 2 0 Z if ra =3(4), generated by p, φ, and τ

Briefly, p is classified by a map Pm —> O whose image is any point not in
SO, φ is classified by the Whitehead map Pm-*SO, and r by the

composition Pm -> pm/pm~ι = sm ^-* SO where em represents a

generator of πm(SO) = Z. Thus hoρ = ί, and Λ, p = 0 for all / > 0 ;
/ιoψ = 0 and htφ = uι for all i >0; while /ιmτ = um for m = 3 or 7 and
Λ. T = 0 in all other cases.

We shall write ax for γ(α, JC), for any α£ίCO" 1(/ ) m) and any
x £[Pm C Rn]. The action of p has an easily visualizable geometric
meaning, namely, if /: Pm —>Rn is any immersion, p[f] = [Γ°/], where
T: Rn -> JR" is reflection about any hyperplane. We shall not actually
need to make use of this geometric interpretation.

THEOREM 2. Let m ̂  7. Then, for e ̂  2, ί/ie α/fme group
[Pm C i? 2 m € ] can be identified with a direct sum of cyclic groups such that
the action of KO~\Pm) and the morphism (now a group homomorphism)
i2m_e: [Pm CR2m-€)-^[Pm CR2m€+1] (recall [Pm C R2m+ι] = 0) are de-
scribed in the following two tables. (Table 2 for m = 0 , 1, or 2 mod 4;
Table 3 for m =3(4).)

TABLE 2

Case

m =2r

m s 0(4),
not a
power of 2

immersion group

[Pm QR2m} = Z

[Pm=R2ml] = Z2

[Pm CR2m] = Z

[Pm C/?2lw~'] = Z 2

[ P m CR2m~2] = 0

0

0

-

0

0

0

Action of p

pi = - i,
all i E Z

pi = i + 1,
all i E Z 2

-

pi = ~ i,
all i E Z

trivial

trivial

Action of φ

trivial

ψi = i + 1,

all i E Z 2

-

trivial

trivial

trivial
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Case immersion group

TABLE 2

i2m-« Action of p Action of φ

- " >

m =2(4)

[Pm QR2m ']

z 2 φz 2 ©z 2

[p-c/?2-2]

z 2 φz 2

[P m CR2m] =

[P-CR2™-1]

z2

=

III

z

= z 4

0

= k

0

0

trivial

(i + fc,y,fc)

trivial

pi = - i

pi = - i

trivial

(i+biΛ)

(i+jj)

trivial

trivial

trivial trivial

TABLE 3

Case immersion group $2l Action

of p

Action of φ Action

of r

m =7

m = X - 1

other

than 7

m-3(4),

m + 1 not a

power of 2

IP-cm-*,

[P 7 CR Π ] =

[P 7 CK 1 2 ]^

[PmCR2m] = Z2

[ p m c / ? 2 w - 2 ] -

Z 2 0Z 4

[ r c i ? 2 m - 2 ] =
Z4©Z8

0

the mod 2

reduction

of / G Z4

Z 2 0Z 4

0

= 1

0

= y

Λ.-2(jy)

trivial

trivial

trivial

trivial

trivial

trivial

trivial

trivial

trivial

i = i + 1

where 2: Z2^>Z4

is the

monomorphism

( - i + l , y - 2 i + 5 )

φi = i + 1

(i + l,y + 2i + 1)

( - i + l,y —2i + 5 )

trivial

φ(i,j) =
(— /,/ + 2i)

i = i + 1

(ί,y + 1)

trivial

trivial

trivial

trivial

trivial

trivial
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Proof. In all cases, we utilize the results of [10] and [11]. We also
make use of the natural affine isomorphism [Pm C R2m~e] =
Vm-e(Pm, - (m + l)h)\ the actions are stated in terms of the former affine
group, but are actually computed in terms of the latter. (See §4 for a
complete discussion of the relation between the Adams resolutions of the
difference groups of those two Abelian affine groups.) For even ra, the
stated results are the only ones which agree with [11, Thm. 0.1] and [10,
Thm. 3.8]. For m = 1(4), we need use only those results together with
lemmas of this paper. We give a complete proof of Case IV only,
assuming that the reader is familiar with the notation of [10].

Let m =3(4). The action of p is trivial on [Pm C i?2m~2], since, by
[10, 3.7], p is the null element of v, the normal bundle of Pm in dimension
m - 2. Since $2m-2 and $2m-\ are onto, p must, by naturality, act trivially
on the other two affine groups.

The actions of φ and τ on Am-€(P
m; v) are explicitly given in [10,

Thm. 3.8], for e ^ 1. Using 4.2 below, those actions can be seen to be
the ones described above for those cases. We thus need only to examine
the action of ψ and r on [Pm C R2m~2] = Am-2(Pm, v).

We deal with r first. By 3.4, r acts trivially on the difference group,
since r "lives" on the top cell of Pm. The action of τ on Am-2(Pm v) is
thus a pure translation, and is determined solely by saτ E A°m-2(Pm v),
which then does not depend on the choice of a. Pinching any Sm CPm x
S1 which is the boundary of a smooth disc, we obtain an onto map
q: Pm x Sλ-*{Pm x S ' ) v S m + 1 ; and FTtV can be chosen to be the composi-
tion

where /: Pm —» BO classifies p, em+ί represents the generator of
πm+ι(BO) in that dimension, and px\ PmxSx->Pm is the
projection. By definition of the action γ, r has a fixed point if and only
if Fτ,γ lifts to BOffl-2, and if r has a fixed point, saτ = 0 for a = fixed point,
and hence for all a. Choose g: Pm —> BOm-2 which represents some
immersion of Pm in JR2m~2. If m ^ 15, π m + 1 (£O m _ 2 )-* πm+](BO) is onto,
by Barrat and Mahowald [1]. Thus a map ζ: Sm+1—>BOm-2 may be
chosen which projects to em+\ and (g°P\V ζ)°q is the desired
lifting. M. Mahowald has personally assured us the existence of ζ in the
case m = 11 also; thus r acts trivially for all m i^ 11. (It is not actually
necessary to make use of this unpublished fact; a modification of the
argument using quaternionic bundles in the proof of [10, 3.8] suffices for
all m = 3(8).) The only remaining case is m = 7; by naturality, saτ must
then be an element of order 8. Since there is a certain freedom in the
choice of generators, it is possible to insist that saτ = (0,1).
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We now look at the action of ψ. The 3f (Z)-Adams resolution of
BOm-2 over BO yields the tower (where all spaces are over BO, and
kr = BO x K(Z 2 , r), the Eilenberg-Maclane space in the category of
BO-sectioned spaces):

I-

where β 3 is an m-approximation of BOm-2, and where

H^ + i = Wm + 1 + W,Wm + ( W 2 + W2

ι)wm^ι

m _ 2 + w 2 t m . 2 ) 0 1

Let g be a lifting of / to BOm-2, and let g, be the projection of g down to
Eι. Then we have affine morphisms:

By using the results of [12], we can calculate that [Pm E2]
o

f = Z 4 φ Z 4 and
[Pm E3]°gI = Z 2 φ Z 4 ; and then, by the results of [10], the action of φ on
both of those groups can be established. The stated results are the only
ones (up to choice of generators) which agree with these calculations. We
omit the details.

Comparison with previous results. We remark that the choices of
generators in Theorems 1 and 2 of this paper, and the same choices in
Theorem 0.1 of [11], can be made identical.

3. For any complex Xy p E KO~\X) may be defined to be the
element classified by a constant map to a point in 0 which is not in
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SO. For any stable bundle ξ over X, let s: Ak(X; ξ)—>Ak+ι(X; ξ) be
suspension, i.e., Whitney sum with a trivial line bundle.

LEMMA 3.1. For any stable bundle ξ over a complex X, and for any
x E Ak (X; ξ), psx = spx = sx.

Proof. Since /: BOk-> BOk+{ is a map of spaces over BO, ps =
sp. Let /: X —> BO classify ξ, and let g: X —> BOk classify x. Then the

composition X x S 1 > BOk x BO^ BOk+ι (where e1 represents the
generator of TΓ^JBOJ)) is a lifting of Fp,ξ which agrees with i°g on
X. Thus p acts trivially on sx.

COROLLARY 3.2. ///: V->Rn is any immersion, where V is any
manifold, then pΛ[/] = Λ[/] E [ V C i?"+1].

We say that a space F has homotopy width k if for some n, F is
n-connected and has no homotopy above dimension n + k.

LEMMA 3.3. Let π: E->B be a fibration with fiber a stable space F
(all spaces having the homotopy type of CWcomplexes), and let f: X—»B
be a map, where X is a CW complex. Let γ: πι(Bx,f)x
[X; E]f -»[X; E]f be the left action as given in [9]; where [X; E]f is the
Abelian affine group of vertical homotopy classes of liftings of f to
E. Suppose that a E ττx(Bx,f) is trivial on the (k - I)-skeleton of X, i.e.,
is represented by a homotopy f: X x I -> B such that f0 = fx = / and
ft\Xk-ι = f\Xk~ι for all t: then γ(α, ): [X;E]f-*[X,E]f is a pure
translation i.e., there exists sa E [X; E]°f such that y (a, x) = x + sa for all
xE[X,E],

Proof By [14], there exists a sectioned fibration BF E JΎ(fib),
where Y is of the homotopy type of a CW complex, such that PYBF-+ BF
is the universal example of fibrations with fiber the homotopy type of F
and with base the homotopy type of a CW complex. Furthermore, BF
can be delooped in the category 5^Y(fib); and by [4], ΩY~f, the
H-space of all base-point preserving self-homotopy equivalences of
F. A classifying map θ can then be chosen, and we have a diagram
(essentially diagram (1-1) of [9]):

F - ^ E — > P Y B F

1- 1
B-^BF
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By a straightforward obstruction theory argument, πt(&) = 0 for / ̂  fc,
thus τr,( Y) = 0 for all i > k. Another obstruction theory argument then
shows that β#: ττι(BxJ)^πι(Bγ,β°f) sends a to the identity. Thus,
by [9, 3.1], γ(α, ) is a pure translation.

COROLLARY 3.4. // ξ is a stable bundle over a complex X-of
dimension m ̂ 2/c — 2, and if a E KO'\X) is trivial on the (m — k)-
skeleton of X, i.e., lies in the kernel of KO\X)-> KO\Xmk), then
a: Ak(X; ξ)—> Ak(X; ξ) is a pure translation.

Proof. Ak(X\ξ) = [X\Em]h where f.X^BO classifies ξ, and
π: Em -» BO is obtained by killing all homotopy groups of the fiber of
BOk —• BO above m. The fiber of π is then a stable space of homotopy
width m — k + 1. Apply 3.3, and we are done.

4. Appendix. Comparing three classification
theorems for immers ions . In [6], Hirsch proved the following
classification theorem for immersions. Let r be the tangent bundle of
the m-dimensional manifold V, and let Ln(r) be the bundle over V
whose fiber over x E V is the space of linear injective maps
τx^Rn. The differential of an immersion /: V-^Rn determines a
cross-section L(f) of Ln(τ). Hirsch proved that the map
[VCΛ"]^[V;L"(τ)] i (where 1 is the identity map on V) which maps
the regular homotopy class [/] to [L(/)] is a bijection for n>m.

In [5], Haefliger and Hirsch proved a second classification theorem
for immersions in the metastable range. Give r a metric and let τ0 and
P{τ) denote the sphere bundle and projective bundle respectively, of
r. A cross section g of Ln(τ) determines a Z2-equivariant map
g: rQ-^Sn~ι where Z2 acts via the antipodal map, and g determines a
cross-section of the Sn~ι bundle ( τ ) n l associated to the double cover
τ0—»P(τ). In [5], it is proved that the induced map
[V;Ln(τ)]1-»[P(τ);(τ)""1]1 is a bijection for In >3m + 1.

Finally, in [8], James and Thomas proved that [MCRn] is in
one-to-one correspondence with AΠ_m(V; vv) if n - m > 1. The bijec-
tion can be obtained as follows. Let v be a vector bundle in the stable
class of vv and let vt denote the bundle of orthonormal /-frames of
v. Then, if / = dim v - n 4- m, we can identify An-m(V\vv) with
[ V ^/JL There are natural maps Ln(τ)-> LnU(τ®eι) and
vι -» Ln+ι ( r φ e ' ) where the first map is the obvious one and the second
map takes an /-frame Rι —* vx to the composite τx-x J?'—» τx x
ϊ>x-* Rn+ι. (The second map comes from a trivialization of τ 0 v.) The
induced maps
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are bijections for n - m > 1.
Assume from now on that 2n > 3m + 1. Then, if M immerses in

JR", each of the above classification theorems induces an affine group
structure on [ M C R " ] . The difference groups (in the notation of [13])
are, respectively:

{V;S'v(L"(τ))}V

where S 'v and S'Piτ) denote fiberwise unreduced suspension. By [13], for
each spectrum Έ satisfying the conditions of [13, §2], there are spectral
sequences

{£,( V, S (,(£," (τ));S),}

converging to quotients of

respectively.
The purpose of this appendix is to show that these difference groups

and the portions of the above Adams spectral sequences converging to
them are isomorphic (by isomorphisms consistent with the bijections
discussed in the first three paragraphs of this section). These isomor-
phisms will be made explicit for % = 3ίf(Z2), the Eilenberg-MacLane
spectrum for Z2.

By naturality of the spectral sequences and the existence of the maps
L π (τ)-»L n + ' (τ0£') and P,->L n + ' (τ$6'), it suffices to show that
{Er(V,S{,(L"(τ)); «),} and {Er(P(τ),Sf

Piτ)((τ)n-ιyy %\) are isomorphic.
Let h be the canonical line bundle over P(r). Then in the notation

of [11], {P(τ); S'P{τ)((τ)n'ι)}ϊι = πn

n;
ι(P(r)). By the Thorn isomorphism

theorem πn

n;\P(τ))= π^7)l(D(lh),(lh)0) where D(lh) and (lh)0 are the
disc and sphere bundles of /ft, respectively [31. Since the stable vector
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bundle determined by a line bundle over a finite-dimensional CW
complex has order a power of 2, we can choose / so that (n + l)h is
trivial. By choosing a trivialization of (n + /)ft, we can identify
ττn

{nlϊ)h{D(lh), (/ft)o) with {T(/ft); Sn+ι}~λ where T(lh) is the Thorn complex
of /ft. Let Tv(lh) be obtained from D{lh) by identifying the portion of
(/ft )0 lying over x G V to a point for each x G V, so that Tv(/ft) becomes a
V-sectioned space with Tv(lh)/V = T(lh). Then {Γ(/ft); S^'}"1 =
{Tv(lh); V x Sn+ι}yι where { }v denotes stable homotopy in the category
of V-sectioned spaces (see [2]).

The fiber of Tv(lh) over any x E V can be viewed as P,+mm =
pi+m-i/pi-i ( s e e [7? p 205] and, in fact, we can identify Tv(lh) with
Pι+m,m(τ) if / = m, where Pι+m,m(τ) is obtained from P(T($€1) by identify-
ing each fiber of P ( τ 0 6 / m ) C P ( τ 0 e / ) to a point. Assume that V
immerses in Rn and take ί to be an (n - m)-plane bundle in the stable
class v. By [2], if / + n is a large power of 2, there is a duality map

Tv(lh)ΛvSv(Pnjn(v))-+ VxSι+n

in the category of V-sectioned spaces which induces isomorphisms

Now it is not difficult to show that the Thorn isomorphism

πι

nh(P(r)) = ττ\:il)h{D{lh\ (/ft)0) = {Tv(lh); V x S°}'v'

preserves the Adams spectral sequence; a routine argument using the
following lemma then establishes that the above duality map induces an
isomorphism of the g'-Adams spectral sequence for {Γv(/ft); V x S°}t
with {£r(V,Pnm(v)\ <£)i} when each space of % is compact.

LEMMA 4.1. Let % be a spectrum of B-sectioned bundles with
compact CW fibers, where B is a compact CW complex and let
U: WΛBW*-> B x Sk be a k-duality in the category of B-sectioned
bundles. {See [2] for definitions.) Then U induces an isomorphism

{B x S°; WκB%}ι

B->{W*; Sk Λ β f }B

ι

Proof. The lemma is easily proved using the methods of [2, §3 and
§4].

Let Z be the V-sectioned bundle whose fiber over x E V is the
space of basepoint preserving maps from the fiber T(lhx) of Tv(lh) to
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Sι+n. The duality map

Tv(lh) ΛvSv(Pnm(v))-^ V x Sι+"

induces a map of V-sectioned spaces a: Sv(Pnm{v))-^ Z which is a
(2n — 2m + Inequivalence on fibers.

We now define a map of V-sectioned spaces β: S'v(Ln(τ))-+ Z
which is a (2/t — 2m)-equivalence on fibers. Given an injective linear
map gx: τx—> Rn, the Z2-equivariant map gx: (τo)x -> 5""1 determined by
gx defines a cross-section of (r)™"1 which we denote by gx also. In turn,
gx determines a specific cross-section gx of the restriction of the sphere
bundle ((n + l)h)0 to the fiber D{lhx) oί D(lh) such that gx | (lhx)0 is the
diagonal map (lhx)0-* (lhx)0 x v (/Ax)o. Composition of gx with a trivializa-
tion of ((π + l)h)0 yields a map g'x: D(lhx)-+Sι+n~\ We may assume
that the trivialization has been chosen so that g'x{{lhx)0) is the South pole
of Sι+n~\ Define β by β([gn t])(y) = [gί(y), ί] for ί E [0,1], y G D(lhx);
where Sι+n is identified with the reduced suspension of Sι+n \

a and β induce isomorphisms of the relevant portions of the spectral
sequences {Er(V, S'v(Pn,m(v)); %)x) and {£ r(V,S;(L"(τ)); <Z)X).

Let 3fC = 3ίf(Z2). We now examine the case %•=•% in greater
detail. The Thorn isomorphism gives an isomorphism

; Si(r )((rr)Λ,r )ar}!-= H'(P(τ); Z2)

); V x 5T}'v
+'= Hi+'(Tv(lh), V; Z2)

and duality gives an isomorphism

{Γv(/ft); Vx3ίf}'v+ί

I"

In the notation of [13],

where / — k = / — n.

THEOREM 4.2. There is a fiber-homotopy equivalence of V-
sectioned spaces 3fCv(Sv(Pnm(v)))-*Ύxϊlΐ=n-m+ιK(Z2,j) such that
boa: Hi(P(τ);Z2)^Φr=ΌιHi-i(V;Z2) maps Σ;Γ0VJC, to 0;

m=olXy for
xjGHi-i(V;Z2); where u = w, (A)e i f 1 (P(τ) ;Z 2 ) .
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Proof. (b°a)(uf) is represented by a map

/,: V x Sn^s -^ S^P^v)) AVK(Z2JS)

of V-sectioned spaces for large 5. Let / be the composite

V x (Sn~'+S Λ K(Z2, r))-> 5 'viP^iP)) Λv(K(Z2, s) A K(Z2, Γ))

where the first map is obtained by smashing with K(Z2, r) and the second
map is 1 Λvμ (where μ is the product map.) Taking the adjoint map,
applying Ωr

v, and passing to the limit yields / : V x
K(Z2,n-j)-+%v(S'v(Pn.m(p))). Since Xv{S'v{PnA^))) is a fiberwise
infinite loop space, we can add the ft to obtain

f:Vx Π K(Z29j)-»Xv(S'v(PΛιm(i>)))

It is readily checked that / is a fiber homotopy equivalence of V-
sectioned spaces and that the inverse of / is the desired map.

In the notation of [13], let %s be the spectrum with ίth space
%{{S%). Then

When % = X(Z2) or 3ίf(Z), % for 5 > 0 is equivalent to a product of
3ίf(Z2)'s; hence Theorem 4.2 determines the isomorphism explicitly in
either of these two cases. Moreover, a description of the relations
associated with the differentials in {Er(P(τ)y 5p ( τ )((τ)n l); S?)}, determines
a description of the relations associated with the differentials in
{Er(P(τ),Sr

P{τ)((r)n~ι',<S)}ι determines a description of the relations as-
sociated with the differentials in {Er(V, S fy(Pn,m (v))\ %%. The reader
should be aware that the relations thus obtained are not, in general, the
relations which appear in other treatments of similar resolutions of vx or
Pn,m(£)(e.g., in [10]).
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