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FACTORIZATION OF RADONIFYING
TRANSFORMATIONS

ROBERT FERNHOLZ

It is shown that a linear transformation which carries a
cylinder measure on a separable Hubert space to a Radon
measure on a separable Banach space can be factored into a
positive-definite Hilbert-Schmidt transformation followed by a
measurable linear transformation. Applications to measurable
norms are given.

1. Introduction. It is well known that Hilbert-Schmidt
transformations carry certain well behaved cylinder measures into Radon
measures on Hubert spaces (see [8, 9]). The problem of characterizing
transformations which carry cylinder measures on Hubert spaces to
Radon measures on Banach spaces seems to be more difficult (see
[8]). In this paper it is shown that such a transformation can be factored
into a positive-definite Hilbert-Schmidt transformation followed by a
measurable linear transformation. In the last section this type of
factorization is applied to abstract Wiener spaces.

2. Radon measures on embeddable spaces. Through
out this paper all topological vector spaces (TVS) will be assumed to be
real and locally convex. A Radon measure is a regular Borel measure,
and we shall assume that all Radon measures in this paper are positive
with total measure 1, i.e. they are probability measures. A topological
space X is a Lusin space if there is a complete separable metric space Y
and a continuous bijective mapping Y—>X. Any Borel measure on a
Lusin space is a Radon measure ([9], p. 122). The Borel subsets for
comparable Lusin topologies are identical ([9], p. 101).

DEFINITION 2.1. A TVS E is embeddable if E is a Lusin space and
if there is a continuous linear injection T \E —» H where H is a separable
Hubert space.

Any such mapping T will be called an embedding of E. We can
assume that T(E) is dense in H. Kuelbs [4] has shown that any
separable Banach space is embeddable. In fact we have

LEMMA 2.2. A TVS is embeddable if and only if it is a Lusin space
and there exists a countable bounded set {yJCE' , the dual of E, which
separates points on E.
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Proof. If T : E -» H is an embedding, then T* : H -> E', the adjoint
of T, is bounded and for any orthonormal basis {xj of H, {T*x(}C£'
separates points on E.

Conversely if {yf}CE' is a countable bounded subset which sepa-
rates points and H is any separable Hubert space with orthonormal basis
{jCj}, the transformation T.E-+H defined by

Tx =Σί i(x,y i)x i, x EE,

where ί, >0,Σ^<°°, is an embedding. ((,) is the canonical bilinear

form on E x E'.)

LEMMA 2.3. Lei E be embeddable with embedding
T:E->H. Then for any Borel subset B C£, T(B) is Borel in H.

Proof. This is true of injective mappings on Lusin spaces ([9] p. 107,
Lemma 14).

DEFINITION 2.4. Let H be a separable Hubert space with Radon
measure μ. Let A be a linear transformation defined on a dense linear
subspace 3)A CH with image in a TVS E. A is a μ -measurable linear
transformation if μ(3)A) = 1 and for any Borel set B C£, A ι(B) is
Borel.

We shall use the notation A:H-^>E even when 3)A/H. Any
bounded linear transformation is μ-measurable. A μ-measurable
linear transformation A.H-+E induces a Borel measure A(μ) on E
defined by A(μ)(B) = μ(A~](B)) for any Borel set B CE.

LEMMA 2.5. Let E be an embeddable space with embedding
T : E -> H, and /βί μ be a Radon measure on E. Then A = T"1 :H -^>E
is T(μ )-measurable.

Proof. T(μ) is a Borel measure and therefore a Radon measure on
H. T(μ)(2A)= T(μ)(T(E))=l. For any Borel set B CE,A~ι(B) =
T(B) is Borel in H by Lemma 2.3, so A is T(μ)-measurable.

A cylinder measure γ on a Hubert space H is scalarly concentrated
on the balls of H if for all e >0 there is N >0 such that for any y £ H ,

where (,) denotes the inner product on H. We shall assume that all
cylinder measures discussed in this paper have this property.
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LEMMA 2.6. Let Hu H2 be Hubert spaces, S:Hι-*H2 be a
Hilbert-Schmidt transformation, and y be a cylinder measure on
Hλ. Then S(γ) can be extended to a Radon measure S(y) on H2.

Proof. See [9] p. 301, or [8].

THEOREM 2.7. Let E be an embeddable TVS, H be a separable
Hilbert space, S :H —>E be a bounded linear transformation, and y be a
cylinder measure on H. Then S(γ) can be extended to a Radon measure
on E if and only if S can be factored

H

W

where W is a positive-definite Hilbert-Schmidt transformation and A is a
closed W(γ)-measurable linear transformation.

Proof. If S can be so factored, then A(W(y)) will be a Radon
measure on E. Since A(W(y)) and S(γ) agree on cylinder sets, S(γ)
can be extended to A(W(y)).

Conversely, let T:E -»H, be an embedding. Since H and H, are
both separable, they are unitarily equivalent, so we can assume
T.E^Ή. If necessary T can be followed by a bijective
Hilbert-Schmidt transformation and still remain an embedding, so we
can assume that W - TS is Hilbert-Schmidt, and in fact that W is
positive-definite.

W(y)=T(S(y)) and A =T]:H^E is T(S(γ))-measurable by

Lemma 2.5. T is continuous so A = T"1 is closed.

REMARK. Theorem 2.7 cannot be improved to state that S = AW
where W is Hilbert-Schmidt and A is bounded (see [6] p. 107 and [8]
Proposition (5.20.4)).

The following corollary resembles Theorem 1 of Versik [10], but
without the hypothesis that (£, μ) be a "Lebesgue space".

COROLLARY 2.8. Let E be an embeddable space with Radon mea-
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sure μ. Then there exists a separable Hubert space H with Radon
measure v and a bijectiυe v-measurable linear transformation A: H->E
such that μ = A{v).

3. Application to sequentially measurable norms.

DEFINITION 3.1. Let H be a separable Hubert space and γ be a
cylinder measure on H. A continuous norm || || on H is sequentially
y -measurable if for any increasing sequence of finite dimensional
orthogonal projections {Pn} on H such that Pn —> IH and e >0, there is
N > 0 such that for m, n > AT, y{x :\\Pnx - Pmx \\ > e} < e.

IH denotes the identity operator on H. To avoid confusion we shall
denote the original (Hubert) norm on H by || ||H.

If γ is the standard Gaussian cylinder measure on H, then a
measurable norm (defined in [2, 3]) is also sequentially γ-measurable ([2]
Corollary 5.2).

THEOREM 3.2. (Gross). Let y be a cylinder measure on a separable
Hilbert space H and let || || be a sequentially y -measurable norm on
H. Let B denote the Banach space generated by H with norm \\ \\ and let
S:H-+B be the natural injection. Then S(γ) can be extended to a
Radon measure on B.

Proof. Since H is separable, B is separable and therefore embedd-
able by Lemma 2.2. Let T :B —>H be an embedding such that TS is a
positive-definite Hilbert-Schmidt transformation. TS(y) can be ex-
tended to a Radon measure v on H. We must show that the closed
linear transformation A = T~x :H —>B is v-measurable which, in view of
Lemma 2.3, amounts to showing that v(βA)= 1.

Let {Pn} be an increasing sequence of finite dimensional orthogonal
projections on H such that Pn-^ IH and which commute with TS. Then
for e > 0

y{x:\\Pnx-Pmx\\>e}

= γ{jc :||SPnJC-SPmJc||β>e}

= y{x:\\ATSPnχ-ATSPmx\\B>e}

= y{x :|| APnTSx - APmTSx \\B > e}

= v{x \\\APnx - APmx\\B> e}.
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Therefore, if m and n are large enough,

v{x:\\APnχ-APmx\\B > e } < e

so APnx converges in ϊ^-measure. Then a subsequence, also denoted by
APnx, converges ^-almost everywhere. Since A is closed and Pnx—>x
we must have APnx^> Ax v-almost everywhere. Therefore v(3)A) = 1.

THEOREM 3.3. Let y be a cylinder measure on a separable Hubert
space H and let || || be a sequentially y -measurable norm on H. Let B
denote the Banach space generated by H with norm || ||, let S :H-*B be
the natural injection, and let μ = S(γ). Then there exists an orthonormal
basis {ek} of H with ek = S *fk, fk E B', such that

in μ-measure on B.

Proof. As in the proof of Theorem 3.2 we can define an embedding
T.B-+H such that W = TS is a positive-definite Hilbert-Schmidt
transformation and A = T'ι:H -^ B is a closed W(γ)-measurable linear
transformation. Let {ek}, k E N , be an orthonormal basis of H con-
sisting of eigenvectors of W such that Wek = λkek, λk > 0. Let Pn be the
orthogonal projection onto the subspace generated by {eu -,en}.

Let v = W(γ) and let e > 0 . Then for m and n large enough

e >γ{x : | |P n Jc-P m x | |>e}

= v{x :\\APnχ-APmx\\B > e } .

Therefore APnx converges in ^-measure. Since A is closed and
Pnx—>x, it follows that APnx -^ Ax in i^-measure. But v{x E
H:\\APnx-Ax\\B>e} = μ{xEB:\\APnTχ-x\\B>e} so APJx-^x
in μ -measure on B.

Now,

APnTx = A £ (Tx,ek)ek
k = l

= Σ(x,T*ek)Aek

k = l

n

= Σ (x,λkfk)Aek
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If γ is the standard Gaussian cylinder measure on H we obtain the
following well known ([5, 7])

COROLLARY 3.4. With the same hypotheses as Theorem 3.3 and y
the standard Gaussian cylinder measure on H

n

2 (x, fk)Sek->x μ-almost everywhere.
k = \

Proof. The random variables ( , fk) on (B, μ) are independent (see
[5]) so by the well known theorem of P. Levy (see [1] Theorem 5.3.4, p.
120 and its proof), convergence in measure implies almost everywhere
convergence.
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