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REMARKS ON SINGULAR ELLIPTIC THEORY
FOR COMPLETE RIEMANNIAN MANIFOLDS

H. O. CORDES AND R. C. McOWEN

This paper is about a C*-algebra ?I of 0-order
pseudo-differential operators on L2(Ω), where Ω is a complete
Riemannian manifold which need not be compact. This algebra
is designed to handle singular elliptic theory for certain
Nth-order differential operators. In particular, this paper stu-
dies the maximal ideal space M of the (commutative) algebra
9ί/3ίT, where % denotes the compact ideal. The space M con-
tains the bundle of cospheres as a subspace, and in general will
contain additional points at infinity of the manifold. The
significance of this for elliptic theory lies in the fact that an
operator A E ?l is Fredholm if and only if the associated
continuous function σA E C(M) is never zero.

1. Introduct ion. Let Ω be an n-dimensional paracompact
Cx-manifold with complete Riemannian metric ds2 = g^dx^x' and
surface measure dμ = Vg dx where g = det(g ίy). As in [5] we define
Λ = (1 - Δ)~1/2 as a positive-definite operator in i?(ϊ), the bounded
operators over the Hubert space ϊ = L2(Ω, dμ), and define the Sobolev
spaces lN Cl for N = 0,1, by requiring AN : ϊ—> IN to be an isometric
isomorphism. It was shown in [3] that Co(Ω) is then dense in each ϊN.

In [5] we defined classes of bounded functions and vector fields, A
and D, whose successive covariant derivatives with respect to a symmetric
affine connection V vanish at infinity in the special sense that for
/ E C(Ω) we write limx^xf = 0 if for every e > 0 there exists a compact
set K Cίϊ such that

(1.1) l / ( * ) l<€ f 0 Γ * e Ω \ K .

Let LN denote the class of Nth-order differential operators generated by
taking sums of products of elements in D and A. The connection V need
not be the Riemannian connection Vg, but must satisfy Condition (r0) of
[5] that it does not differ drastically from Vg at infinity. We also require
Condition (L2) that 1-Δ E L2, a condition which was seen in [5] to imply the
curvature tensor R tends to zero as x —>oo in the sense of (1.1). Under
these two conditions it was shown that the operators LΛN and ΛNL for
L E LN are bounded over ϊ and thus generate an algebra 31° C

Moreover it was found that after adding the compact ideal 5ίf to
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2ί° and taking the norm closure, we obtain a C*-algebra 21 with compact
commutators.

In this paper we focus our attention on the maximal ideal space M of
the commutative C*-algebra 3Ϊ/X If we define the symbol σA to be the
continuous function on M associated with the coset A + 3ίf, then a
necessary and sufficient condition for A to be Fredholm is that σA never
vanish on M (c.f. [1]). Thus a further analysis of M and the symbols σA

is desirable for the Fredholm theory of differential operators in LΛ For
compact manifolds Ω it was shown in [8] that M is just the bundle of unit
co-spheres S *Ω C Γ*Ω. For the special noncompact manifold Ω = Rn it
was shown in [4] that M contains S*Ω = R" x Sn~ι as a proper subset: in
fact M = dP*Ω = P*Ω\ Γ*Ω where P*Ω is a certain compactification of
T*Ω. In both [4] and [8] explicit formulas for σA were obtained. For
general Ω, the main result of this paper (c.f. Theorem 2.2) asserts the
inclusions S*Ω CM CdP*Ω. Although we do not achieve a complete
description of M and σA, this theorem yields many results (e.g. criteria for
"weak = strong" and characterizations of Fredholm essential spectra) of
classical elliptic theory (c.f. [2]). For example, if L E LN is uniformly
elliptic (see §2) and formally self-adjoint, then L is essentially self-adjoint
(with domain C(T(Ω)). A discussion of this and further applications of
the result of this paper is planned for a subsequent publication.

2. The formal algebra symbol. Let 9ίM denote the func-
tion algebra obtained by closing A under uniform norm. Since SIM is a
subalgebra of the bounded continuous functions on Ω, the Gelfand
isomorphism yields 3ίM = C(Ω) where Ω is some compactification of
Ω. On the other hand, considering 51M C?ί we obtain a canonical
injection i: 21M -* 91/32" whose associated dual map p = i* provides a
continuous surjection /?:M—»Ω. Let us denote the open subset
p~1(Ω)CM by S. The following theorem, which is an immediate conse-
quence of Theorem 2.2 although we state it first for purposes of
exposition, extends the corresponding well-known result for compact Ω.

THEOREM 2.1. Let π: S*Ω-*Ω denote the fibre bundle of unit
cospheres S*ΩCT*Ω. There is a (suήective) homeomorphism
0 : S - > S * Ω such that π°θ=p on S and for mES and 0(m) =
(x,£)ES*Ω we have

σa(m)= a(x) σDA(m)= bi(x)ξj

(2.1)
σΛ(m) = 0 σκ(m) = 0

where K E 3Γ, a E A, and D E D is given in local coordinates by
-ibj(d/dxj) and ξ = ξjdx1.
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For α E A and D G D with local expression - ibJ(d/dxJ), the
following formal symbols define continuous functions on T*Ω.

(2.2) σβ(jc, ξ)=a(x) σD(x, ξ) = b'(x)ξ}

and we may extend algebraically to sums and products. In particular,
the formal symbols σα, σDΛ, and σΛ for a E A and D E D generate a
C*-algebra, Sί̂ , of continuous bounded functions on T*Ω. The maxi-
mal ideal space of 2ίσ is a compactification, P*Ω, of T*Ω, and we define
the boundary dP*Ω = P*Ω\T*Ω. The associated dual map to the
injection 5iM~^3i^ provides a surjection of P*Ω onto Ω, and the
restriction of this map to the boundary is denoted by
π : (9F*Ω->Ω. Using (2.1) of [5], the formal symbols of LΛN and ANL
for L E LN defined by algebraic extension of (2.2) are unique when
restricted to dP*Ω. Thus we are lead to defining the formal algebra
symbol as the algebra homomorphism

(2.3) σ: 2ί°->C(^P*Ω)

obtained by this restriction of σ.
It is evident that S*Ω is homeomorphic to π~2Ω by the map

(x, f)—»limΓ_>oo(jt, rξ) E dP*Ω. Theorem 2.1 may be interpreted as pro-
viding a continuous injection θ: S ^ dP*Ω such that

(2.4) άA(θ(m))=σA(m)

for m E S and operators A = a or A = DA. The main result of this
paper extends this formula as follows.

THEOREM 2.2. Under Conditions (r0) and (L2), there exists a con-
tinuous injection θ: M—» dP*Ω such that

(2.5) p\ A

is commutative, surjective on fibres over Ω, and (2.4) holds for all m E M
and A E 2Γ.

If L E LN with σLΛ* bounded away from zero on 5 *Ω = 0(S), we say
L is uniformly elliptic.
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3. Proof of T h e o r e m 2.2. Condition (L2) implies that we
may write

M

Σ
iVJ

(3.1) 1 - Δ = X CVDV + lower order terms

with 2M vector fields C, Dv E D. Taking real and imaginary parts in
(3.1), we may assume Cv and Όv are real. Let Bv E D, v = 1, , N, be a
basis for the module spanned by d , , CM, D l 5 , DM over the algebra
of real-valued functions in A. In local coordinates, let G denote the
n x n matrix ((g'7)) and B denote the n x N matrix ((/>!,)) where b[ are
the components of Bv. Let Bτ be the matrix transpose of B. Consider-
ing principal parts in (3.1), there is a symmetric NxN matrix-valued
function A = \{avμ)) whose coefficients avμ are all real-valued functions of
A, such that

(3.2) G = BABT.

Let us introduce the NxN matrix-valued function P = BτG~ιBA.
Observe that P does not depend on local coordinates and P2 = P implies

ίN\
that P is a projection matrix with rank n. Let Γ = I ), the binomial

coefficient. We shall require the following lemma from linear algebra.

LEMMA 3.1. For any N x N projection matrix P with rank n, there
exists an n x n diagonal matrix minor P such that \ det P \ ̂  Γ"1.

Proof.. Since det (P - λ) = (1 - λ )n ( - λ ) N n , the coefficient of A N'n

is ± 1 . But this coefficient equals the sum of all n x n diagonal
minors. Since there are precisely Γ such minors, at least one must have
absolute value not less than Γ"1.

Applying the lemma, we see that at each point x EΩ there is a
matrix minor P of P, P = Bjy)G

 λBA where Biy) denotes one of the Γ
distinct n x n matrix minors of B and A denotes a certain N x n matrix
minor of A, such that

(3.3) | d e t P | > ( 2 Γ ) - 1 .

The matrix AτBτG~ιBA has coefficients in A so that \dttAτBτG~ιBA \
is uniformly bounded over Ω. Thus | det G~υ2BA \ =
detAτBτGιBA |1/2 is also uniformly bounded. So by (3.3), there

exists a constant O Ό such that at each x E Ω, | det B{y)G~m \ > C holds
for at least one γ = 1, ,Γ. Observe that dγ = detB(

τ

γ)G~1/2 is a C00-
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function on Ω and we have a finite open cover of Ω by the Γ sets

(3.4) Ω r ={x E ί l : K ( J C ) I > C } .

Let us suppose that we have chosen C such that also the sets

(3.5) ίi; = {xGΩ: \dγ(x)\>2C}.

cover Ω. Also define

(3.5') Ω'y={xEΩ:\dy(x)\>ίC}.

Observe that Ω" Cίi c Ω γ . Let Ω; and Ω^ denote the closures of Ω; and
Ω" respectively in Ω.

In each set Ωγ, det Biy) > 0 so we may define the n x N matrix-valued
function QΎ = B~{y)B. Let us also define a n n X n matrix-valued function
on Ωγ

(3.6) Ay = QyAQ\ = (B ~{y\G

Clearly Ay is coordinate invariant and positive definite with spectrum
bounded uniformly (over Ω γ) below by e > 0. Since | det Ay \ < C2 on
Ωγ, we conclude that the spectrum of Aγ is contained in a fixed
(independent of x E Ω γ) compact subset of (0,°c). Thus we may define
Ay2 by a resolvent integral. A computation shows that the coefficients
of A y2 are bounded over Ωγ and have covariant derivatives tending to
zero in Ωγ outside large compact sets of Ω. Thus if we define Biγ) =
B{Ύ)A

1/2 we have G = Biγ)B{γ) in Ω r In other words we have diagonal-
ized the metric in Ωγ as follows.

PROPOSITION 3.2. Under Condition (L2), there is a finite open cover
of Ω by open sets {Ωy}Ύ=ι such that in each set Ωγ we may express

(3.7) g* = J b\K
v— 1

where the n real vector fields Bv with components b'v are bounded over Ωy

and satisfy: for every n ̂  1 and e > 0 there exists a compact set Ke CΩ
such that

(3.8) |Vnβ,)<e for all xEΩy\Kf.

Now let x G C(R) with χ(t) = 0 for t ̂  0, χ(t) = 1 for t ̂  C and
Q^X^X for 0<ί. Define φy(x) = χ(3\dy(x)\-4C), φy(x) =
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χ(3 \dy{x)\- 3 C ) , a n d μγ(x) = χ(3\dy(x)\- 2 C ) . Div id ing e a c h φy by
Σ^i φy, we may assume Σ'γ = 1 φy = 1 on Ω. Observe φy, ψy, μy EL A, φy = 1
on Ω" and μγ = 0 on Ω\Ω r In fact ψy = 1 on Ω^ = supp φy and μγ = 1 on
supp φy, so φy = φγψγ and t/>γ = ψγμγ. Observe that DγιI/ = - iμyBv E D
(in particular, a vector field defined on all of Ω).

LEMMA 3.3. Vector fields of the form φyD and φyD with D E D may
be written as φyD = Σ"=1 ay,vφyDrP and φyD = Σ"=1 aΎ,vψγDΎiV with αγ,, E A.

Froo/. If D is given in local coordinates by b'd /dx\ simply define
aΎtV = ibJgjkbtμy.

We now invoke some of the results of [5]. Condition (r0) implies
that the formal adjoint of ψΎDΎtV is of the form (ψyDyv)' = ψγί>γ^ + a with
Iim^oofl - 0 (c.f. (2.2) of [5]). Thus if we let Γγ,,,'= ψγDγ,,Λ E ?l°, we
have by Remark 2.3, Theorem 3.1, and Proposition 4.4 of [5] that

(3.9) T*tV= A(φyDyP)
f ^AφyDy^ = ψγDγ,,Λ = Γγ>, (mod 3ίΓ).

Also observe

(3-10) 2 ( φ Y D 1 , j ( φ γ D y . , ) = - ^ ^ - g ^

D

with l i m x ^ | D | = 0. Thus using Corollary 3.6 of [5] together with (3.9)
and (3.10) above

(3.11) ψ2

y=ψ2

Y\(l-^A = (ψyAf-Aφ2

ΎϋA (mod 3ίf)

= Σ Tl» (mod %)
v = Q

where we have also defined Tyfi = φyA. Similarly, let us define S%1/ =
φyTyiV for all γ and v.

Let M ^ p ' ^ C M . Also let Sn be the half-sphere

σ = (σo,σ1, ,σ π )ER π + 1 : ^ σ ^ l and σ- o^θj, and Sn'] = dSn

+.
)

PROPOSITION 3.4. For each y = 1, ,Γ ί/ιer̂  is a continuous
injection

(3.12) M ; - > Ω " ; X $ ;
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where m»(x,σ) such that σa(m)= a(x) and σSyXm) = ψy{x)σv for
v = 0,1, . n. In addition, (3.12) maps M'yΠ S onto Ω x S""1.

Proof. Let 21* denote the smallest C*-algebra with unit containing
X and TΎtV for v = 0,1, , n. Let 2ίγ denote the smallest C*-algebra
containing 2ίM and 81*. Since 8lγ/3Γ is a commutative C*-algebra, let Nγ

denote its maximal ideal space, and let σy: 9lr —> C(N γ) be the symbol
homomorphism. Also let py\ Nγ ->Ω be the associated dual map to the
inclusion SlM-» Sίγ. For α E A and D E D , define py{a) = a, py(DA) =
ψrDΛ, and p r (Λ)= ι/rγΛ. By Lemma 3.3, ργ extends to a continuous
algebra homomorphism of SI onfo δlγ. Since py(3f{)C3f{y there is an
induced surjective homomorphism βy: Sl/9ίf —»3lγ/3ίf. Thus the as-
sociated dual map /γ = p* provides a continuous injection such that

(3.13)

commutes and

(3.14) σy

Py(A)(n)= σA(iyn)

for all A E 2ί and n E Nγ. The restriction of iγ to N ^ p ^Ω;) may
easily be seen to provide a surjection of N^ onto My. Thus we may
consider NJCM.

On the other hand, Sl̂ /Sif is also a commutative C*-algebra with
unit whose maximal ideal space will be denoted MJ. But by a well-
known theorem concerning C*-algebras generated by a finite number of
elements (c.f. [7]), M^ is homeomorphic to the joint spectrum of the n + 1
cosets TΎtV + 5ίΓ of 2l*/3ίf. Using (3.11) and the non-negativity of Γγ,0, this
implies that MζCBΊ+ι = {rσ: σ E Si and 0 ^ r ^ 1}. Since Sίγ is gener-
ated by SίM and 81*, Herman's Lemma (c.f. [6] Theorem 1) implies the
existence of a continuous injection

(3.15) N^ΩxΰΓ1

such that n H» (X, i/fy(jt)cr) where σΎ

a(n)^a(x) and σ^Xn) = φy(x)σp for
^ = 0,1, , n. But since ψy = 1 on Ωy, the image of Ny under (3.15)
is contained in Ωyx Si. Combining this with (3.13) and (3.14) yields
(3.12) with σ α ( m ) = σy

a(i~ιm) = a(x) and σSyv{m)~
σlXi-'m)- σΎ

TγXry

1m)= φy(x)σp.
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Finally, let m1 E M; with pirn1) = x E Ω;. Let φ E Co(Ω ) with
?>(*)= 1. Then σTy()(m]) = σψTyXmλ) = 0 since φT%0=φ\EX by
Theorem 3.1 of [5]. Thus m1^(x, σι) with σιESn~ι. Let σ 2 be
arbitrary in S " 1 and 0 = ((rvμ)) an orthogonal n x n matrix such that
σ2 = 0σι. Defining r(a)= α, τ(Γ % 0 )= Tγ,o, τ(TrtV) = ΣrvμTΎtμ induces a
surjective automorphism f: 3ίr/3ίf—>2ϊγ/3ίf. The associated dual map
f*: M y—>M γ is a homeomorphism such that

σ τ ( A ) (m.)= crΛ(f*m)

for all A E 31 γ and m E Mγ. In particular, for A = TΎtV and m 2 = r*m\

implies m2^ (x,σ2). Hence (3.12) provides a homeomorphism of
M nS onto Ω x 5""1.

Let Sίσ,τ denote the C*-subalgebra of CB(T*Ω'y) obtained by
restricting functions in %σ to Γ*Ωγ. Let F*Ω^ denote the compactifica-
tion of Γ*Ωγ induced by Slσ>γ, and consider the functions σA extended to
P*Ωγ without change in notation.

PROPOSITION 3.5. For each γ = l , ,Γ there is a continuous

injection

(3.16) ?*Ω;^Ω;XS;

such that (/?)H>(X,<X) with σa(p)= a(x) and σSyXp)= φy(x)σv for v =
0,1,•• n. /n /αcί (3.16) is surjective.

Proof. Restricting the formal symbols σTyv for i/ = θ, l, ,n to
Γ*Ωγ generates a C*-algebra with maximal ideal space SI and which
together with 2ίM |Ω; generates Slσ>y. Herman's Lemma yields the injec-
tion (3.16) which may easily be seen to be surjective.

Now we may prove our main result.

Proof of Theorem 2.2. For each γ = 1, , Γ, (3.12) together with
(3.16) yield a map ΘΎ: Mγ~» P*Γty such that σa(m)= σa(θy(m)) and
σSyXm)= σSyXθy(m)) for v = 0,1,• , n. Since each P * Ω ; c P * Ω , and
m E MγlΊ Ms implies σsΎ,y(θγ(m)) = d-SδXθδ(m)) for every i/ = 0,1, , n,
the θ r induce a continuous injection 0: M—>P*Ω such that

(3.17) σ Λ (m)=<τ Λ (0(m))
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for all A = a or Sγ,v, a E A and γ = 1, , Γ and v = 0,1, , n. Now let
D E D , and write DΛ = ΣyφyDA = Σ ^ α ^ S ^ by Lemma 3.3. Then

σDh{m) = ΣyvσayXm)σSyΛm) = Ί,yvσayXθ{m))σs^

Similarly σA(m)= σΛ(0(ra)). In fact the second statement of Proposi-
tion 3.4 implies that the image of θ is contained in dP*Ω, and (3.17)
becomes

(3.18) σA(m)=άA(θ(m))

for all A = α, DΛ, or Λ with α G A and D E D . The extension of (3.18)
to all A E ?ί° follows from the algebraic properties of σ and σ.
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