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A CLASS OF MAXIMAL TOPOLOGIES

DOUGLAS E. CAMERON

In this note, we characterize maximal topologies of a class of
topological properties which include lightly compact spaces and
QHC -spaces and, when restricted to completely regular spaces,
pseudocompact spaces. In addition we prove some results
relating maximal lightly compact and maximal pseudocompact
spaces.

A. B. Raha [12] has shown that maximal lightly compact spaces are
submaximal as are maximal pseudocompact spaces, and Douglas E.
Cameron [6] has characterized maximal QHC-spaces and shown these to
be submaximal. In Tychonofϊ spaces, lightly compact and pseudocom-
pact are equivalent; and in Hausdorff spaces, QHC and H-closed are
equivalent. We shall show that the maximal topologies of a class of
topologies which include lightly compact and QHC are submaximal and
Tj spaces.

The topological space with topology τ on set X shall be denoted by
(X, T), the closure of a subset A of X with respect to τ is clτΛ and the
interior of A with respect to τ is intτA, the complement of A with
respect to X is X — A, the relative topology of r on A is r | A, and the
product of spaces (Xα, τα) for a E 21 is (ττsΛXα,

A topological space (X, r) with property R is maximal R if
whenever τ' is stronger than τ(τ 'Dτ) , then (X, r') does not have
property R. In [5] it was shown that for a topological property K, (X, r)
is maximal R if and only if every continuous bijection from a space (Y, r)
with property R to (X, r) is a homeomorphism. A topological space
(X, r) for which there exists a stronger maximal R topology is said to be
strongly R. For A C X the topology τ(A) with subbase r U{A} is the
simple expansion of r by A.

We shall restrict our study to topological properties which satisfy
some or all of the following:

P-l: contractive (preserved by continuous surjections)
P-2: regular closed hereditary
P-3: semi-regular (A topological property R is semi-regular if

(X, r) has property R if and only if (X, τ s) has property R where τs is the
semi-regularization of r.)

P-4: contagious (A topological property R is contagious if
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whenever a dense subset of a space has property JR, the entire space has
property JR [8]).

P-5: finitely unionable (If (X, r ) is a topological space, A, =X,
i = l, ,n are subsets which have property R, then UΓ=1A, has
property R).

DEFINITION 1. Two topologies r and r ' o n X are ro-equivalent if

τs = τ' s .

THEOREM 1. An expansion τ' of' τ is ro-equivalent to τ if and only if
c\T.U = clU for all U G r ' [10].

THEOREM 2. 1/ α topological property R satisfies P-3, then a maxi-
mal R topology is submaximal.

Proof. This follows from the properties of P-3 and the fact that
every topological space has a stronger submaximal space with the same
semiregularization [3].

COROLLARY 1. If a topological property R satisfies P-3, then maxi-
mal R topologies are TD.

THEOREM 3. If topological property R satisfies P-l-P-5 a submaxi-
mal space (X, r) is maximal R if and only if for any A C X, such that both
X-intrA and A have property R, then A is closed.

Proof. If (X, T) is submaximal and not maximal R, then there is
τ'Z> r such that τ's^ τs and (X, r ') has property R. Therefore there is
U E T' such that clτU D clτU and thus clτ(7 is not τ-closed. clτΊ7 and
clτ (X - c\τU) are r ' regular closed and thus are r ' and r subspaces with
property JR.

By P-4, c l τ ( c l τ ( X - c l τ l / ) ) = c l τ ( X - c l τ ( 7 ) = X - i n t τ ( c l τ U ) has
property JR with respect to r.

If (X, T) has property JR and there is a nonclosed subset A C X such
that both A and X - intτA have property R, then the topology clτ(X -
A ) has property R. Since every dense subset of a submaximal space is
open, ( X - A ) U i n t τ A is T open implying τ\B = τ ( X - A ) | B where
c l τ ( X - A ) = B. Also τ | A = τ ( X - A ) | A so both A and B are
τ(X-A) subspacσ with property R and by P-5, ( X , τ ( X - A ) ) has
property R since X = A UB, thus (X, r ) is not maximal R.

COROLLARY 2. A submaximal space satisfying P-l-P-5 with prop-
erty R in which every subspace with property R is closed is maximal R.
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THEOREM 4. If property R satisfies P-l-P-5 and all one point sets
have property Ry then maximal R spaces are Tλ.

Proof. Let (X,r) be submaximal R. If for XoEX,{xo}£τ then
X - {x0} is r-dense therefore is open and so {x0} is closed. If {JC0} E r and
clτ{x0}-intτ clT{jto} = 0 then since {x0} has property JR, clτ {x0} - {y0}
has property R for y0 ̂  x0 by P-4. Since {y0} £ r, clτ{y0} = {y0}, and the
free union of X - c l τ {x0}, {yo}, and clτ{xo}-{yo} has property R and is
finer than (X, r ) which is a contradiction since (X, r ) is maximal R. If
clτ{x0} ~ intτ clτ{*o} / 0 , choose y0 E clτ{x0} - intτ clτ{x0}. Then A =
clτ{xo}~{yo} has property R and is not closed. X - i n t τ A =
clτ (X - clτA) is regular closed and thus has property R. By Theorem 3,
A is closed, a contradiction as {xo}C A$-clτ{x0}.

THEOREM 5 If property R is productive and contractive (P-l) and
(π«Xα, π%τa) is maximal R, then (Xα, τα) is maximal R for a E 31.

Proof. (Xα, τα) has property JR for a E Si since R is contractive; if
(Xβ, τ β) is not maximal R for some β E SI, there is τ'βD τβ such that
(Xβ, Tβ) has property R. Then for τ« = τα for a^ β, (τr«Xα, π9ίτ«) has
property R which is a contradiction.

QHC-spaces (spaces for which every open cover has a finite
subcollection whose closures cover the space) have properties P-l-P-5
and have been studied in detail [6]. QHC-spaces which are Hausdorff
are called H-closed spaces. Lightly compact spaces (spaces for which
every countable open cover-has a finite subcollection whose closures
cover the space) satisfy P-l-P-5 (See [2] for P-2; [12] for P-3; P-l, P-4, and
P-5 are proven as for QHC). Lightly compact spaces are called feebly
compact in [14, 15]. Pseudocompact spaces satisfy P-l, P-3 [12], P-4 [8]
and P-5, but not P-2. However P-2 is satisfied for pseudocompactness in
the class of completely regular spaces [9] and maximal pseudocompact
spaces are Tx [7].

Spaces having properties Pλ-P5 are not necessarily strongly JR
(QHC—[6]; lightly compact—[12]). However if -closed spaces are
strongly H-closed [10] and a first countable Hausdorff space which is
lightly compact is strongly lightly compact. This follows from P-3, the
fact that every space is coarser than some submaximal space with the
same semi-regularization, the fact that in a first countable Hausdorff
space, lightly compact subsets are closed (proven similarly to the same
result for first countable, Tλ countably compact spaces [1]) and Corollary
2. In Tychonoff spaces pseudocompactness is closed hereditary [9], thus
we have the following result:
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THEOREM 6. A Tychonoff space is maximal pseudocompact if and
only if it is maximal lightly compact.

Proof. In completely regular spaces, pseudocompactness is equiva-
lent to lightly compact [2]; since lightly compact spaces are pseudocom-
pact then a lightly compact maximal pseudocompact space is maximal
lightly compact. If not maximal pseudocompact there is r ' D r such that
(X, T') is pseudocompact and therefore there is A Eτ'-τ such that
(X,τ(A)) is pseudocompact and is completely regular [13]. Therefore
(X, τ(A)) is lightly compact.
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