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NON-CONTINUOUS DEPENDENCE OF SURFACES OF
LEAST AREA ON THE BOUNDARY CURVE

MICHAEL BEESON

In this paper, we consider the question of continuous
dependence associated with the following version of Plateau's
problem: Given a (sufficiently smooth) Jordan curve Γ, find a
surface of least area bounded by Γ. In other words, we ask
whether a surface SΓ of least area among surfaces bounded by Γ
can be found, continuously in Γ. The answer is no; in fact,
sometimes one does not even have local continuous
dependence. That is, for certain curves Γo, one cannot find SΓ

continuously in Γ, even on any neighborhood of Γo.

We became interested in this question through our interest in
constructive aspects of Plateau's problem. A general principle is that if
a problem can be constructively solved, then the solution depends (at
least locally) continuously on the parameters provided the parameters
come from a complete metric space). This may be seen intuitively as
follows: if a computer is to compute the solution to accuracy e, it must be
able to do so on the basis of an approximate value of the
parameters. This is closely related to Hadamard's formulation of the
concept of a "well-posed problem". In [1] we have made a
metamathematical study of this "Principle of Local Continuity". It
follows from the results there, together with the main theorem of this
paper, that no proof of Plateau's problem as stated above (say for C(n)

boundaries) can be given in known constructive formal systems; see [2]
for details.

There is a weaker form of Plateau's problem, in which it is required
to find, not a surface of least area, but a surface which is a critical point of
the area functional; that is to say, a minimal surface. It was proved by
Hildebrant and again by Tomi [8] that for analytic boundary curves, this
problem can be locally continuously solved. This lends evidence to
support the conjecture that this version of Plateau's problem can be
constructively solved, at least for sufficiently smooth boundaries. It is
almost certainly true that one does not have global continuous depen-
dence of a minimal surface on the boundary curve, even though one does
have local continuous dependence, but this has yet to be proved.1

For the sake of precision, we state exactly what is meant by "local
1 Added in proof: This follows from the results of A. J. Tromba and the author, the cusp

catastrophe of Thorn in the bifurcation of minimal surfaces, to appear.
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continuous dependence". Consider the problem of finding an x such
that P(α, x). Here a are the parameters of the problem; for example, a
might be a boundary curve and x a surface of least area bounded by
a. Let N8(a) denote the neighborhood of a of radius δ. We say the
problem can be solved locally continuously if

Vα3xVβ > 03δ > OVfc G Nδ(a)3y G N€(x)(P(α, JC) & P(k y))

That is, x is a solution stable under small perturbations b of the
parameter a. It is worth remarking that this is not the strongest possible
notion — one could ask for a neighborhood N(a) and a continuous
functional defined on that neighborhood and producing a solution of the
problem. Since we are proving a negative result in this paper, we take
the weaker formulation. This is also the formulation taken in Tomi's
paper [8], where a positive result is proved. The proof there does not
yield a continuous functional on a neighborhood of a given boundary
curve.

We now proceed to a motivation and description of our proof. We
begin with some remarks on the analogy between minimizing the area
functional and minimizing some differentiable function / from [0,1] to
the reals. Such an / has a minimum value on [0,1], but we cannot in
general compute explicitly an x such that f(x) is a minimum. The
reason is, that / may have two relative minima, say at x = 1/3 and
x = 2/3, and on the basis of finer and finer approximations to /, we can't
decide which of the two is an absolute minimum. That is, the value x at
which / takes its minimum value does not depend continuously on /; let
/0 have two relative minima, as above, but /0(l/3) =/0(2/3); then in any
neighborhood of /0, there will be some functions whose only absolute
minimum is at 1/3, and some whose only absolute minimum is at
2/3. We shall show that the situation with the area functional is similar.

The example suggests that we should look for a contour Γ = Γ,
(depending on a real parameter t) such that the area functional has two
relative minima among surfaces bounded by Γ, and which one of the two
is an absolute minimum depends on the sign of t. Thus, we are led to
examine curves Γ bounding more than one minimal surface. Several
examples are commonly used to demonstrate the non-uniqueness of
solutions to Plateau's problem. Three of these are illustrated in Fig.
1. Note that each curve in Fig. 1 is preserved under the symmetry σ
which rotates by 90° around the z axis and then reflects in the x - y
plane, as well as under px and py (reflection in the y — z plane and x — z
plane, respectively). Soap film experiments with wires bent in the
shapes of these contours suggest that each of these curves bounds exactly
three minimal surfaces (of the type of the disk); two relative minima and
one unstable surface. For instance, if Γo is the curve in Figure la, one
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relative minimum, say 5, goes from the upper left, down around the
bottom, and back up on the right; the other, say JR, is its image under the
symmetry σ: it starts in the back bottom, comes up over the top, and
down in the front. The unstable surface bounded by Γo is a segment of
Enneper's surface, with a saddle point at the origin. Now, if we define
perturbations Γf of Γo so that for t > 0, the top parts of Γ, are pinched
together, and for / < 0, the top parts are pulled apart, then presumably
there are surfaces Rt and Sh such that as t changes sign, the absolute
minimum of area jumps from Rt to S,.

There are a number of difficulties with this plan. First, and most
important, it is not known that Γ bounds only these three minimal
surfaces. In each of the cases illustrated in Figure 1, it is known that Γ
bounds at least three minimal surfaces, but (except in cases of unique-
ness) not a single boundary curve is known for which an explicit estimate
of the number of minimal surfaces with that boundary can be given. (If
Γ is analytic, the number of relative minima bounded by Γ is known to be
finite, but nobody knows how to compute even this number.) Even if

Fig. la.
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Fig. lb.

Fig. lc.
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we had an estimate for Γ, we would also need it for the perturbed
curves Γ,.

This difficulty can be surmounted by defining Γ, more
carefully. Let JR and S be as above; we shall arrange that for t positive,
Γ, lies entirely on R, and for t negative, Γ, lies entirely on 5. We will
then be in a position to use the theorem that an analytic curve lying on a
minimizing surface bounds exactly one minimizing surface (Lemma 1
below). We then try to finish the proof as follows: Suppose for purposes
of contradiction that Ft is a minimal surface bounded by Γ,. If t is
positive, then Ft coincides with a portion of i?, and if t is negative, then Ft

coincides with a portion of S. Thus, there must be a jump discontinuity
in Ft as t changes sign. We now see a second major difficulty: it has to
be proved that R and 5 are distinct; that is, that R is not invariant under
the symmetry σ of Γo. Happily, this has already been done, by Nitsche
[6]. We now give the details of the proof.

We begin by giving the precise definition of Γo; the parametric
equations for Γo are, for 0 ̂  θ ^ 2π

x = a cos θ - l/3α3cos30

y = - a sin θ - l/3α3sin30

z = α2cos20

Here a can be taken to be 1.7; it has to be some number between V3 and
some critical value rQ which is about 1.68, in order that the results of [6]
which we need below should apply.

LEMMA 1. Let the Jordan curve Γ bound a minimizing surface i?,
and let C be an analytic Jordan curve lying on R and not entirely lying on
Γ. Then C bounds exactly one minimizing surface.

Proof, (cf. [4, p. 92] where a similar theorem is given). C certainly
bounds one minimal surface Rf, which is a portion of R. Let Sf be any
minimizing surface bounded by C; we will show Sr and R' coincide. Let
S be the piecewise C1 surface formed by 5' together with R-Rf, together
with C; S is bounded by Γ and therefore has area ^ the area of
R. Hence area(-S')^ area(Rf). This proves that Rr is a minimizing
surface. Since 5' is a minimizing surface, area (5') = area(i?'). Now,
by [5], the surfaces S' and R-R' can be analytically extended across
C. If they do not have a common tangent plane at each point of their
common boundary, we can "round off" the corner to decrease the area,
which is impossible, as (R-R')U S' has minimum area among surfaces
bounded by Γ. Hence they do have a common tangent plane. But
now, by analyticity, they are analytic continuations of each other. (This
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is a well-known fact about minimal surfaces which is proved by examin-
ing the associated analytic functions; see [7] for details.) But R-Rr has
only one analytic continuation, namely Rf. Hence Rf and Sr coincide,
and the lemma is proved.

The following lemma is proved in [6], where it is used to show that Γo

bounds at least three minimal surfaces.

LEMMA 2. There is no minimizing surface bounded by Γo which is
geometrically invariant under the symmetry σ of Γo.

We are now ready to state and prove our main theorem, that there is
no local continuous dependence of a minimal surface on the boundary,
for boundaries near Γo. In order to formulate such a theorem precisely,
we must put a topology on the set of minimal surfaces and a topology on
the space of boundary curves. In order that our (negative) theorem
should be as strong as possible, we should put a strong topology on the
boundary curves, and a weak topology on the surfaces. We therefore
place the C" topology on the boundary curves, for some fixed but
arbitrary n, and on the surfaces we use the topology induced by the
Frechet distance,

(F,G) = i n f | | F φ - G | |
Φ

where || || is the sup norm and φ ranges over all homeomorphisms of the
unit disk onto itself.

THEOREM. It is not the case that for every analytic boundary curve, a
minimizing surface can be found depending locally continuously on the
curve.

REMARK. The theorem is related to, but somewhat stronger than,
the fact that when a minimizing surface is perturbed, it might not be
minimizing any more, though still minimal. The exact definition of local
continuous dependence is given above.

Proof. We have to show that if R is any minimizing surface
bounded by Γo, there is e > 0 such that it is possible to perturb Γo by an
arbitrarily small amount to some Γ, which bounds no minimizing surface
within e of R. Fix some minimizing surface R bounded by Γo. Let 5
be the minimizing surface obtained from R by applying the symmetry σ
of Γo, i.e., rotation by 90° and reflection in the x - y plane. We may also
assume that S has been reparametrized so that, regarding 5 as a function
from the closed unit disk P to R\ we have S(eiθ) = R(eiθ). For that
matter, we may assume R was so parametrized that R(eiθ) =
Γo(fl). Now, let
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')*") if ' = °o ^ l β ) if ' < o
Since, by [5], R and 5 extend analytically beyond the boundary, Γ,
approaches Γo as t approaches 0. (Of course, Γ, isn't smooth as a
function of ί, but this doesn't matter.)

Here we encounter a difficulty, which for simplicity we did not
mention before. Namely, why are the curves Γ, Jordan curves? In other
words, why are they one-to-one? For t sufficiently near zero, Γ, will be
close to R(eιθ) in the C 1 norm. It is not difficult to see that this would
imply that Γ, is one-to-one, if we knew that the derivative of R with
respect to θ were never zero; that is, if we knew that R has no boundary
branch points. Since JR is a minimizing surface, this is a known result
[G-L]. Hence, for t sufficiently near zero, Γ, is a Jordan curve, and we
can proceed.

By Lemma 1, if tj^O, then there is exactly one minimizing surface
bounded by Γ, it is a restriction of R or S to a disk of radius
1 - 111. Take e to be half the Frechet distance of JR and S. We have to
check that e > 0; but this is the content of Lemma 2. We will be finished
as soon as we show that the Frechet distance p{Rh St) is at least e/2 for t
sufficiently near 0. This in turn follows if we show that ρ(RhR) and
p(ShS) approach zero as t approaches zero. This follows from the
continuity of R in the closed disk — R can be reparametrized in the disk
of radius 1 -\t\ by "shrinking"; if t is small, this will not change R{z)
much for any z. This completes the proof of the Theorem.
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