INFINITE DECOMPOSITION BASES

Rqbert O. Stanton

Abstract

The concept of decomposition basis is essential to the study of the structure of mixed abelian groups. The main theorem of this paper uses invariants previously defined by the author to determine the decomposition bases of a given group. This is used to extend Ulm's theorem for mixed abelian groups to the entire class of affable groups.

1. Introduction. The word "group" will mean abelian group throughout. If X is a subset of a group $A,[X]$ denotes the subgroup generated by $X . \quad A_{t}\left(A_{p}\right)$ represents the torsion part (p-component) of the group A, where p is a prime. Z will denote the integers, while Q represents the rationals. Standard terminology (refer to Fuchs [1] and [2]) will be used unless otherwise indicated.

The notation $H(a)$ refers to the height matrix of an element a, while $H_{p}(a)$ is the p-indicator of a. If M is a height matrix, then M_{p} denotes the p-row or p-indicator of M. Two height matrices M and N (p indicators M_{p} and N_{p}) are equivalent if there are integers m and n such that $m M=n N\left(m M_{p}=n N_{p}\right) . \quad M$ and N are compatible if there are integers m and n such that $m M \geqq N$ and $n N \geqq M$. We say the p-height of 0 is ∞^{\prime}, and assume $\sigma<\infty<\infty^{\prime}$ for any ordinal σ. A height matrix is proper if it does not contain ∞^{\prime} as any entry. For any group A, the subgroup generated by the elements that are not proper is A_{t}.

If c is an equivalence class consisting of proper height matrices (compatibility class), p is a prime and e an equivalence class of p-indicators, the invariant $\operatorname{ST}(c, p, e, A)$ is the one defined in [6]. If the height matrix $M \in c$ and $M_{p} \in e$, we say $M \in[c, p, e]$.

If σ is an ordinal or ∞, and G is a subgroup of A, then $f_{\sigma}^{p}(A)$ and $f_{\sigma}^{p}(A, G)$ denote the Ulm invariants and relative Ulm invariants respectively. A torsion group T is called totally projective if each T_{p} is a totally projective p-group.

Let $X=\left\{x_{i}\right\}_{I}$ be a subset of a group $A . \quad X$ is called a decomposition basis if $[X]$ is the free group on $X, A /[X]$ is torsion, and, for any $a=\Sigma r_{i} x_{i}$ in $[X]$, where the r_{t} are integers, the p-height of $a, h_{p}(a)=$ $\min \left\{h_{p}\left(r_{i} x_{1}\right)\right\}$ for all primes p. (All heights are computed in A.) The subset $Y=\left\{y_{i}\right\}_{I}$ of A is a subordinate decomposition basis to X if $y_{1}=n_{1} x_{1}$ for all i, where the n_{i} are integers. It is shown in [6] that if X is any decomposition basis of A, then $\operatorname{ST}(c, p, e, A)$ is the cardinality of

$$
\{x \in X: H(x) \in[c, p, e]\} .
$$

Sections 2 and 3 of this paper are devoted mainly to the proof of Theorem 2.2. This theorem says, in effect, that the main criterion in switching from one decomposition basis to another in a group A is the preservation of ST-invariants. Henceforth the term "rank" will refer to the torsion free rank of a group.

The major application of Theorem 2.2 is to extend Ulm's theorem for mixed groups. If A is a group and G is a subgroup, define

$$
A(p, G)=\left\{a \in A: p^{k} a \in G \text { for some } k \geqq 0\right\} .
$$

This definition is due to Wallace [8]. His techniques yield the following version of the generalization of Ulm's theorem (see Hill [3], Walker [7]).

Theorem 1.1. Let A and B be groups containing subgroups G and H respectively such that $G,(H)$, is p-nice in $A(p, G),(B(p, H))$, and such that $f_{\sigma}^{p}(A, G)=f_{\sigma}^{p}(B, H)$ for all primes p, and for σ an ordinal or ∞. If A / G and B / H are totally projective, and $\phi: G \rightarrow H$ is a height preserving isomorphism, then ϕ extends to an isomorphism $\psi: A \rightarrow B$.

In $\S 4$, Ulm's theorem is extended to a class of groups including the affable groups defined in [6]. Some interesting consequences are also discussed.
2. Equivalence of decomposition bases. In this section we begin the proof of the theorem relating basis equivalence to the ST-invariants.

In a collection of height matrices, the same matrix may be included more than once. If \mathbf{S} is a collection of height matrices, A is a group with decomposition basis X, and there is a bijection $\alpha: X \rightarrow \mathbf{S}$ such that $H(x)$ is equivalent to αx for all $x \in X$, we write $H(X) \sim \mathbf{S}$. The following definition, as well as Lemma 2.1, are due to Hunter [4].

Definition. Let \mathbf{S} and \mathbf{S}^{\prime} be two collections of height matrices. Suppose A is a group having decomposition bases X and Y such that $H(X) \sim \mathbf{S}$ and $H(Y) \sim \mathbf{S}^{\prime}$. Then \mathbf{S} and \mathbf{S}^{\prime} are called basisequivalent, denoted $\mathbf{S} \sim_{b} \mathbf{S}^{\prime}$.

Lemma 2.1. Let \mathbf{S} and \mathbf{S}^{\prime} be two collections of height matrices, and suppose $\mathbf{S} \sim_{b} \mathbf{S}^{\prime}$, (with respect to a group A). If B is any group with a decomposition basis X such that $H(X) \sim \mathbf{S}$, then there is a decomposition basis Y of B such that $H(Y) \sim \mathbf{S}^{\prime}$.

Aside from ensuring that the concept of basis-equivalence is inde-
pendent of a particular group, Lemma 2.1 also guarantees that basisequivalence is an equivalence relation.

Definition. Let A be a group with a decomposition basis $X=$ $\left\{x_{i}\right\}_{i \in I}$. If $A=\bigoplus_{i \in I} A_{i}$, with $x_{i} \in A_{i}$ for all i, then X is called a splitting decomposition basis.

Given any proper height matrix M, there is a rank one group A with an element $x \in A$ of infinite order such that $H(x)=M$. Consequently, given any collection of height matrices \mathbf{S}, there is a group A with splitting decomposition basis X such that $H(X) \sim \mathbf{S}$. If \mathbf{S} is a collection of height matrices, then $\operatorname{ST}(c, p, e, \mathbf{S})$ denotes the cardinality of the set of height matrices in \mathbf{S} that are also in $[c, p, e]$.

We will now state the main result, and reduce the proof to the Lemma in §3, and Lemma 7 of [6].

Theorem 2.2. Let \mathbf{S} and \mathbf{S}^{\prime} be two collections of height matrices. Then the following three conditions are equivalent.
(a) \mathbf{S} is basis-equivalent to \mathbf{S}^{\prime}.
(b) For all c, p and $e, \operatorname{ST}(c, p, e, \mathbf{S})=\mathrm{ST}\left(c, p, e, \mathbf{S}^{\prime}\right)$.
(c) (i) There is a bijection $\phi: \mathbf{S} \rightarrow \mathbf{S}^{\prime}$ such that M and $\phi(M)$ are compatible for all $M \in \mathbf{S}$.
(ii) For each prime p, there is a bijection $\psi_{p}: \mathbf{S} \rightarrow \mathbf{S}^{\prime}$ such that $\psi_{p}(M)$ is compatible with M and $\left(\psi_{p}(M)\right)_{p}$ is equivalent to M_{p}. Moreover, $\psi_{p}(M)=\phi(M)$ for all but finitely many primes p.

Proof. (a) implies (b) is trivial. The proof of (b) implies (c) is based on the following set theoretical argument. We claim we may write \mathbf{S} as a disjoint union $\mathbf{S}=\mathbf{T} \cup\left(\cup_{p} \mathbf{T}_{p}\right)$ subject to the following two properties.
(α) If $M \in \mathbf{T}_{p}$, with $M \in[c, p, e]$, then $\operatorname{ST}(c, p, e, \mathbf{S})$ is infinite.
(β) If $\operatorname{ST}(c, p, e, \mathbf{S})$ is infinite, then $\operatorname{ST}(c, p, e, \mathbf{S})=\mathbf{S T}\left(c, p, e, \mathbf{T}_{p}\right)=$ $\mathrm{ST}(c, p, e, \mathbf{T})$.

A similar decomposition $\mathbf{S}^{\prime}=\mathbf{T}^{\prime} \cup\left(\cup_{p} \mathbf{T}_{p}^{\prime}\right)$ is formed.
We now justify our claim that the decomposition can be accomplished. By transfinite induction we may write \mathbf{S} as a disjoint union of countable subsets, $\mathbf{S}=\bigcup_{\sigma} \mathbf{S}_{\sigma}$, where each \mathbf{S}_{σ} has the property that, whenever $\operatorname{ST}(c, p, e, \mathbf{S})$ is infinite, then either $\operatorname{ST}\left(c, p, e, \mathbf{S}_{\sigma}\right)=0$ or $\mathrm{ST}\left(c, p, e, \mathbf{S}_{\sigma}\right)=\boldsymbol{\aleph}_{0}$.

For any given σ, there are at most countably many $[c, p, e$] with $\operatorname{ST}\left(c, p, e, \mathbf{S}_{\sigma}\right)=\boldsymbol{N}_{0}$. Order these $[c, p, e]$, and let \mathbf{K}_{t} be the set of those elements of \mathbf{S}_{σ} belonging to the i-th $[c, p, e]$. We now define subsets $\mathbf{T}_{i j}$ ($i \geqq 1, j \geqq i$) of \mathbf{S}_{σ} as follows.

Let \mathbf{T}_{11} be a subset of \mathbf{S}_{σ} such that

$$
\begin{gather*}
\mathbf{T}_{11} \subseteq \mathbf{K}_{1} \tag{1}\\
\left|\mathbf{T}_{11}\right|=\boldsymbol{\aleph}_{0} .
\end{gather*}
$$

Let M_{11} be any element of \mathbf{T}_{11}. Suppose that $\mathbf{T}_{i j}$ along with elements $M_{i j} \in \mathbf{T}_{i j}$ have been defined for all $j<n$. If

$$
\left|\mathbf{K}_{n} \cap\left(\mathbf{S}_{\sigma} \mid\left(\cup_{i<n} \mathbf{T}_{l, n-1}\right)\right)\right|=\mathbf{N}_{0}, \quad(\neq)
$$

then we can define $\mathbf{T}_{n n}$ from elements in $\mathbf{S}_{\sigma} \backslash\left(\cup_{i<n} \mathbf{T}_{i, n-1}\right)$, so that properties analogous to (1) and (2) hold. In this case, define $\mathbf{T}_{i n}=\mathbf{T}_{i, n-1},(i<n)$ and the element $M_{i n}(i \leqq n)$ is chosen in $\mathbf{T}_{i n}$ to be distinct from any previously selected element.

Suppose (\neq) fails to hold. Then for some $i,\left|\mathbf{T}_{i, n-1} \cap \mathbf{K}_{n}\right|=\boldsymbol{N}_{0}$. Now $\mathbf{T}_{n n}$ will be a countable subset of $\mathbf{T}_{i, n-1}$ such that

$$
\begin{aligned}
& \mathbf{T}_{n n} \cap\left\{M_{i i}, M_{b, i+1}, \cdots, M_{\iota, n-1}\right\}=\varnothing \\
& \left|\mathbf{T}_{n n}\right|=\mathbf{N}_{0} \\
& \left|\mathbf{T}_{b, n-1}\right| \mathbf{T}_{n n} \mid=\mathbf{N}_{0}
\end{aligned}
$$

Define $\mathbf{T}_{i n}=\mathbf{T}_{b, n-1} \mid \mathbf{T}_{n n}$, and let $\mathbf{T}_{j n}=\mathbf{T}_{j, n-1}$ for $j \neq i, j<n$. Select arbitrary elements $M_{i n}(i \leqq n)$ distinct from the previously selected elements.

For each i, define $\mathbf{V}_{t}=\bigcap_{j \geqq i} \mathbf{T}_{i j}$. Since $M_{\vartheta j}$ is in \mathbf{V}_{\imath} for all $j \geqq i$, $\left|\mathbf{V}_{1}\right|=\boldsymbol{N}_{0}$. Let \mathbf{V}_{1} be a disjoint union of \mathbf{V}_{11} and \mathbf{V}_{12}, where $\left|\mathbf{V}_{i 1}\right|=\left|\mathbf{V}_{12}\right|=$ \boldsymbol{N}_{0}. For a fixed prime p, let $\mathbf{V}_{p \sigma}$ be the union of those \mathbf{V}_{11} for which \mathbf{K}_{i} is represented by some $[c, p, e]$. Let $\mathbf{T}_{p}=\bigcup_{\sigma} \mathbf{V}_{p \sigma}$, and let \mathbf{T} be the set of elements not in any \mathbf{T}_{p}. Note that \mathbf{T} contains all $\mathbf{V}_{i 2}$. Then $\mathbf{S}=$ $\mathbf{T} \cup\left(\cup_{p} \mathbf{T}_{p}\right)$ satisfies the required conditions.

By (b) and the above construction, we may define $\phi: \mathbf{S} \rightarrow \mathbf{S}^{\prime}$ satisfying (i), and also requiring that the restriction to \mathbf{T} (respectively \mathbf{T}_{p}) map onto $\mathbf{T}^{\prime}\left(\mathbf{T}_{p}^{\prime}\right)$. It follows from (b) that maps ψ_{p} satisfying the first sentence of (ii) can be defined. We also claim that the ψ_{p} can be required to satisfy the condition that if $M \notin \mathbf{T}_{p}$, and $M_{p}=(\phi(M))_{p}$, then $\psi_{p}(M)=$ $\phi(M)$. This condition clearly allows the second sentence of (ii) to be satisfied. Let \mathbf{K} be the subset of \mathbf{S} consisting of all elements in [c,p,e], and let \mathbf{L} be the subset of \mathbf{K} such that $M \notin \mathbf{T}_{p}$ and $M_{p}=(\phi(M))_{p}$. If \mathbf{K} is finite, then ψ_{p} can be defined as indicated. If \mathbf{K} is infinite, define ψ_{p} on \mathbf{L} first. Let \mathbf{K}^{\prime} be the subset of \mathbf{S}^{\prime} consisting of all elements in $[c, p, e]$. By the above construction, $|\mathbf{K}| \mathbf{L}\left|=|\mathbf{K}|=\left|\mathbf{K}^{\prime}\right|=\left|\mathbf{K}^{\prime}\right| \boldsymbol{\phi}(\mathbf{L})\right|$, so ψ_{p} can be defined to map $\mathbf{K} \backslash \mathbf{L}$ onto $\mathbf{K}^{\prime} \backslash \phi(\mathbf{L})$.

We now begin the proof of (c) implies (a). Represent \mathbf{S} by a
decomposition basis X of a group A, where $H(X) \sim \mathbf{S}$, and $\alpha: X \rightarrow \mathbf{S}$ is the corresponding bijection. We will find a decomposition basis Y of A such that $H(Y) \sim \mathbf{S}^{\prime}$. For a fixed prime $p, \alpha^{-1} \psi_{p}^{-1} \phi \alpha$ is a permutation of X, and so splits X into equivalence classes consisting of countably infinite cycles, two-cycles, and fixed points. (The element x in X is a fixed point exactly if $\psi_{p} \alpha x=\phi \alpha x$.) Using transfinite induction, X may be written as a disjoint union of countable subsets, $X=\cup X_{\sigma}$, such that if $x \in X_{\sigma}, p$ is any prime and k is any integer, $\left(\alpha^{-1} \psi_{p}^{-1} \phi \alpha\right)^{k} x$ is also in X_{σ}. We will replace each X_{σ} by a Y_{σ} to obtain the new decomposition basis Y.

We proceed from X_{σ} to Y_{σ} by introducing a sequence of intermediate sets $W_{i}(i=1,2, \cdots)$, such that $\left(X \backslash X_{\sigma}\right) \cup W_{\iota}$ is a decomposition basis for every i. Let \mathbf{S}_{i} be the collection of height matrices of W_{i}, and let $\alpha^{(i)}: W_{i} \rightarrow \mathbf{S}_{i}$ be a canonical bijection. For each i, we will have maps $\phi^{(i)}: \mathbf{S}_{i} \rightarrow \mathbf{S}^{\prime}, \psi_{p}^{(i)}: \mathbf{S}_{i} \rightarrow \mathbf{S}^{\prime}$ with properties analogous to (i) and (ii). (We will drop the superscripts when there is no danger of confusion.) An element $x \in W_{i}$ is called permanent if $\phi^{(i)}\left(\alpha^{(i)} x\right)=\psi_{p}^{(i)}\left(\alpha^{(i)} x\right)$ for all primes p. We will require that if $x \in W_{t}$ is permanent, then $x \in W_{j}$ and that $\phi^{(i)} \alpha^{(i)} x=\phi^{(j)} \alpha^{(j)} x$ for all $j \geqq i$. A prime p is said to be repaired (with respect to W_{i}) if $\phi^{(i)} \doteq \psi_{p}^{(i)}$. We require that if p is repaired with respect to W_{i}, then p is repaired with respect to W_{l} for $j \geqq i$. Essentially, W_{t+1} is obtained from W_{t} by selecting and repairing a finite set of primes. We will indicate how this finite set is chosen after the proof of the following lemma.

Lemma 2.3. Let F be a finite subset of W_{i}. Then we may choose W_{i+1} so that each element of F is a linear combination of permanent elements of W_{t+1}.

Proof. First we note that any prime p can be repaired. As indicated previously, $\alpha^{-1} \psi_{p}^{-1} \phi \alpha$ divides W_{i} into equivalence classes consisting of countably infinite cycles, two cycles, and fixed points. Let $V=\left\{x_{i}\right\}_{1 \in Z}$ be the elements of an infinite cycle, with $x_{i+1}=$ $\alpha^{-1} \psi_{p}^{-1} \phi \alpha x_{1}$. Then Lemma 3.1 will show that V can be replaced by $V^{\prime}=\left\{y_{i}\right\}_{t \in Z}$ such that $H_{p}\left(y_{i}\right)=H_{p}\left(x_{i+1}\right)$ and $H_{q}\left(x_{t}\right)=H_{q}\left(y_{i}\right)$, for $q \neq p$. Additionally, $[V]=\left[V^{\prime}\right]$. Let $\gamma: V \rightarrow V^{\prime}$ be defined so that $\gamma\left(x_{i}\right)=y_{i}$, and $\delta: V \rightarrow V^{\prime}$ so that $\delta\left(x_{i}\right)=y_{i-1}$, and let \mathbf{S}^{*} be the collection of height matrices of V^{\prime}, with canonical bijection $\alpha^{*}: V^{\prime} \rightarrow \mathbf{S}^{*}$. Define $\phi^{*}: \mathbf{S}^{*} \rightarrow \mathbf{S}^{\prime}$ by $\phi^{*}=\phi \alpha \gamma^{-1}\left(\alpha^{*}\right)^{-1}$, and $\psi_{q}^{*}: \mathbf{S}^{*} \rightarrow \mathbf{S}^{\prime}$ by $\psi_{q}^{*}=\psi_{q} \alpha \gamma^{-1}\left(\alpha^{*}\right)^{-1}$, for $q \neq p$. We define $\psi_{p}^{*}: \mathbf{S}^{*} \rightarrow \mathbf{S}^{\prime}$ by $\psi_{p}^{*}=\psi_{p} \alpha \delta^{-1}\left(\alpha^{*}\right)^{-1}$. We show that $\psi_{p}^{*}=\phi^{*}$. If $M \in \mathbf{S}^{*}$, then $M=\alpha^{*} y_{i}$, for some $y_{i} \in V^{\prime}$. Then

$$
\begin{aligned}
\psi_{p}^{*} M & =\psi_{p} \alpha \delta^{-1}\left(\alpha^{*}\right)^{-1} M=\psi_{p} \alpha \delta^{-1} y_{t}=\psi_{p} \alpha x_{t+1}=\psi_{p} \alpha \alpha^{-1} \psi_{p}^{-1} \phi \alpha x_{t} \\
& =\phi \alpha \gamma^{-1}\left(y_{i}\right)=\phi \alpha \gamma^{-1}\left(\alpha^{*}\right)^{-1} M=\phi^{*} M
\end{aligned}
$$

In a similar way, p can be repaired for any two-cycle, using Lemma 7 of [6], which essentially says for two-cycles what Lemma 3.1 says for infinite cycles. We have thus established the claim in the first line of the proof.

Call a prime good if $\psi_{p}(\alpha x)=\phi(\alpha x)$ for all $x \in F$. The remaining primes are bad and form a finite set $\left\{q_{1}, q_{2}, \cdots, q_{n}\right\}$. Suppose q_{1} were to be repaired immediately in the manner described above. Then there would be a new decomposition basis T, each of the elements of F would be linear combinations of elements of T which in turn would be a linear combination of a finite set G_{1} of elements in W_{i}. Starting with W_{i}, repair all the good primes p for which there is an element x in G_{1} such that $\phi(\alpha x) \neq \psi_{p}(\alpha x)$. A new decomposition basis U_{1} results. Since only good primes were repaired, the elements of F remain in U_{1}. An element x of G_{1} is replaced by a new element y such that

$$
\begin{aligned}
\phi(\alpha x) & =\phi^{*}\left(\alpha^{*} y\right), \\
\psi_{q}(\alpha x) & =\psi_{q}^{*}\left(\alpha^{*} y\right), \text { whenever } q \text { is a bad prime. } \\
\psi_{p}^{*}\left(\alpha^{*} y\right) & =\phi^{*}\left(\alpha^{*} y\right), \text { whenever } p \text { is a good prime. }
\end{aligned}
$$

($\phi^{*}, \psi_{p}^{*}, \psi_{q}^{*}$ have the obvious meaning.)

Let G_{1}^{*} be the set of elements replacing G_{1}. At this point we actually repair q_{1}, in the same manner as we did when obtaining T. The set G_{1}^{*} is replaced by a new set F_{1}. If $x \in G_{1}^{*}$, the corresponding y in F_{1} has the properties

$$
\begin{aligned}
\phi^{*}\left(\alpha^{*} x\right) & =\phi^{* *}\left(\alpha^{* *} y\right), \\
\psi_{q}^{* *}\left(\alpha^{* *} y\right) & =\phi^{* *}\left(\alpha^{* *} y\right), \\
\psi_{p}^{*}\left(\alpha^{*} x\right) & =\psi_{p}^{* *}\left(\alpha^{* *} y\right), \text { for } p \neq q_{1}
\end{aligned}
$$

By the construction of G_{1}, the elements of F are a linear combination of elements of F_{1}.

The same routine is continued, with F_{1} replacing F, and the decomposition basis obtained after the repair of q_{1} replacing W_{i}. The set of bad primes is now $\left\{q_{2}, \cdots, q_{n}\right\}$. At the last step, we obtain a set F_{n}, consisting of permanent elements, such that F is a linear combination of the elements of F_{n}. The decomposition basis at this step will be W_{1+1}.

We now complete the proof of Theorem 2.2. Write the elements of the countable set $X_{\sigma}=\left\{x_{0}, x_{1}, \cdots\right\}$, and order the set of all primes $\left\{p_{1}, p_{2}, \cdots\right\}$. Let $W_{0}=X_{\sigma}$. To obtain W_{1}, let $F=\left\{x_{0}\right\}$ and use the lemma. If n is a positive integer, $W_{2 n}$ is obtained from $W_{2 n-1}$ by repairing p_{i}. The element x_{n} is a linear combination of elements of $W_{2 n}$. Let the set of these elements be F, and again use Lemma 2.3 to
obtain $W_{2 n+1}$. Let Y_{σ} be the set of permanent elements of the sequence $\left\{W_{i}\right\}$.

Now $Y=\cup Y_{\sigma}$ is easily seen to be a decomposition basis of A, because of the above construction. The map $\chi: Y \rightarrow \mathbf{S}^{\prime}$ defined by the appropriate $\phi^{(i)} \alpha^{(i)}$ for each $y \in Y$ manifests the fact that $H(Y) \sim \mathbf{S}^{\prime}$.
3. Changing a countable decomposition basis. The following lemma completes the proof of Theorem 2.2.

Lemma 3.1. Let X be a decomposition basis of a group A, let $\left\{x_{i}\right\}_{\iota \in z}$ be a countably infinite subset of X, in which all elements are pairwise compatible, and let p be a prime. Then there is a subset $\left\{y_{i}\right\}_{i \in Z}$ of A such that $H_{p}\left(y_{i}\right)=H_{p}\left(x_{t+1}\right)$, and for $q \neq p, H_{q}\left(y_{i}\right)=H_{q}\left(x_{t}\right)$. Moreover, $Y=$ $\left(X \backslash\left\{x_{i}\right\}\right) \cup\left\{y_{i}\right\}$ is a decomposition basis and $[X]=[Y]$.

Proof. Let x and y be two elements of infinite order in A. Then the p-indicator of x is superior to the p-indicator of $y, H_{p}(x) \gg H_{p}(y)$, if and only if
(i) if $h_{p}\left(p^{i} y\right)=\infty$, then $h_{p}\left(p^{i} x\right)=\infty$
(ii) if $h_{p}\left(p^{i} y\right) \neq \infty$, then $h_{p}\left(p^{i} x\right)>h_{p}\left(p^{i} y\right)$.

For the remainder of the proof, p will be the prime specified in the lemma, while q will always be a prime not equal to p. We proceed inductively to define a set of coefficients which will be used to form the y_{i}.

A prime q is called one-benign if and only if $H_{q}\left(x_{-1}\right)=H_{q}\left(x_{0}\right)=$ $H_{q}\left(x_{1}\right)$. We select integers $a_{0}, e_{0}, c_{0}, d_{0}, a_{-1}, b_{-1}, c_{-1}, e_{-1}$, to satisfy conditions to be listed later. (See (2)-(4).) In particular, e_{0} and a_{-1} are divisible only by p, and e_{-1} and c_{0} are not divisible by p. So there are integers u_{0} and u_{-1} so that

$$
\begin{equation*}
u_{0} e_{0} a_{-1}-u_{-1} e_{-1} c_{0}=1 \tag{1}
\end{equation*}
$$

Define $b_{0}=u_{0} e_{0}$ and $d_{-1}=u_{-1} e_{-1}$.
If $n>1$ is a positive integer, q is n-benign if
(1) q is $(n-1)$-benign,
(2) $H_{q}\left(x_{-n}\right)=H_{q}\left(x_{0}\right)=H_{q}\left(x_{n}\right)$,
(3) q does not divide b_{n-2} and d_{-n+1}.

For $n \geqq 1$, the integers $a_{n-1}, e_{n-1}, a_{-n}, b_{-n}$ are defined to be powers of p, and divisible by p. The following conditions must be satisfied.

$$
\begin{align*}
H_{p}\left(a_{n-1} x_{-n}\right) & \gg H_{p}\left(x_{n}\right), \\
H_{p}\left(e_{n-1} x_{n-1}\right) & \gg H_{p}\left(x_{n}\right), \\
H_{p}\left(a_{-n} x_{n}\right) & \gg H_{p}\left(x_{-n+1}\right), \tag{2}\\
H_{p}\left(b_{-n} x_{-n}\right) & \gg H_{p}\left(x_{-n+1}\right) .
\end{align*}
$$

The integers $c_{n-1}, d_{n-1}, c_{-n}, e_{-n}$ are divisible exactly by those primes q which are not n-benign. (There are finitely many such primes.) The following conditions must hold, whenever q is not n-benign.

$$
\begin{align*}
H_{q}\left(c_{n-1} x_{-n}\right) & \gg H_{q}\left(x_{n-1}\right), \\
H_{q}\left(d_{n-1} x_{n}\right) & \gg H_{q}\left(x_{n-1}\right), \\
H_{q}\left(c_{-n} x_{n}\right) & \gg H_{q}\left(x_{-n}\right), \tag{3}\\
H_{q}\left(e_{-n} x_{-n+1}\right) & \gg H_{q}\left(x_{-n}\right) .
\end{align*}
$$

The identities

$$
\begin{align*}
b_{-n} & =a_{-n} a_{n-1} \tag{4}\\
d_{n-1} & =c_{-n} c_{n-1}
\end{align*}
$$

also must hold.
There are integers u_{n-1} and $u_{-n}($ for $n>1)$ such that

$$
\begin{equation*}
u_{n-1} e_{n-1} a_{n-2} a_{-n}+u_{-n} e_{-n} c_{n-1} c_{-n+1}=1 \tag{5}
\end{equation*}
$$

Define $b_{n-1}=u_{n-1} e_{n-1}$ and $d_{-n}=u_{-n} e_{-n}$. Note that for $n>0$, and q not n-benign, $\left(u_{n-1}, q\right)=1$, so primes that are not n-benign do not divide b_{n-1}. For $n>0,\left(u_{-n}, p\right)=1$, so that p does not divide d_{-n}. If q is an n-benign prime, then q may divide b_{n-1} or d_{-n}, but not both.

We now define the new elements.
(6)

$$
\begin{array}{lr}
y_{i}=b_{t} x_{t}+d_{i} x_{i+1}+a_{i} c_{i} x_{-t} & (i<0), \\
y_{i}=a_{t} c_{i} x_{-i-1}+b_{t} x_{i}+d_{i} x_{t+1} & (i \geqq 0) .
\end{array}
$$

We check that y_{i} has the desired height properties.

$$
\begin{aligned}
& H_{p}\left(y_{i}\right)=H_{p}\left(d_{i} x_{i+1}\right)=H_{p}\left(x_{i}\right), \\
& H_{q}\left(y_{i}\right)=H_{q}\left(b_{i} x_{i}\right)=H_{q}\left(x_{i}\right),
\end{aligned}
$$

when $i \geqq 0$ and q is not $(i+1)$-benign, or when $i<0$ and q is not ($-i$)-benign.

$$
H_{q}\left(y_{i}\right)=H_{q}\left(d_{i} x_{i+1}\right)=H_{q}\left(x_{i+1}\right)=H_{q}\left(x_{i}\right)
$$

when $i \geqq 0$ and q is $(i+1)$-benign, or when $i<0$ and q is $(-i)$-benign.

We next show that each x_{n} is in the subgroup B generated by $\left\{y_{i}\right\}$. Routine calculations using (6), (4) and (1) show that $x_{0}=$ $a_{-1} y_{0}-c_{0} y_{-1}$. We next assume that x_{i} is in B for $-k \leqq i \leqq k$, and show that both x_{k+1} and x_{-k-1} are in B. Using induction hypothesis on y_{k} and (6), the element $a_{k} c_{k} x_{-k-1}+d_{k} x_{k+1}$ is in B. Equations (6) and (4) and some computation yield

$$
c_{k+1} y_{-k-2}-a_{-k-2} y_{k+1}=c_{k+1} d_{-k-2} x_{-k-1}-a_{-k-2} b_{k+1} x_{k+1} .
$$

Combining terms and using (4) and (5), we find that the term

$$
\left(d_{k} c_{k+1} d_{-k-2}+a_{-k-2} b_{k+1} a_{k} c_{k}\right) x_{-k-1}=c_{k} x_{-k-1}
$$

is in B. Using y_{-k-1} in place of y_{k} in the above argument, we find that $a_{-k-1} x_{-k-1}$ is in B. Since $\left(c_{k}, a_{-k-1}\right)=1$, we have $x_{-k-1} \in B$. Similarly, $x_{k+1} \in B$. Hence $B=\left[\left\{x_{i}\right\}\right]$.

Now it is easy to see that the elements of Y have infinite order, are independent, that $[X]=[Y]$, and that $A /[Y]$ is torsion. Hence Y will be a decomposition basis once we establish the height property. Clearly we need only consider linear combinations involving elements of $\left\{y_{i}\right\}$.

Well order $\left\{y_{i}\right\}$ as follows:

$$
\left\{y_{0}, y_{-1}, y_{1}, y_{-2}, y_{2}, \cdots\right\}
$$

and let $y_{(k)}$ represent the k-th term of this sequence. We wish to show, for any k, that

$$
\begin{equation*}
H\left(\sum_{l=1}^{k} m_{i} y_{(i)}\right)=\min _{1 \leqq i \leqq k}\left\{H\left(m_{i} y_{(i)}\right)\right\} \tag{7}
\end{equation*}
$$

where the m_{l} are integers. We induct on k. When $k=1$, we are reduced to the trivial equation $H\left(m_{0} y_{0}\right)=H\left(m_{0} y_{0}\right)$. When $k=2$ we have a special case, and the proof is nearly identical to that of Lemma 7 of [6]. Two more cases remain.

Case A. k is even, $k \geqq 4$.
Case B. k is odd, $k \geqq 3$.
In either case, we may assume as induction hypothesis:

$$
\begin{equation*}
H\left(\sum_{i=1}^{k-1} m_{i} y_{(i)}\right)=\min _{1 \leq i \leq k-1}\left\{H\left(m_{l} y_{(t)}\right)\right\} \tag{8}
\end{equation*}
$$

Moreover it is only necessary to prove that \leqq holds in (7), as the other inequality is trivial.

We begin work on Case A. Assume that $y_{(k)}=y_{n}$. Now each of the terms in (7) and (8) is a linear combination of terms in $\left\{x_{t}\right\}$. Since $\left\{x_{t}\right\}$ is part of a decomposition basis, each height matrix is the minimum of the height matrices of the $\left\{x_{1}\right\}$ terms. In going from (8) to (7), the terms $H\left(m_{k} b_{n} x_{n}\right), H\left(m_{k} d_{n} x_{n+1}\right)$ and $H\left(m_{k} a_{n} c_{n} x_{-n}\right)$ are added to the right hand side of (8). The terms

$$
\begin{align*}
& \left(m_{k} b_{n}+m_{k-1} a_{-n-1} c_{-n-1}\right) x_{n}, \tag{9a}\\
& \left(m_{k} d_{n}+m_{k-2} b_{n+1}+m_{k-3} a_{-n-2} c_{-n-2}\right) x_{n+1}, \tag{9b}\\
& \left(m_{k} a_{n} c_{n}+m_{k-1} d_{-n-1}\right) x_{-n}, \tag{9c}
\end{align*}
$$

must replace

$$
\begin{align*}
& \left(m_{k-1} a_{-n-1} c_{-n-1}\right) x_{n}, \tag{10a}\\
& \left(m_{k-2} b_{n+1}+m_{k-3} a_{-n-2} c_{-n-2}\right) x_{n+1}, \\
& \left(m_{k-1} d_{-n-1}\right) x_{-n}
\end{align*}
$$

in order to change the left side of (8) to the left side of (7). We may add $(9 a),(9 b)$, and (9c) to the left side of (8) without disturbing the needed inequality.

It is sufficient to prove the inequality for each indicator, and we will start with p. It is easy to see that a term may be added to the right side of (8) if its p-indicator is greater than or equal to a p-indicator of a term on either side. A term may be deleted from the left side if its p-indicator is greater than or equal to the p-indicator of a term on the left side, or superior to the p-indicator of a term on the right side. Since

$$
\begin{aligned}
& H_{p}\left(m_{k} b_{n} x_{n}\right) \gtrdot H_{p}\left(m_{k} d_{n} x_{n+1}\right) \\
& H_{p}\left(m_{k} a_{n} c_{n} x_{-n}\right) \gg H_{p}\left(m_{k} d_{n} x_{n+1}\right) \\
& H_{p}((10 \mathrm{a})) \gtrdot H_{p}((10 \mathrm{c}))
\end{aligned}
$$

by (2), it suffices to prove that the inequality is maintained if (10b) and (10c) are deleted from the left hand side of (8) and if $m_{k} d_{n} x_{n+1}$ is added to the right hand side.

We show that (10b) may be deleted. If r is an integer, r^{\prime} denotes the p-factor of r. We say $0^{\prime}=\infty$. Suppose

$$
m_{k-2}^{\prime} b_{n+1}^{\prime} \leqq m_{k-3}^{\prime} a_{-n-2}^{\prime}
$$

Then

$$
H_{p}(10 \mathrm{~b}) \geqq H_{p}\left(m_{k-2} b_{n+1} x_{n+1}\right) \geqslant H_{p}\left(m_{k-2} d_{n+1} x_{n+2}\right)
$$

Since the latter term is on the right hand side of (8) and $H_{p}(10 \mathrm{~b})$ is superior to it, (10b) plays no role in determining the p-indicator of the left side, and so may be deleted.

Now suppose

$$
m_{k-3}^{\prime} a_{n-2}^{\prime}<m_{k-2}^{\prime} b_{n+1}^{\prime} \quad \text { and } \quad m_{k-3}^{\prime}<m_{k-1}^{\prime} b_{-n-1}^{\prime} .
$$

These conditions, along with (4) imply that

$$
H_{p}\left(\left(m_{k-2} a_{n+1} c_{n+1}+m_{k-1} b_{-n-1}+m_{k-3} d_{-n-2}\right) x_{-n-1}\right)=H_{p}\left(m_{k-3} d_{-n-2} x_{-n-1}\right)
$$

where the first term is on the left hand side of (8). We also have

$$
H_{p}(10 \mathrm{~b})=H_{p}\left(m_{k-3} a_{-n-2} c_{-n-2} x_{n+1}\right) \geqq H_{p}\left(m_{k-3} d_{-n-2} x_{-n-1}\right) .
$$

So again we may delete (10b).
The last possibility is

$$
\begin{equation*}
m_{k-3}^{\prime} a_{-n-2}^{\prime}<m_{k-2}^{\prime} b_{n+1}^{\prime} \text { and } m_{k-3}^{\prime} \geqq m_{k-1}^{\prime} b_{-n-1}^{\prime} \tag{11}
\end{equation*}
$$

Then

$$
\begin{aligned}
H_{p}(10 \mathrm{~b}) & =H_{p}\left(m_{k-3} a_{-n-2} c_{-n-2} x_{n+1}\right) \geqq H_{p}\left(m_{k-3} d_{-n-2} x_{-n-1}\right) \\
& \geqq H_{p}\left(m_{k-1} b_{-n-1} x_{-n-1}\right) \geqq H_{p}(10 \mathrm{c}) .
\end{aligned}
$$

Thus if (11) holds, and if (10c) may be deleted, then so may (10b).
We now delete (10c). If $m_{k}^{\prime} a_{n}^{\prime} \neq m_{k-1}^{\prime}$, we have

$$
H_{p}(10 c)=H_{p}(9 \mathrm{c})
$$

so that (10c) may be deleted. If

$$
\begin{equation*}
m_{k}^{\prime} a_{n}^{\prime}=m_{k-1}^{\prime} \tag{12}
\end{equation*}
$$

then

$$
H_{p}(10 c)=H_{p}\left(m_{k} a_{n} c_{n} x_{-n}\right) \gg H_{p}\left(m_{k} d_{n} x_{n+1}\right)
$$

Therefore, if (12) holds, and if $H_{p}\left(m_{k} d_{n} x_{n+1}\right)$ can be added to the right hand side of (8), then (10c) may be deleted from the left hand side.

We now show that $H_{p}\left(m_{k} d_{n} x_{n+1}\right)$ may be added to the right hand side. If

$$
m_{k}^{\prime} \neq\left(m_{k-2} b_{n+1}+m_{k-3} a_{-n-2} c_{-n-2}\right)^{\prime}
$$

then $H_{p}\left(m_{k} d_{n} x_{n+1}\right) \geqq H_{p}(9 \mathrm{~b})$, so $H_{p}\left(m_{k} d_{n} x_{n+1}\right)$ may be added. If $m_{k}^{\prime} \geqq$ $m_{k-2}^{\prime} b_{n+1}^{\prime}$, then

$$
H_{p}\left(m_{k} d_{n} x_{n+1}\right) \geqq H_{p}\left(m_{k-2} b_{n+1} x_{n+1}\right)
$$

which is a term on the right hand side of (8), so again $H_{p}\left(m_{k} d_{n} x_{n+1}\right)$ may be added. Finally, if

$$
m_{k}^{\prime}=\left(m_{k-2} b_{n+1}+m_{k-3} a_{-n-2} c_{-n-2}\right)^{\prime} \quad \text { and } \quad m_{k}^{\prime}<m_{k-2}^{\prime} b_{n+1}^{\prime},
$$

we have $m_{k}^{\prime}=m_{k-3}^{\prime} a_{-n-2}^{\prime}$. Then

$$
H_{p}\left(m_{k} d_{n} x_{n+1}\right)=H_{p}\left(m_{k-3} a_{-n-2} c_{-n-2} x_{n+1}\right),
$$

which is one of the terms on the right hand side of (8).
For q-indicators, it suffices to show that $m_{k} b_{n} x_{n}$ may be added to the right hand side of (8) and that (10a), (10b), and (10c) may be deleted from the left hand side. For an integer n, n^{\prime} now denotes the q-factor of n.

We add $m_{k} b_{n} x_{n}$ to the right side. If

$$
m_{k}^{\prime} \neq m_{k-1}^{\prime} c_{n-1}^{\prime},
$$

then $H_{q}\left(m_{k} b_{n} x_{n}\right) \geqq H_{q}(9 \mathrm{a})$. If

$$
m_{k}^{\prime}=m_{k-1}^{\prime} c_{n-1}^{\prime}
$$

then $H_{q}\left(m_{k} b_{n} x_{n}\right)=H_{q}(10 \mathrm{a})$. So if (10a) may be deleted from the left side, $m_{k} b_{n} x_{n}$ may be added to the right. Now (10b) will be deleted. If

$$
\left(m_{k-2} b_{n+1}+m_{k-3} a_{-n-2} c_{-n-2}\right)^{\prime} \neq m_{k}^{\prime} d_{n}^{\prime},
$$

then $H_{q}(10 \mathrm{~b}) \geqq H_{q}(9 \mathrm{~b})$, so the former may be deleted. If

$$
\left(m_{k-2} b_{n+1}+m_{k-3} a_{-n-2} c_{-n-2}\right)^{\prime}=m_{k}^{\prime} d_{n}^{\prime},
$$

then $H_{q}(10 \mathrm{~b})=H_{q}\left(m_{k} d_{n} x_{n}\right) \gg H_{q}\left(m_{k} b_{n} x_{n}\right)$, and this can be added to the right side provided that (10a) may be deleted.

We complete this case by showing that (10a) may be deleted. The argument for $(10 c)$ is similar to that for (10 a), and will be omitted. If q is not $(-n)$-benign, then

$$
H_{q}(10 \mathrm{a}) \gtrdot H_{q}\left(m_{k-1} b_{-n-1} x_{-n-1}\right),
$$

which is one of the terms on the right hand side of (8). Hence (10a) may be deleted.

Now assume q is $(-n)$-benign. If $m_{k-1}^{\prime} \neq m_{k}^{\prime}$, then $H_{q}(10 a)=$ $H_{q}(9 \mathrm{a})$, and (10a) may be deleted. Therefore assume that $m_{k-1}^{\prime}=$ m_{k}^{\prime}. At least one of the terms b_{-n-1} or d_{n} is not divisible by q. If d_{n} is not divisible by q, then

$$
H_{q}(10 \mathrm{a})=H_{q}\left(m_{k} d_{n} x_{-n-1}\right)
$$

because $m_{k-1}^{\prime}=m_{k}^{\prime}$ and q is $(-n)$-benign. Unless

$$
\begin{equation*}
m_{k}^{\prime}=\left(m_{k-3} a_{-n-2} c_{-n-2}+m_{k-2} b_{n+1}\right)^{\prime}, \tag{13}
\end{equation*}
$$

$H_{q}\left(m_{k} d_{n} x_{-n-1}\right)=H_{q}(9 b)$, and (10a) may be deleted. If (13) holds, then

$$
m_{k}^{\prime} \geqq \min \left\{m_{k-3}^{\prime}, m_{k-2}^{\prime}\right\} .
$$

If d_{n} is divisible by q, then b_{-n-1} is not divisible by q, and a similar argument shows that either (10a) may be deleted or

$$
m_{k}^{\prime}=m_{k-1}^{\prime} \geqq \min \left\{m_{k-3}^{\prime}, m_{k-2}^{\prime}\right\}
$$

Using the term on the right and continuing the above process we find that unless

$$
\begin{align*}
m_{k}^{\prime} & =m_{k-1}^{\prime} \geqq \min \left\{m_{k-3}^{\prime}, m_{k-2}^{\prime}\right\} \geqq \min \left\{m_{k-5}^{\prime}, m_{k-4}^{\prime}\right\} \\
& \geqq \cdots \geqq \min \left\{m_{1}^{\prime}, m_{2}^{\prime}\right\}, \tag{14}
\end{align*}
$$

we may delete (10a). (Note that we have assumed that k is even.) If

$$
H_{q}\left(\left(m_{1} b_{0}+m_{2} d_{-1}\right) x_{0}\right)=\min \left\{H_{q}\left(m_{1} b_{0} x_{0}\right), H_{q}\left(m_{2} d_{-1} x_{0}\right)\right\}
$$

then

$$
H_{q}(10 \mathrm{a}) \geqq \min \left\{H_{q}\left(m_{1} b_{0} x_{0}\right), H_{q}\left(m_{2} d_{-1} x_{0}\right)\right\}=H_{q}\left(\left(m_{1} b_{0}+m_{2} d_{-1}\right) x_{0}\right)
$$

with the latter term in the left hand side of (8), and so (10a) is deleted. So assume (14) and

$$
\begin{equation*}
H_{q}\left(\left(m_{1} b_{0}+m_{2} d_{-1}\right) x_{0}\right)>\min \left\{H_{q}\left(m_{1} b_{0} x_{0}\right), H_{q}\left(m_{2} d_{-1} x_{0}\right)\right\} \tag{15}
\end{equation*}
$$

are true. Because of (15), $m_{1}^{\prime}=m_{2}^{\prime}$. Calculations using (1) show that $b_{-1}\left(m_{1} b_{0}+m_{2} d_{-1}\right)-d_{-1}\left(m_{1} c_{0}+m_{2} a_{-1}\right)=m_{1}$, and since $\left(m_{1} b_{0}+m_{2} d_{-1}\right)^{\prime}>$ m_{1}^{\prime}, we must have

$$
m_{1}^{\prime}=\left(m_{1} c_{0}+m_{2} a_{-1}\right)^{\prime} a_{0}^{\prime}=\left(m_{1} a_{0} c_{0}+m_{2} b_{-1}\right)^{\prime}
$$

and

$$
m_{1}^{\prime}=\left(m_{1} c_{0}+m_{2} a_{-1}\right)^{\prime} c_{-1}=\left(m_{1} d_{0}+m_{2} a_{-1} c_{-1}\right)^{\prime}
$$

If $m_{3}^{\prime}>m_{1}^{\prime}$, we have

$$
\begin{align*}
H_{q}\left(\left(m_{1} d_{0}+m_{2} a_{-1} c_{-1}+m_{3} b_{1}\right) x_{1}\right) & =H_{q}\left(\left(m_{1} d_{0}+m_{2} a_{-1} c_{-1}\right) x_{1}\right) \tag{16}\\
& =H_{q}\left(m_{1} x_{0}\right) \leqq H_{q}(10 \mathrm{a}) .
\end{align*}
$$

Since the first term of (16) is in the left hand side of (8), we may delete (10a). In a similar way, we may delete (10a) if $m_{4}^{\prime}>m_{1}^{\prime}$, using

$$
\begin{equation*}
H_{q}\left(\left(m_{1} a_{0} c_{0}+m_{2} b_{-1}+m_{4} d_{-2}\right) x_{-1}\right)=H_{q}\left(m_{1} x_{0}\right) \leqq H_{q}(10 \mathrm{a}) . \tag{17}
\end{equation*}
$$

So, considering (14), we are reduced to

$$
m_{1}^{\prime}=m_{2}^{\prime}=m_{3}^{\prime}=m_{4}^{\prime} .
$$

Furthermore, from the first terms of (16) and (17), we have no difficulties unless

$$
\left(m_{1} a_{0} c_{0}+m_{2} b_{-1}+m_{4} d_{-2}\right)^{\prime}>m_{1}^{\prime}
$$

and

$$
\left(m_{1} d_{0}+m_{2} a_{-1} c_{-1}+m_{3} b_{1}\right)^{\prime}>m_{1}^{\prime} .
$$

Now

$$
\begin{aligned}
& a_{0}\left(m_{1} d_{0}+m_{2} a_{-1} c_{-1}+m_{3} b_{1}\right)-c_{-1}\left(m_{1} a_{0} c_{0}+m_{2} b_{-1}+m_{4} d_{-2}\right) \\
& \quad=m_{3} a_{0} b_{1}-m_{4} c_{-1} d_{-2},
\end{aligned}
$$

and, using (5),

$$
a_{0} b_{1}\left(m_{3} c_{1}+m_{4} a_{-2}\right)-c_{1}\left(m_{3} a_{0} b_{1}-m_{4} c_{-1} d_{-2}\right)=m_{4}
$$

Arguing as before, we are finished unless $m_{4}^{\prime}=m_{5}^{\prime}=m_{6}^{\prime}$. This continues until we have

$$
m_{1}^{\prime}=m_{2}^{\prime}=\cdots=m_{k-2}^{\prime}=m_{k-1}^{\prime} b_{-n-1}^{\prime}=m_{k}^{\prime} d_{n}^{\prime} .
$$

Because $m_{k-1}^{\prime}=m_{k}^{\prime}$, we must have $b_{-n-1}^{\prime}=d_{n}^{\prime}=1$. This implies that
$H_{q}(9 \mathrm{a})=H_{q}\left(m_{1} x_{0}\right) \leqq H_{q}(10 \mathrm{a})$, and so (10a) may be deleted from the left side of (8).

In Case $\mathrm{B},(k$ is odd, $k \geqq 3)$, we add $m_{k} a_{n} c_{n} x_{-n-1}$ and $m_{k} d_{n} x_{n+1}$ to both sides of (8). These terms cause no problems. Additionally, $m_{k} b_{n} x_{n}$ is added to the right side, and

$$
\begin{equation*}
\left(m_{k-2} d_{n-1}+m_{k-1} a_{-n} c_{-n}\right) x_{n} \tag{18}
\end{equation*}
$$

is replaced by

$$
\begin{equation*}
\left(m_{k-2} d_{n-1}+m_{k-1} a_{-n} c_{-n}+m_{k} b_{n}\right) x_{n} \tag{19}
\end{equation*}
$$

on the left side. As before, adding (19) to the left side presents no problems.

We begin with p-indicators. Since $H_{p}\left(m_{k} b_{n} x_{n}\right) \geqq H_{p}\left(m_{k} d_{n} x_{n+1}\right)$, we may add $m_{k} b_{n} x_{n}$ to the right side. When

$$
\left(m_{k-2} d_{n-1}+m_{k-1} a_{-n} c_{-n}\right)^{\prime} \neq m_{k}^{\prime} b_{n}^{\prime},
$$

$H_{p}(18)=H_{p}(19)$, so (18) may be deleted. When

$$
\left(m_{k-2} d_{n-1}+m_{k-1} a_{-n} c_{-n}\right)^{\prime}=m_{k}^{\prime} b_{n}^{\prime}
$$

$H_{p}(18)=H_{p}\left(m_{k} b_{n} x_{n}\right) \geqq H_{p}\left(m_{k} d_{n} x_{n+1}\right)$. The last term has been added to the left side of (8), so (18) may be deleted.

Finally, consider q-indicators. If $\left(m_{k-2} d_{n-1}+m_{k-1} a_{-n} c_{-n}\right)^{\prime} \neq m_{k}^{\prime} b_{n}^{\prime}$ we may add $m_{k} b_{n} x_{n}$ to the right and delete (18) from the left. So suppose $\left(m_{k-2} d_{n-1}+m_{k-1} a_{-n} c_{-n}\right)^{\prime}=m_{k}^{\prime} b_{n}^{\prime}$. If q is not n-benign, then q is also not $(n-1)$-benign and $H_{q}\left(m_{k-2} d_{n-1} x_{n}\right) \gg H_{q}\left(m_{k-2} b_{n-1} x_{n-1}\right), H_{q}\left(m_{k-1} a_{-n} c_{-n} x_{n}\right) \gg$ $H_{q}\left(m_{k-1} b_{-n} x_{n}\right)$, follow from (3). So $H_{q}\left(m_{k} b_{n} x_{n}\right)=H_{q}(18) \geqq$ $\min \left\{H_{q}\left(m_{k-2} d_{n-1} x_{n}\right), H_{q}\left(m_{k-1} a_{-n} c_{-n} x_{n}\right)\right\}$ and is equal to one of these terms, which in turn is superior to a term on the right hand side of (8). So both $m_{k} b_{n} x_{n}$ and (18) are dealt with in this case. If q is n-benign, the argument is similar to the deletion of (10a), and will be omitted. This completes the proof.
4. Ulm's Theorem for mixed abelian groups. Theorem 2.2 plays a key role in the structure theory of mixed abelian groups. The following concept, due to Warfield [10], (announced in [9]) is necessary.

Definition. A decomposition basis X of A is a lower decomposition basis if, whenever the Ulm invariant $f_{\sigma}^{p}(A)$ is infinite, then $f_{\sigma}^{p}(A)=$ $f_{\sigma}^{p}(A,[X])$.

Lemma 4.1. If A has a decomposition basis X, there is a decomposition basis Y subordinate to X which is a lower decomposition basis.

Proof. The local version of this lemma, (i.e., for modules over a discrete valuation ring) was stated and proved by Warfield ([10], Theorem 5.1). Warfield's proof, with some minor changes, may be used here.

Definition. Let X be a decomposition basis of a group A. If, for every decomposition basis Y subordinate to $X,[Y]$ is p-nice in $A(p,[Y])$, then we call X a strongly nice decomposition basis.

We are now ready for Ulm's Theorem for mixed abelian groups. A slightly different formulation appears in [6], Theorem 10.

Theorem 4.2. Let A and B be groups having strongly nice decomposition bases X and Y, respectively, such that $A /[X]$ and $B /[Y]$ are both totally projective. Then $A \cong B$ if and only if, for all p, σ, c and e, $f_{\sigma}^{p}(A)=f_{\sigma}^{p}(B)$ and $\operatorname{ST}(c, p, e, A)=\mathrm{ST}(c, p, e, B)$.

Proof. By Lemma 4.1, there is a lower decomposition basis X_{1} subordinate to X, and by Theorem 2.2 there is a decomposition basis X_{2} of A such that $\left[X_{2}\right]=\left[X_{1}\right]$ and $H\left(X_{2}\right) \sim H(Y)$. Choose a lower decomposition basis Y_{1} subordinate to Y, and decomposition bases X_{3} subordinate to X_{2} and Y_{2} subordinate to Y_{1}, so that there is a bijection $\gamma: X_{3} \rightarrow Y_{2}$ such that $H(x)=H(\gamma x)$ for all $x \in X_{3}$. Since X_{3} and Y_{2} are decomposition bases and $\left[X_{3}\right]$ and $\left[Y_{2}\right]$ are free, γ extends to a height preserving map $\delta:\left[X_{3}\right] \rightarrow\left[Y_{2}\right]$. (Note that $\left[X_{3}\right]=\left[X_{4}\right]$ for some lower decomposition basis X_{4} of X, so $\left[X_{3}\right]$ has the required niceness properties.) $A /\left[X_{3}\right]$ and $B /\left[Y_{2}\right]$ are totally projective, and $f_{\sigma}^{p}\left(A,\left[X_{3}\right]\right)=$ $f_{\sigma}^{p}\left(B,\left[Y_{2}\right]\right)$ for all p and σ because X_{3} and Y_{2} are lower decomposition bases. Using Theorem 1.1, $A \cong B$. The converse is trivial.

We list four standard consequences in the following corollary.
Corollary 4.3. Let A, B and C be groups having strongly nice decomposition bases X, Y and Z respectively such that $A /[X], B /[Y]$ and $C /[Z]$ are all totally projective. Then:
(i) If $A \oplus A \cong B \bigoplus B$, then $A \cong B$.
(ii) If the Ulm invariants and ST-invariants of C are all finite, and $A \oplus C \cong B \bigoplus C$, then $A \cong B$.
(iii) If A is isomorphic to a summand of B and B is isomorphic to a summand of A, then $A \cong B$.
(iv) If $\operatorname{ST}(c, p, e, A)=\operatorname{ST}(c, p, e, B)$ for all c, p and e, then there are
totally projective torsion groups T and T^{\prime} such that $A \oplus T \cong B \bigoplus T^{\prime}$.
An important class of groups, defined in [6], is the following.
Definition. A group A is affable if it has a splitting decomposition basis X such that $A /[X]$ is totally projective.

It is easy to see that A is affable if and only if it is a totally projective torsion group, or if it is a direct sum $A=\oplus A_{i}$, where each A_{t} is of rank one and contains an element x_{t} of infinite order such that $A_{l} /\left[x_{1}\right]$ is totally projective. Since a splitting decomposition basis is strongly nice, the following is immediate from Theorem 4.2.

Theorem 4.4. Let A and B be affable groups. Then $A \cong B$ if and only if, for all p, σ, c, and $e, f_{\sigma}^{p}(A)=f_{\sigma}^{p}(B)$ and $\operatorname{ST}(c, p, e, A)=$ ST (c, p, e, B).

The next theorem demonstrates that an affable group has enough splitting decomposition bases. The proof is the same as that of Theorem 13 of [6].

Theorem 4.5. For each decomposition basis X of an affable group A, there is a subordinate decomposition basis X^{\prime} of X that is a splitting decomposition basis.

The following follows from Corollary 4.3.
Corollary 4.6. Let A be a group with a strongly nice decomposition basis X such that $A /[X]$ is totally projective. Then there is a totally projective group T such that $A \oplus T$ is an affable group.

Proof. There is an affable group B such that $\mathrm{ST}(c, p, e, A)=$ ST (c, p, e, B) for ail c, p and e. By Corollary 4.3 (iv), there are totally projective groups T and T^{\prime} such that $A \oplus T=B \oplus T^{\prime}$, and the latter group is still affable.

It is known (see Rotman-Yen [5], p. 251) that a summand of an affable group is not necessarily affable. It is an open question whether summands of affable groups can be classified by Theorem 4.2. If they could be so classified, then the class \mathbf{A} consisting of summands of affable groups would be the largest class of groups that can be classified via Ulm invariants and ST-invariants. For suppose \mathbf{C} is a larger class and $G \in \mathbf{C}$. Then there is an affable group H such that $\mathrm{ST}(c, p, e, H)=$ $\mathrm{ST}(c, p, e, G \oplus H)$ and $f_{s}^{p}(H)=f_{s}^{p}(G \oplus H)$, for all c, p, e and σ. By the classification theorem we would have $G \bigoplus H \cong H$, so that $G \in \mathbf{A}$.

References

1. L. Fuchs, Infinite Abelian Groups, Volume I, Academic Press, New York, 1970.
2. - Infinite Abelian Groups, Volume II, Academic Press, New York, 1973.
3. P. Hill, On the Classification of Abelian Groups.
4. R. H. Hunter, Balanced Subgroups of Abelian Groups, Doctoral dissertation, Australian National University, Canberra, 1975.
5. J. Rotman and T. Yen, Modules over a complete discrete valuation ring, Trans. Amer Math. Soc., 98 (1961), 242-254.
6. R. O. Stanton, Decomposition bases and Ulm's theorem, Topics in Abelian Groups II, Lecture Notes in Mathematics, Vol. 616, Springer-Vẹrlag, New York, 1977, 39-56.
7. E. A. Walker, Ulm's theorem for totally projective groups, Proc. Amer. Math. Soc., 37 (1973), 387-392.
8. K. D. Wallace, On mixed groups of torsion-free rank one with totally projective primary components, J. Algebra, 17 (1971) 482-488
9. R. B. Warfield, Jr., Classification theorems for p-groups and modules over a discrete valuation ring, Bull. Amer. Math. Soc., 78 (1972), 88-92.
10. - Classification theory of Abelian groups II, local theory, to appear.

Received August 10, 1976.

St. John's University
Jamaica, N.Y. 11439

