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ESSENTIAL SPECTRUM I'(B) OF A DUAL ACTION
ON A VON NEUMANN ALGEBRA

YosHioMl NAKAGAMI

For a dual action 3 of a locally compact group G on a von
Neumann algebra N we define the essential spectrum ['(3) as the
intersection of all spectrum sp 3" of the restriction 8” of 8 to N,
when p runs over all nonzero projections in N”. ['(B) is then an
algebraic invariant for a covariant dual system {N, 3}. ['(B8)is
a closed subgroup of G (Theorem 3.7). We introduce three
kinds of concept for 3 such as integrable, regular and dominant
(8§84, 5). The former concepts are weaker than the
dominance. If B is regular, I'(8) coincides with the kernel of
the action 3 on the center of the crossed dual product N %G
(Theorem 6.1). If B is regular, ['(8) is normal and ['(8)=
I'(B). If B is ergodic on the center Z(N) and I'(8) = G, then
N&4G is a factor and vice versa (Theorem 6.4). If 3 is
regular, I'(8) = G is equivalent to Z(N?)C Z(N) (Proposition
6.3). If B is integrable on a factor N and if I'(3) = G, then
there is a lattice isomorphism between the closed subgroups of G
and the von Neumann subalgebras of N containing N*
(Theorem 8.4). Moreover, by N3 (H\G) we mean the von
Neumann algebra generated by 3(N)and | Q (L (G)NA'(H)),
where H is a closed subgroup of G and A’ is the right regular
representation of G. N5 (H\G) coincides with the set of
x € N®4G such that 3,(x)=x for all t € H (Theorem 7.2).

0. Introduction. In our previous paper [17, 16, 21] we have
generalized Takesaki’s duality to a general locally compact group in
terms of a dual action and a crossed dual product as the following:

MR.G)R:G~M & B(L(G))
(N®:G) &R G~NQB(L*(G)).

In this paper we continue our study on dual actions and Takesaki’s
duality obtained in the above from the view point of covariant systems
{M, a} and covariant dual systems {N, 8}. Then we naturally raise some
questions:

a. What is an invariant of equivalent covariant dual systems?

b.  When does Takesaki’s duality hold as a covariant (dual) system?
Using the spectrum of B given in [17, §5], we can define the essential
spectrum I'(B) of B in §3 by the same manner as S set. Then I'(B8) is a
closed subgroup of G and an algebraic invariant of dual actions on a
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given von Neumann algebra. Therefore we can classify the dual actions
into the family of closed subgroups of G.

c. Incaseof I'(B) = G, what can we say about 3, N and NQ4G ?
For these questions Connes and Takesaki have obtained several interest-
ing results in their paper [6] from the stand point of nonabelian
cohomology in properly infinite von Neumann algebras. Following
these ideas, we try to reproduce their Chapter III in terms of covariant
(dual) systems. Our contents consist of following nine sections:
Introduction
Preliminary
Takesaki’s duality
Essential spectrum I'(B)

Integrable actions and dual actions
Regular actions and dual actions
Ergodic actions and dual actions
Subgroups and subalgebras

Galois correspondence

Appendix

More precisely, in §4 we shall recall two equivalent conditions given
by Connes and Takesaki for an action to be integrable. The dual
version of one of the conditions is utilized to define the integrability of a
dual action. However, we are still unclear, whether the both dual
versions of the above two conditions are equivalent or not.

In §5, for the sake of convenience, we call an action or a dual action
to be regular when it is dual to some dual action or some action. The
regularity is then stronger than integrability. Their characterizations
are already given by Landstad and others, [15, 17, 16, 21]. Furthermore,
we call a (dual) action to be dominant if it is regular and of infinite
multiplicity. The dominance in our paper is a generalization of the one
given by Connes and Takesaki to a non separable case. The utility of
regularity and dominance will become clearer in our later sections as we
analyze the equivalence class of covariant (dual) systems.

In §6, I'(&) turns out to be the set of all t € G such that «, is trivial on
the center of M. Therefore, if 8 =a, I'(B) = H is characterized by the
fact that H is the largest closed subgroup satisfying that the center of
N Q4G commutes with 1 @ A'(H), where A’ is the left regular represen-
tation of G. Further, if B is ergodic on the center of N, then N? is a
factor, in addition, if I'(8) = G, then N ®2G is a factor.

Let M. H be the von Neumann algebra generated by a (M) and
1 & A(H), and let NQ4(H\G) be the von Neumann algebra generated
by B(N) and £*(H\G), where ¥*(H\G)=L*(G)NAX'(H)'. In §7 we
shall characterize these von Neumann subalgebras, namely, MQ, H is
the set of y in M), G with @(y) CN @ A(H)" and NQR4(H\G) is the set
of x in N®4G with B,(x)=x for all t € H.

WX R L= O
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In §8 we shall give a Galois type correspondence between the closed
subgroups of G and the von Neumann subalgebras of a factor N
including N* under the assumption that G is separable, B is integrable
and I'(B) = G. Let B? be a dual action of G on N®iG given by
(1.8). If N®iG is a factor and if L is a B¢ invariant von Neumann
subalgebra of N®j3 G including B(N), then L is of the form NX§(H\G)
for some closed subgroup H of G. Conversely, NQi(H\G) is B¢
invariant.

In the Appendix we shall give a sufficient condition for an action of
a locally compact abelian group to be regular.

The author wants to express his sincere gratitude to Professors M.
Takesaki and Y. Oka for their valuable discussion and to Professor M.
Tomita for his encouragement.

1. Preliminary. Let G be a locally compact group, dt the
Haar measure, ¢t » A(t) the right regular representation of G on L*(G)
and R(G) the von Neumann algebra generated by A(G). Let J be the
antiunitary involution on L*(G) defined by (J°€)(t)=A(t)"?¢(t7") for
E€ L G)and A'(r)=JA(r)J¢, where A is the modular function. Then
A’ is the left regular representation:

(A'(NE) (1) = A(r)"&(r 1),

Let M and N be von Neumann algebras acting on Hilbert spaces #
and J, respectively. vy and é are isomorphisms R(G)— R(G)Q R(G)
and L (G)— L (G)Q L (G) satisfying

YA(r)=A )QA(r) and (8f)(s. 1) = f(st)

for f€ L*(G). An actin « of G on M is an isomorphism of M into
M Q L*(G) satisfying

(1.1) aQ@Qiea=1Qdb°a,

where ¢ denotes the identity automorphism and the association of the
tensor product ) is stronger than that of the composition o. By [17,
Theorem 2.1] an action « is induced from an action ¢ » «, of G on M in
the usual sense by (a(x)&)(t)= a(x)é(t) for EEH QR L(G). As
ala(x)=Ad1QA(t)(a(x)) for all £, {M, a} is a covariant system. A
dual action B of G on N is defined as an isomorphism of N into
N ® R(G) satisfying

(1.2) BRep=1RQy-p

Such a pair {N, B} is called a covariant dual system.
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The crossed product M@, G of M by G with respect to « is the von
Neumann algebra generated by a (M) and 1 Q R(G). The crossed dual
product NQ3G of N and G with respect to 3 is defined as the von
Neumann algebra generated by B(N) and 1 Q) L*(G).

Now we define a unitary W on L(G)&® L*(G) by

(WE) (s, 1) = £(s 1s).

Then W*= AdJ @1(W), where (JE)(t)=A(1)"¢@™") for € € LYG).
We set

W'=Ad1RQJ(W), V=0¢(W) and V'=g(W'),

where o denotes the symmetric isomorphism

XQyryx.

These unitaries satisfy (W'&)(s,t) = A(s)"?&(s,s7't), (VE)(s, 1) = &(st, t)
and (V'&)(s,t) = A(2)"&(t7's, t). Therefore (1.1) and (1.2) are of the
forms

aQiea(x)=Ad1QRQ V(ia(x)R1s)
BRLeB(y)=Ad1Q WH(B(y)&®1s)

On the other hand, since

(1.3)

AdTR@WH*a(x)R1s)=a(x)R1,,
AdTQ WHA(r)R@1s)=Ai(r) R A(r)
Ad1IRV'(B(y)&®1s)=B(y)®1s,
AdIRV(IRf®1:)=1R¢€f,

where A (r)=1QA(r) and (ef)(s,t)=f(t"'s), it follows that

Ad1IRQWH(MR.G)R1:)CMRR.G)RXR(G)

0 1@ VIN®L6)® 1) CN®EG) R LAG).

We denote their restrictions by & and S:

G(x)=Ad1Q W*(x ®15)

(1.5) .
B(y)=Ad1Q V'(y ®1c)

for x EM®,G and y ENR3G. Since
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W&l (t®o)(W*R1s)=Ad 1 Q W (W*R1s)
VR QRN V' R®ls)=Ad 1 QV(V'QR1s),
it is shown in [17, Theorem 2.3] that & is a dual action of G on M. G
and B is an action of G on N®4G. & and B are said to be the dual
action dual to & and the action dualto B.  We denote the action dual to &

by & or @ and the dual action dual to B by B or B.
We know from (1.3) that

(1.6)

Ad1® V(a(M)®14)Ca ® (MR L(G))
(1.7) Ad1Q W*B(N)®14)CB® (N ®@R(G)).

Since [V,A'(r)@f] =0 and [W,f® 15] =0, it follows that

Ad1QV(IQR(G)Y1:)CIQR(G)RXL(G)
Ad1IQWHIRL(G)Q16)=1QL(G) R 1c.

Therefore

Ad1® V(M®,G)®1,)C(M®,G) @ L(G)
Ad1@WH(N®LG)®1,) C(N®EG)RR(G),
which is compared with (1.4). If we define «? and B¢ by

al(x)=Ad1QRQ V(x R1s)
B (y)=Ad1QW*(y ®lc)

for x E MQ.G and y € NQ§ G, then a? is an action of G on MK, G
and B¢ is a dual action of G on N®;G. Indeed, (1.3) for «? and B¢ is
proved by

(1.9 VRIRo)(VRILs)=Ad 1l Q V(VR1s)

and (1.6) for W.
On the other hand, since [V,1®f]=0 and [W,1®A'(r)]=0, it
follows from (1.7) that

Ad1QVHa(M) Q1) Ca(M) QL(G)
AdIQW(B(NY®1s)CB(NY ®R(G).

If we define a’ and B’ by

(1.8)

a'(x)=Ad1QRQV*(x R1;)

(1.10)
B'(y)=Ad1Q W(y ®1s)
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forx € (M) and y € B(N)', then we have the following theorem due to
Landstad, [16, the proof of Lemma 1].

THEOREM 1.1. B’ is a dual action of G on B(N)' satisfying

() (B(N))”=(NR;G)'; and
(ii) there is an action a of G on (N®jG)' satisfying

{BIN), B}~ {(N®:G) &.G, a},
where (B(N))* ={y €B(N):B'(y)=y ®1s}.

As this theorem is important from the technical point of view, we
shall give a dual version, although it is unnecessary for our later use.

An isomorphism @ of M into M @ L*(G) satisfying @ Qtoa =
Q8 ca (6F=AdV'™*(fR1s)) is called an action of G on M with
respect to R(G)', [17, Appendix].

THEOREM 1.2. «' is an action of G on a (M) with respect to R(G)'
satisfying

i (M) =(MK.G); and

(if) there is a dual action B° of G on (M, G ) with respectto R(G)'
such that

{a(M),a}~{(M®.GY ®; G, B}
Proof. Since

(V'RQI I Ra(VIR1s)=Ad 16 Q V*(V*R 1),

we have
a'Qreoa’(x)

—AdIQV Q1601 QiRQoAd IR V*R1s(x ®ls R1o)
=Ad IRl QV* AdIQV*Rle(x Qs R10)
=L ®8 ca'(x),

where 8°(f) = AdV'*(f Q1) for f € L*(G). Therefore a'is an action
of G on a(M)" with respect to R(G)'.

(i) Put N=(a(M))*. Since M is standard, we have a weakly
continuous unitary representation u of G on ¥ implementing «a,
[1,9]. (M ®.G) is then generated by M'® 1 and U(1Q R(G))U*,
where U is a unitary on # Q L(G) defined by (U¢)(s) = u(s)é(s),
[7,10,16]. As (M®.G) CN is clear, it suffices to show the converse
inclusion. For this we suppose that x € N. Then x € a(M) and
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Ad1Q@V*(x ®1s)=x ®1s. Therefore

xQ@lE(1RIQR(G)) NAAIQ V(1R 1s ®R(G))
=(1Q®R(G)QR(G))
and hence
x€EaM)N(IQR(G))=(MR.G)'"

(i) Since aM)=MQ.G)* by (2.7) and since a(M)=
MR.G)N(1QL(G)) by Theorem 7.1, it follows that

a(M)=(M&.G) U1K L(G))"
Moreover,
a(1®f)=Ad1QA()*(1Xf)
forf € L*(G). By[16: 17, Theorem 8.3; 18] we have the desired result.
Finally, we recall the equivalence used in the above theorems. Let

a’ (resp. B,) be an action (resp. a dual action) of G on M, (resp. N,) for
j=1,2. We denote

{M,, a't~{M,, a?} (resp. {N,, B} ~ {N:, B2}),

if there exists an isomorphism p of M, (resp. N,) onto M, (resp. N,)
satisfying

pRrea’=a’ep (resp.p@tepi=P:op).
Then it is direct from (1.1) and (1.2) that

{M,a}~{a(M),. ®6} and {N,B}~{B(N),t Qv}.

2. Takesaki’s duality. In this section we shall give a few
supplements to our previous results obtained in [17].

We begin by recalling Takesaki’s duality [16, 17, 18]. If my is an
isomorphism of M into (M®.G)R:G given by

™ (X)=Ad1Q Vi (a(x)®1s)

for x in M, then (M&Q,G)R:G is generated by my(x) (x € M),
IRA()RA(r) (rEG) and 1R 1: Xf (f € L(G)), [17]. We denote
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by p an isomorphism of M Q B(L*(G)) onto (MK, G) Q4 G defined by
@.1) Adl®V*oa R

Then p(x @ 16) = my (x), pPARQA(r)) = 1R A(r)@A(r) and p(1 D f) =
1Q1: ®f.

THEOREM 2.1. If « is an action of G on M, then
{(M®.G)R®: G, &t ~{M Q B(LY(G)), [«]},

where [a]=Ad1QRQ Vet RQRoca @t In  particular, [a] =
a, QAdA'(t) fort € G.

LemmA 2.2, If p is given by (2.1), then
aop=pRrLeAd1QRQ V'ea
on M@ 1s where a =1 RQaoa @t.
Proof. Since
(2.2) V*R1s(t Qo) (VFR15)=Ad 1 Q V'*(V*R 15),
we have
(23) LV V'RLe)=(V*®1:)(1c ®Q V) Q (V1)
If x€M, then t RQo(x Q1 R1s)=x Q1 X1 Therefore
PRLAdIQRQ V'ca(x ®1s)
=AdIRQV*Rlsgea®R 1 QRQreAd1RQ V'ea(x ®1s) (By (2.1)
=Ad((1QV*R1)(1IRI Q@ V)eca @it @reda(x @ls)
=Ad(IRQV*R1:)(IRI:RVNRRo(1QV R1s))
ca @i Ru(x®1: R1s) (By (1.3)
=Ad(IRIQVIIRV*®1s))oa @t ®ulx ®ls ®ls)
(By (2.3))
=Ad1IQLe Q@ V'ep@u(x ®1s ®1s) (By (2.1))

=acop(x ®1g).
This completes the proof.
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Proof of Theorem 2.1. It is immediate from the following calcula-
tion:

(@) eaop(I@A()=(p Q)" ea(1QA(r)@A(r))
=P ®V)'ARA()RA(r)®1s)
=1RQA (N1 =[a](AQA(r))

and
(P Q)" odop(1®f)=(pRu)"ed(1Q1: ®f)
=PRI R® 1 Ref)
=1Q¢f = [a](1Qf).

This completes the proof.

The dual version of the above result is obtained as follows. If 7y is
an isomorphism of N into (NQ:G)&X; G given by

mn(y)=Ad1Q W(B(y) Q1)
for y in N, then (NQ3G)&®; G is generated by my(y) (y EN), 1 R ef
(fEL(G)) and 1® 1R A(r) (r€ G), [17]. We denote by p an
isomorphism of N & B(L*(G)) onto (NR4G)XRs G defined by
2.4 Ad1R1: QT Ad1IRQWoB &Rt

where J is given by (J&)(t)=A(t)"7é(") for £ € L*(G). Then
p(y ®1s)=mv(y), p(IXf)=1Ref and p(1QA'(r)) = 1R 1s QA(r).

THEOREM 2.3. If B is a dual action on N, then
{(N®;G)®4 G, B~ {N @ B(L(G)),[B]};
where [B]=Ad 1@ WoiRooB R
LEMMA 2.4. If p is defined by (2.4), then
Bop=pRL-AdIQW-B
on N®1g, where B=1Ro°B R
Proof. Since

(2.5) WRIstQ@a)(WRls)=Ad 1 Q WHW R 1),
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we have

2.6) (WR1)(Ic @W)h Qo (W*RQ1s)=(1c @ W)(W R 16).

If yEN, then tRQo(y ®1sRQ1ls)=y @1 Q15 Therefore

Ad1®16 QT R1oop QieAd1IQWoB(y ®1o)
=Ad1IQWRIBRLQL-AdIQWB(y ®1s) (By (2.4)
=Ad(IQWR1:) (1R QW) BR:L @By ®1c)
=Ad(1QWRI1:)(1Q 1 @ W))

L @LRoBRLRL PRy R1s)
=Ad(IQWRI)(IRL QW) Rt Qo(1Q®W*®1s))
BRIy Rls@1s) (By (1.3))
=Ad(1QL @W)IRWRI1:)BRLQuly ®ls ®1s)

(By (2.6))
=Ad(1IQ1 @W)(1 Q1 ®J R 16))°p @ty s R ls)

(By (2.4))
=Ad(1Q1: QT R16)1 Q1 ®W*)op Ry ®ls ®1s)
=Ad(1®1: QT ®1s)°Bp(y R1o).

This completes the proof.

Proof of Theorem 2.3. 1t is immediate from the

(P @) Bop(1Rf)=(p @) B ef)
=RV (IR ®1:)=10f R 1 =[B11®)
and
(P @) Beop(IRN(N=(p R)"BUR1c @A(r))
=P ®1)'(1Q1c ®A(r)®A(r))
=1QA(N@A(r)=[B]AXA(r)).

This completes the proof.

By the use of operator valued weights E, and E; we have shown in
[16; 17, Proposition 6.1 and 6.4; 18] that

2.7) (M®.G)* = a(M) and (N®;G)* = B(N).
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Combining (2.7) and Takesaki’s duality in the above, we have the
following theorem.

THEOREM 2.5. (i) If a is an action of G on M, then
(2.8) MR.G = (MK B(L(G)).

(i1) If B is a dual action of G on N, then
2.9 N®;G = (N & B(L(G))".

Proof. (i) Let p be the isomorphism of M @ B(L(G)) onto
(MR.G)R4iGgiven by (2.1).  Then, by Theorem 2.1 and (2.7), we have

p(MQB(L(G))) = a(MR.G).
Since
pled(a(x)=(a®t)"°Ad1Q V(a(x)®1s) = a(x)
by (1.3) and
plea(l1@A(r)=p IKQA()RA(r)=1RA(r)
as before, we have (2.8).

(ii) Let p be the isomorphism of N & B(L(G)) onto (NRiG) R G
given by (2.4). Then, by Theorem 2.3 and (2.7), we have

p((N @ B(L(G))*) = BIN®SG).

Since

p e BBON=BRL)TCAA(IQWHIR 1 RINB(H)R1s)
=B(y)

by (1.3) and
p e BURN=p(1Qe)=1Qf
as before, we have (2.9).

Hereafter we shall use the following notations:
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il

M=MQB(XG)), a
N=NQ®B(L(G)), B

L Roca®e, [a]=Ad1QQ V'ea
Q0 BRL  [B]=Ad1IQ W

Il

without any reference.

3. Essential spectrum I'(8). In this section we shall define
an invariant I'(B) of a dual action 8 in analogy with I'(«) defined for an
action a by Connes, [5]. The argument will proceed similarly as that
for a.

For a dual action 8 of G on N we define B, and ®, for ¢ € R(G),
and w € N, by

(Bs(y), @) =(B(y), 0 @) =(D.(y), &)

Let m, and m denote the set of all ¢ € R(G)« with B,(y)=0 and
Bs =0, respectively. The spectrum spg(y) of y with respect to 8 and
the spectrum sp(B) are given by

spB(Y)E¢gnyF(¢) and sp(B)E¢QmF(¢),

where I'(¢) denotes the set of all t € G with (A(t),¢$)=0. Fora closed
subset E of G we denote by N?(E) the set of all y in N satisfying
sps(y)CE. Then N*({e}) = N*.

Now, we shall give some properties of spectrum sps(y) and the
related ones.

LemmA 3.1. Forany ¢ and ¥ in R(G), and for closed subsets E and
F of G the following eight statements hold :

(1) sps(Bs(y)) Csps(y\I'(¢)°, where T'(¢p)° denotes the interior of
I'(¢);

(i) y € NP(E) if and only if EU CI'(¢) implies B,(y)=0 for all
neighbourhood U of e and for all ¢ € R(G)y;

(iii) NP(E) is a weakly closed vector subspace of N;

W) sps(x¥) = spp(x);

(v) if D is weakly total in N, then sp(B) is the closure of union of all
spe(y) with y € D;

(vi) t € sp(B) if and only if N¥(U) # {0} for all compact neighbour-
hoods U of t;

(vii)  if A x& = A . on some neighbourhood of sps(y), then B,(y) =

Bs(y); and
(viii) if E or F is compact, N*(E)N*(F)CN*(E - F).

Proof. (i) Put z=8,(y). If B,(y)=0, then B,(z)= B, (B, (y)) =
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0. Indeed, (A(f), dY)=(A(),d)(A (1), ) =(A(t),¥d) and PB,B,=
Bss = BsB, by the property of a dual action. Therefore m, C m, and
hence sps(z) C sps(y).

If t isin I'(¢)°, there exists a ¢ in R(G ), such that (A(¢), ¢) # 0 and
¢y =0. Since ¢y =0 implies B,(z)=0, it follows that
t & sps(z). Therefore sps(z) CG\['(d)°.

(i) Suppose that y € N#(E). For any neighbourhood % of e and ¢
in R(G),, if EU CI'(¢), then E CI'(¢)°and hence E\I'(¢)°= . Since
sps (Bs(y)) = <& by (i), we have B, (y)=0.

Conversely, if t £ E, there exist a neighbourhood % of e and a ¢ in
R(G), such that EU CI'(¢) and (A(t),¢)#0. From assumption it
follows that Bs(y)=0. Since (A(2), d)#0, we have
t  sps(y). Therefore sps(y) CE, namely, y € N?(E).

(iii) If y. € N?(E) and y, converges weakly to y, then

<ﬁ¢()7),(1)>= <.B(Y)’w ®d)>= hm(B(yk)7w ®¢>

for all @ € N,. Therefore EU CI'(¢) implies B,(y) =0, and hence
y € N?(E) by (ii).

(iv) Let m, denote the ideal {A(¢)}* of R(G).. If t € sps(x*), then
m.-Cm, Since (m,)*=m,. and (m,)* = m,~, we have m, Cm,+ and
hence t ' € sps(x). Therefore sps(x*)Csps(x)~'. Changing the role of
x and x*, we have spg(x)Cspg(x*)™'. Thus sps(x*) = sps(x)~".

(v) Let E be the closure of union of all sps(y) with y € D. Since
E Csp(B) is clear, it suffices to show the converse inclusion. For this we
suppose tht sp(B)\E is nonempty and ¢ is its element. For any compact
neighbourhood % of e with 1% N E = J there exists a ¢ € R(G), such
that (A (), »)#0 and G\I'(¢)°CtAU. Since

sps(y\['(¢)°CE Nt =,

we have sp;(B,(y)) = by (i) and so B,(y)=0forally € D. Since D is
weakly total in N, B, =0. Since (A(t), ) # 0, we have t & sp(B), which
is a contradiction.

(vi) Suppose that N?(% ) # {0} for all compact neighbourhoods U of
t. Then % has a nonempty intersection with some sps(y) with y €
N. Thus t belongs to the closure of union of sps(y) with y € N and
hence to sp(B) by (v).

Conversely, suppose ¢ € sp(). For any compact neighbourhood
U of ¢, there exists a ¢ € R(G), such that (A(t), $)# 0 and G\I'(¢)°C
. Since t € sp(B), Bs(y)#0 for some y € N. Since sps(B,(y)) CU
by (i), it follows that B,(y) € N?(U).

(vii) Since spg(y)CI(d — )% sps(Bs-u(y)) =< by (i). Thus
Bs(¥) = Bu(y) = Bs-u(y) = 0.
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(viii)) We may assume that F is compact by (iv). Letx € N*(E) and
y €EN(F). If w € N, and ¢ € R(G),, then

(Do (xy), ¥)=(B(x)B(Y) o Q)
= tim [ (BCO), Buere (¥) @A () dr

— fim f (Do IA (), ) dir,

where the second equality is due to [17, Lemma 4.3]. Therefore

CDw (xy) = llmf Z,A (r) dr. (Z, = q)ﬂam"»(y)w(x ))

Since sp, (z,A(r)) = sp,(z,)r and since sp,(z,) Csps(x) by [17, Proposition
5.4], it follows that sp,(z,A(r)) Csps(x)r. If U is a symmetric compact
neighbourhood of e, then r » B, (y) vanishes on G\UF for all ¢ with
car A ,¢ CU. Therefore (iii) implies sp, (P, (xy)) Csps(x )UF, which im-
plies (viii) by [17, Proposition 5.4].

For any projection p in N* we denote by B” the restriction of B8
defined by

Bp(xP)EB(x)P(@lG XEN,

where x, is the restriction of px to p#. Then 87 is an isomorphism of N,
into N, @ R(G) satisfying B? Qv °B? =1 Qv B that is, B is a dual
action of G on N,.

DeriNniTiON 3.2, T'(B) is the intersection of all sp 87, where p are
nonzero projections in N°,

Lemma 3.3, Ifpis a projection in N* and q the central carrier of p in
N# then

() if N®*(E)N N, # {0}, then N*(E)N N, # {0};

(i) sp(B”)=sp(B*); and

(iiiy I(B")=T(B").

Proof. (i) Let (Nf)“ be the set of all unitaries in N*. Since
q = sup{upu*: u € (N*)*}, if x € N®*(E)N N, and x # 0, there exist two
unitaries u and v in N? such that upu*xvpv*#0. If we put y=
pu*xvp, then y EN,, y#0 and y € N°(E) by (viii) of Lemma 3.1.

(i) It is clear from (vi) of Lemma 3.1 and (i).
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(iii) Since Z(N}) is isomorphic to Z(N?¥) by the correspondence
e, » e, for e € Z(N*), the central carrier of e, in N¥ coincides with
e,. Since spB°% = sp B by (ii), [(B?)=T(B?).

When u is a weakly continuous a twisted unitary representation of

G in M, i.e., u(st)=u(s)a,(u(t)). Then the unitary U in M @ L*(G)
defined by (U¢)(r) = u(r)é(r) for ¢ € ¥ @ L*(G) satisfies

(3.1) URlg(a @)U =1 Q(u).

ProrosiTION 3.4.  If a unitary U in M @ L*(G) satisfies (3.1), there
exists a weakly continuous a twisted unitary representation u of G in M
such that (U§)(r) = u(r)é(r) locally almost everywhere. (We can use the
same letter for both U and u.)

Proof. For g in L'(G) we define U(g) in M by
(3.2) (U(g),w)=(U,0Qg)
for all w in M. If f€ L'(G), then

(Ua(U(g), @ @f)=(U(g), ax((0 & fHU))
= (U, a:(0e @HU)Dg) (By (3.2))

=(URls(a@ U, 0 Qf Qg
(3.3) =(®6(U),0oQ®@fRQg) (By(3.1)
=(U,0 Qf*g)

- [ eV 0 @ A O (e
= [ sAad V)0 @t

Therefore
U*f g(1)AdA(1)(U)dt (= a(U(g))

belongs to a(M). If we make g(¢)dt converge to the Dirac measure at
s, then it converges weakly to U*AdA(s)(U), which belongs to
a(M). Define a unitary u(s) in M by

r

(3.4) u(s)=a (U*AdA,(s)(U)).
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Then s » u(s) is weakly continuous. Combining (3.3) and (3.4), we have

U(g) = [ guttya

It follows from (3.2) that (U¢)(r)=u(r)é(r) locally almost
everywhere. Besides, since {M,a}~{a(M),. ® 38} and aca,ca™'=
(¢ ®8), = AdA (1), it follows from (3.4) that u(s)a,(u(t)) = u(st).

Let o' and a” be two actions of G on M. We denote by a' ~ a? if
there exists a unitary u in M & L"(G) satisfying (3.1) for a' and
a’=Aduca'

DeriNiTION 3.5. Let B, and B, be dual actions of G on N. Denote
by B: ~ B, if there exists a unitary v in N @ R(G) such that

v@®1(BR)v=1tRy(v) and B,=Adv°pB,.

It should be noted that, when u is a weakly continuous a twisted
unitary representation of G in N, u(t)€ M* for all ¢t if and only if

au)=u@lg.

LemMMA 3.6. Let {e, :i,j =1,2} be matrix units of a type I, factor
F,. If B~ B, there exists a dual action B of G on N QF, satisfying
By Rew)=pB(y KRew) for k=1,2, where Bi=1Qo°B. Xt on
NQRF,.

Proof. Since 3, ~ B,, there exists a unitary v in N @ R(G) such
that 8,= Adv°f, and

(3.5) vV®1s(Bi@ )y =itn @y (v).

If we set w=i,3yRo(1RX1sQ®e+vQen), then w belongs to
NXF,QR(G). Define a mapping B of N@XF, into NQF,Q R(G)
by

By, Qey)= E()’n Qen)+ E(Yu@)etﬂ'w Ro(v* R exn)
+ i @ (v R en)Bi(yn®en)+ Ad(v Qo (v ® ezz))(E(}’zz X ex)).

Then B = Adw ° 3, and hence B is an isomorphism. Moreover, since
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o®iot®Ro(ls RlsRen)=wQRQyoo(ls Qen)
wRoQ@otn @ Qoo @y X tr(vQen)
=W @ue@yowa(vQen)

it follows from (3.5) that

w®16(Bi @ )w
=R IRsRenR1ls+tvRen@®1s)

(B® et ®0)(1Q1e Qentv@ex)
= ®oP@ion@Ro(1RQ1: Qs Ren

+ R 16 Ren(BR®tRir)(v R en)
=R Rt @R Ra(1R 1 Rl Rey,

+tin @y Q (v ®en))
=w®r@r°nw@oc(1Q1cQent+v@en)
= (v Q@ y)w.

Since E is a dual action of G on N @ F,, B is also a dual action of G on
N ® Fz .

When G is abelian, if p,g € N® and p ~¢q in N, then I'(B?)=
I'(B?). However, if G is nonabelian, this is not necessarily assured.

Let B, and B, be dual actions of G on N such that 8, = Adv ° S, for
some v EN®R(G) with v Q15(B:Q®v)v =@ y(v). Then we have
a dual action B of G on N @ F, satisfying

IQe;, E(NRXFE) and 1Qe~1Qexn

as in Lemma 3.6. Then I'(B'®%)=T'(B;) and hence I'(B.)sps(1 R €)=
sps (1 e2)I'(B)). '

* The condition (ii) in the following theorem is a consequence of
Theorems 5.2 and 6.1, which will be proved in §85 and 6.

THEOREM 3.7. (i) I'(B) is a closed subgroup of G.
(ii) If B is dual to some action (or if B is regular), I'(B) is normal and

I'(B)=T(p).

Proof. (i) Since I'(B) is clearly closed, it suffices to prove the group
property. Since I'(8)™' = I'(B), by (iv) of Lemma 3.1, we have only to
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show I'(B)spB? CspB” for all projections p in N®.  Since spB” is closed,
we have only to show that, for any compact neighbourhood % of e,
spB” NstU# D for any s €I'(B) and t € spB”. Choose a symmetric
neighbourhood 7" of e with t7'Vt¥ CU. Since t € spB*, there exists an
element x in N such that sp,(x)Ct? and x = pxp#0. Let q be the
carrier projection of x*. Since s €I'(8) and 0<q =p, s € spB? and
hence there exists an element y in N such that sps(y)Cs? and
y =qyq#0. Since yx € N, yx = pyxp# 0 and sp, (yx) C stU by (viii) of
Lemma 3.1, it follows that spB? N stU # .

(i) When B is regular, I'(B) coincides with the set of t € G with
B. =t on Z(N®:LG) by Theorem 6.1. Since Z(N®:G) is globally
invariant under f, for all s, I'(B) is normal. _

If B is regular, then {N,B}~{N,[B]} and so I'(B)=T(B])=
I'(B). Since I'(B) =T(B) by Theorem 5.2, I'(8) =T(B).

4. Integrable actions and dual actions. Here and
hereafter, we denote the center of a given von Neumann algebra A by
Z(A).

This section is prepared only for Theorem 8.4. First we recall a
result on a weight on M®, G, [17, Section 6]. Let A be a semi-finite
faithful normal weight on L*(G) defined by

(8= [ foawar

for all f in K(G). Here, we need no fair of notational confusion for
A. Let n, be the set of all x in M satisfying

Ka(x*x),0 @8)=AJo] (A >0)

for all w in M .. Then there exists a faithful normal M* valued weight
E, on M, whose domain is n*n,.

In case of compact G it is straightforward that

(a) A is bounded (it may be assumed a state);

(b) E:=E, and ||E.[=1 (if (1,4)=1);

(c) M*Cn,; and

(d) mn, is o-weakly dense in M.
However, for a noncompact G, the assertions (a), (b) and (c) do not
hold. Following Connes and Takesaki [6] we call @ to be integrable, if
E, is semi-finite, namely, « satisfies (d). It is shown in [17] that the
action B dual to some B is always integrable. Since (n,), C n** for
p € M¢, if a is integrable, so is a”.
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THEOREM 4.1. (Connes and Takesaki). Assume that G is
separable. If M is properly infinite, the following three conditions are
equivalent:

(i)  « is integrable;

(ii)  for each non zero projection f in M* there is an x in M satisfying
qxq#0 (g =f&®1c) and

(4.1) (I V)a(gxq) = gxq Q1s;
(i) {M,a}~{M,,[a]?} for some projection p in M,

Proof. (i) = (ii) Since « is integrable by assumption (i), there exists
a nonzero z in n, with z = fzf. For any g in K(G) we set

+2) F)6) =06 an 1= [ gewar

for £ in ¥ ®L(G). Then gxq = (fR1s)x(fR15)=x. Since z#0,
x#0. Since

Ix€ 1= [ (e )n FAG)ds = (Eu(z*2), o,

2
2

2
2y

=[E.(z*2)|[n

"=|E.(z*2)lllIg IEll

x is bounded on # K L*(G). If we replace £ by (x' ® 15)& withx' € M’
in (4.2), then [x,x’®15]=0 and so x € M. Since
(AR V)a(x)&) (s, 1) = A(t)"(a(x)é)(t s, 1)
= A1) a,(x)E(t s, 1)

=A(t)‘”A(t"S)‘”az(am(2))f g(r)é(r,r)dr (By (4.2))

= AG)"a(2) [ g(EC, dr
— (@ 10)E)(5.1),

we have gxq (= x) satisfies the equality in (ii).

(ii) = (iii) It suffices to show that the set I, of x in M with
(1® Va(x)=x ®ls contains an isometry v. Indeed, vv* € M'“ and
Adv ®lgeoa =[a]oAdv.

The case where M* is o-infinite. Since

IQV'®le(@@)(IQ V)=t @51 V),
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we can define an action (a) of G on M ®F, by

()Ex, Re,)= {_ﬂ(xu Ren)
+-[a_](x12®eu)c,q Re(1Q V' Qen)

+ 17 X 0'(1 X \ % ® ezz)m(-xﬂ ® eZl)
i Qoea @ ie(xn & en),

where [a]=w ®@co[a]®u. Then 3x, Qe, €(MRF)® if and
only if

xnEMY, x,EIL, x,€I* and x,E M-

Therefore the central carrier of 15 ® e, in (M ® F)® is majorized by
the central carrier of 1;; ® e, by (ii). Since M“ is properly infinite and
G is separable by assumption, 1 &) ey, is properly infinite and 1y &) €2, is
o-infinite in (M @ F,). Therefore 1y ®en<1lg Qe in (M QFE )™
from the above discussion. Thus there exists a partial isometry v & e,
in (M ® F,) whose initial and final projections are 1y () e,, and the one
majorized by 1y @ e, respectively. Then v is an isometry in L.

The general case. There exists a partition {e,:¢ € I} in Z(M*)
satisfying either

(a) e is o-finite in M*; or

(b) e is divided into uncountable set {f.: k € K} of mutually
equivalent, properly infinite and o -infinite projections in M*. Since M *
is properly infinite, e, with (a) is also properly infinite in M*. Thus we
can apply the above o-finite case of M« to {M,,a“} or {M;,, a’}.

(iii) = (i) Since @ is dual to &, [a] is integrable. If p € M is
nonzero, [a]” is also integrable on M,. Therefore a is integrable on M
by our assumption (iii). Let g be a projection in M of the form 1 ®e
for some minimal e in B(L*G)). Since ¢ € M¢ & is integrable on
M,. Since {M, a} is equivalent to {M,, @*}, « is integrable on M.

Now we consider the dual version. Let w, be the semi-finite faithful
normal weight on R(G) defined by

(A(A"™(§+8)), w.) = g +g(e), &(1)=g(t™")
for g in K(G) and ng the set of all y in N satisfying

(B *y), 0 @w) =\ ]o]
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for all w in N,. There exists a faithful normal N* valued weight E, on
N with domain njn,. When G is discrete,
(a) w, is bounded (it may be assumed a state);
(b) Ej=Es and [E;|=1 (if (1, w.) = 1);
(c) NfCng; and
(d) mn, is o-weakly dense in N.
However, for a nondiscrete G, (a), (b) and (c) do not hold, and moreover,
(e) (N*({s}) Nng)\{0} = for all s.

DEFINITION 4.2. B is integrable if for any nonzero projection f in
N¥ there is an element y in N satisfying qyq#0 (¢ =fQ1s) and

4.3) (1® W)B(qyq) = qyq R 1.

THEOREM 4.3. Assume that G is separable and NP* is properly
infinite. If B is integrable, then

{N, B}~ {N, [B]}
for some projection p in N'®,
Proof. We denote by I, the set of all y in N satisfying
(4.4) IR W)B()=y Q1.
Since  B(y*y)=y*y ®ls qo=sup{s(y*y): y €I} belongs to
N¥, where s(y *y) is the carrier of y *y. Since I,u = I, for u in N
qo€ Z(N?). Since B is integrable, go=1. Since
IQWRIBRNIRQW)=1, Qy(1Q W),

we can define a dual action (8) of G on N®F, by

B Vi Qey)= [—BT()’H X en)

F[Bl(y:®e)uw Ro(1Q W& ex)

T @o(1R@W*R ezz)m(Y21 & ex)
xR BRu(yr®ex)

as shown in Lemma 3.6. Then Sy, Qe, € (N ® F)*® if and only if

ynENEL y,EI, y,EI% and y,E NP



458 YOSHIOMI NAKAGAMI

Since G is separable and N?# is properly infinite, 1y ® e, <1y & e, in
(N @ F,)® from the above. Therefore there exists an isometry w in I,
Consequently, (4.4) implies

Adw ®15°8 =[B]°Adw.

Since [B](ww*)=ww*® 1 by (4.3), p=ww* belongs to N and
{N, B}~ {N, [B]}.

5. Regular actions and dual actions. In this section we
shall discuss the relation between a (dual) action dual to some one and a
dominant (dual) action. The former is initially characterized by Land-
stad and the latter concept is initially given by Connes and
Takesaki. For our convenience we shall introduce the following ter-
minology for « and B.

Derinition 5.1. An action a (resp. a dual action B8) of G on M
(resp. N) is regular if there exists a covariant dual system {N, B} (resp.
covariant system {M, a}) satisfying {M, a} ~ {N ®3G, B} (resp. {N, B} ~
{M ®.G,a}).

Therefore, B is regular if and only if there exists a weakly continuous
unitary representation u of G in N such that B(u(?))=u(t) @ A(t) for
all 1; and « is regular if and only if there exists an isomorphism 7 of
L*(G) into M such that a,o7m = w°AdA'(t) for all 1, [15; 16; 17,
Theorems 8.1 and 8.3; 21]. It is immediate from our definition that &, B,
a, B, [a] and [B] are regular.

The ergodicity of a (resp. B) on Z(M) (resp. Z(N)) is defined by
M*NZ(M)=Cl1 (resp. N° N Z(N)=Cl1).

THEOREM 5.2. () Z(M®.G)Ca(M) (resp. Z(NQ:G) CB(N)) if
and only if ZIM®.:G)Ca(M) (resp. Z(NRLG)CB(N).
(i) @ (resp. B) is ergodic on Z (M) (resp. Z(N)) if and only if & (resp.
B) is ergodic on Z(M) (resp. Z(N)).

(iii) Kera | Z(M) = Ker @ | Z(M), where Ker a [ Z(M) is the set of
all t in G with &, =« on Z(M).

@iv) I(B) =T(B).

Proof. Our proof owes to Takesaki’s duality:
G.1) {M, &}~ {M,[a]} and {N,B}~{N[B]}

(i) The case of . Let N=M@.G and B =a. According to (5.1)
we have only to show the equivalence of Z(N)CN*? and Z(N)C
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N™®. Since Z(N)=Z(N)®1s, we have only to show that y € N if
and only if y ® 15 € N®¥ for all y € Z(N). However, this is clear from
the following equality

AdIQWo R0 BR (Y ®lo)=y Rl Rl

The case of B. Let M =N®:G anda = . According to (5.1) we
have only to show the equivalence of Z(M)CM* and Z(M)C
M. Since Z(M)= Z(M)® 15, we have only to show that x € M* if
and only if x ® 15 € M for all x € Z(M). This is clear from

Ad1I@V'orQoeca®@i(x R1ls)=xR1s Q1.

(ii) The case of a. Since a(x)=x @15 if and only if [a](x R 15) =
x Q1s @1, it follows that a is ergodic on Z(M) if and only if [«] is
ergodic on Z(M)® 1s. Thus we have (ii) for a by (5.1).
The case of B. Since B(y)=y Q1s ifand only if [B](y R 15) =
y ® 15 @1, both of the ergodicity of B on Z(N) and [B] on Z(N) R 16
are equivalent. Thus we have (ii) for 8 by (5.1).
(iii) It is immediate from (5.1) that

Kera | Z(M)=Ker[a]] Z(M)=Kera | Z(M).

(iv) If y EN, z €EB(LX(G)), v, EN,, 0, €EB(L*(G))x and ¢ E€
R(G)x, then

(B_¢(Y Xz), 0 Q) ={(Bs(y) Rz, 0: Q )

and hence B, = 0 is equivalent to B, = 0. Since Z(N?)= Z(N*) @1, it
follows that spB” =spB?®'c for p € Z(N®). Consequently, I'(8) =
I'(B).

When M is properly infinite and M contains a partition {e,: « € I} of
the identity such that e, ~ e, in M for all ¢,k and dim L*(G) = Card I,
Takesaki’s duality tells us that (MQ,G)X:G is isomorphic to
M. Here we raise a question, when is {M &), G) Qi G, a} equivalent to
{M, @}?, namely, when are they isomorphic as a covariant system?
We shall begin with the following lemma.

LEMMA 5.3. If M*® (resp. N*) contains a partition {e,: v € I} of the
identity satisfying

(i) e ~1in M= (resp. N?) for all L €1; and

(ii) dimH = Card],
then {M, a} (resp. {N, B}) is spatially isomorphic to
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52) {M®BH),.Q@coa@®.} (resp. {NRQB(H),. Qo°B R:L}).

Proof. From our assumptions (i) and (ii) we can obtain a partition
{f.: « € I;} of the identity such that Card I, =dimH and f, ~1 in M*®
(resp. N?) for all « € I;. Let v, be an isometry in M (resp. N*) with
vv*=f. Let p be the spatial isomorphism of M (resp. N) onto
M Q B(H) (resp. N @ B(H)) such that

p(x)=2 virw, Qe

for x in M (resp. N), where {e.: i,k € Iy} is the set of matrix units of
B(H). Then

pla,(x) =2 via(x)o. Qe.
=2 a(v*x,)Qe. = (e, @) (p(x))

(resp- (0 @B = (@0 = (c @ *p DL)B(R)
= ®0(Z pEI)®e. )= (@B R (),

where the second equality follows from the following reason. If sps(x)
is compact, then, by [17, Lemma 4.3},

(V1@ 16)B() (v ®16) =l [ Buors(@x0) @A()dr ).

An action « (resp. a dual action B) is said to be of infinite multiplicity
if it satisfies the conditions (i) and (ii) for a Hilbert space H = L*(G) and
an infinite G in Lemma 5.3.

DEFINITION 5.4. An action « (resp. a dual action 8) of G on M
(resp. N) is said to be dominant if

(i) «a_(resp. B) is of infinite multiplicity, and

(i) {M, &}~ {M,[a]} (resp. {N, B} ~ {N. [B]}).

For a dominant « (resp. ) it holds that

{M,a}~{M,a} (resp.{N, B}~ {N,B})
by Lemma 5.3.

REMARK 5.5. If G isinfinite and « (resp. B) is regular, a (resp. 3)
is dominant.
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THEOREM 5.6. If a (resp. B) is regular, then
{M,a}~{M,[a]} (resp. {N,B}~{N,[B]}).

Proof. The case of {M, a}. If a isregular, there exists a covariant
dual system {N, B} satisfying

(5.3) {M,a} ~ {N ®;G, B}.

Let J denote the underlying Hilbert space of N. Since

B(B(y) = B(y)=AdAi(1)(B(y))
G4 AL ®f) =L, ®f = AdA(D)(1, ®F)
for Aj(1)=1, @ A'(t), we have B, = AdAi(t) on NQ$G. Let w be the
unitary on ¥ @ L*(G)Q L*(G) defined by
(Ix QW (1x @1 ®J).
Since AdWA'(r)Q1s)=A'(r)Q A(r), it follows that
wrAdA(r)Q@1e(w) =14 @ 1c QA'(r).
Therefore, by (5.4)
(Adw) " oB RioAdw =, QAdA(t)
on (N®jG)Q B(L(G)), which completes the proof for a.

The case of {N, B}. If B is regular, there exists a weakly continuous
unitary representation u of G in N satisfying B(u(t))=
u(t)y@A(t). We denote by the same letter u the unitary in N Q L*(G)
defined by Wé)(r)=u(r)é(r) for EEH RLN(G). Then
(IR W)Bu*)=u*®1s. Indeed, if ¢ € H Q L(G)R L(G), then

((u Q1) ARQ W)E)(s, 1) = u(s)é(s, ts)
=u(s)(AQU)E) (s, s)
=Bu(s) X1 (1QU)E) (1, 5)
=(BQu)(AQU)E)(,s)
=(IQU)BR(u)(AIRQU)E(s 1)
= (Bu)é)(s, 1),

where U is a unitary on L*(G) & L*(G) defined by (Un)(s, t) = n(t, s) for
all n in L(G)® L*(G). Therefore
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Adu®R1°Ad1QWoB =BcAdu
and hence {N,[B]}~ {N, B}.

It should be noted that the proof of Theorem 5.6 for 8 does not use
the homomorphism property of u.

COROLLARY 5.7. a (resp. B) is dominant if and only if it is regular
and of infinite multiplicity.

6. Ergodic actions and dual actions. This section is
devoted to further investigation of [6, §3 of Chapter I1II]. The following
theorem generalizes [6, Theorem III, 3.2], whose proof will go along the
same line of argument. By Lemma 3.3

(6.1) I'(B)= N{spB":p € Z(N*), p#0}.

For a given action a we denote by Kera | Z(M) the set of all ¢t in G
satisfying @, =« on Z(M).

TueorReM 6.1. (i) T'(B)=Ker B | Z(NQ: G) if B is regular.
(i) T(a)=Kera|Z(M).

Proof. (i) If B is regular, there exists an isomorphism p of N*®, G

onto N satisfying Bop =p @ tod, where a is an action of G on
N*?. Then Takesaki’s duality gives us that

{N®;3G, B}~ {N* @ B(L(G)), [«]}.
Therefore
(6.2) Ker Bl Z(NR:G)=Ker[a]l Z(N®*)®1s = Kera [ Z(N®).
Since {N*, a} is covariant and p °ca(N*®)= N* by (2.7), we have

as=(peoa)ea,°(poa)’ € Aut N-

Here we set u(t)=p(1®A(t)). Since B(u(t))=u(t)QA(t), N°({t}) =
N*u(t) by [17, Proposition 5.2]. If p is a nonzero projection in Z(N?),
then af(p)= u(t)pu(t)* and

(6.3) pN*({thp = pN°u(t)p = pN°a’(p)u(?).
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Consequently, s € Ker 8| Z(N®3 G) if and only if &, =« on Z(N*®) by

(6.2), if and only if 5= on Z(N*), if and only if pa(p)# 0 for all

nonzero projection p in Z(N?#), if and only if s € I'(8) by (6.1) and (6.3).
(i)) Combining (i) and Theorem 5.2, we have

I'(@)=Keral Z(M)=Kera | Z(M).

Here we denote the von Neumann algebra generated by B(N) and
1R (L(G)NA'(H)) by NR4i(H\G), whose characterization will be
discussed in §7.

COROLLARY 6.2. Assume (3 is regular. For a closed subgroup H of
G, I'(B)=H if and only if H is the largest subgroup satisfying
Z(INQiG)CNRE(H\G). In particular, T(B)=G if and only if
Z(N®5:G)CB(N).

Proof. T(B)= H if and only if H is the largest subgroup satisfying
the condition that B, =¢ on Z(N®;:G) for all t € H by Theorem
6.1. The condition is equivalent to

ZINQLG)C{x ENRLG: Bi(x)=x,t € H} = NQI(H\G)
by Theorem 7.2 in §7.

Here, if we combine Theorem 5.2 and Corollary 6.2, we have that
I'(B) = G if and only if Z(N®:G)CB(N).

From our previous result [14, Proposition 3.1] we have the following
proposition.

ProrosITION 6.3. If a (resp. B) is regular, the following two condi -
tions are equivalent :

i) ZMR.G)Ca(M) (resp. T'(B) = G); and

(i) Z(M*)CZ(M) (resp. Z(N*?)C Z(N)).

If a (resp. B) in the above is ergodic on Z(M) (resp. Z(N)), then M “
(resp. N*?) is a factor.

Proof. The case of {M,a}. If a is regular, there exists a dual
action 8 of G on M*“ such that

(6.4) {M, a}~{N®; G, B},

where N =M=
(i) = (i) Since Z(M Q. G) Ca (M) by (i) and a (M) = (M K. G)4, it
follows from (6.4) that
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Z(N)®1s = Z(N Q@ B(L(G))) C(N @ B(LX(G))*.
If z€ Z(N), then [B](z®15)=2z R 15 ®1s and hence
BRU®1)=( Qo AdIQW*[B)(z ®1o)=2 Qs ® 1o

Therefore B(z)=z ®1s for z € Z(N). Since B(z) commutes with
B(N) and 1® L*(G), B(z) belongs to Z(N®4G), which shows that
B(Z(N))CZ(N®;G). Consequently, (6.4) implies that Z(M*)C
Z (M), because B(N)=(NX:iG)~.

(ii) = (i) We apply Takesaki’s duality to (6.4) and we have

(6.5) {M®.G,a}~{N&B(L(G)),[B]}

If we can show that

(6.6) ZIN)®1s CNR®3G,

then Z(M®.G)C(M®.G)* = a(M) by (6.5). Therefore we want to

show (6.6).
Now, since B is a dual action of G on N, we have

(6.7) {N,B}~{B(N), . @7}

and (@ y)B()=Ad1QW*(B(y)®1s). According to our assump-
tion Z(M*)CZ(M), we have

Z((t ®@7)B(N) CZ(B(N) Qiz,y G) C(B(N) Qig, G)

by (6.4) and (6.7). Therefore (¢t @ vy)B(Z(N)) commutes with
1®1; ®L*(G) and hence B(Z(N))®1s; commutes with
AdIQW(AR1; ®L“(G)). Since Z(B(N))Q1s; commutes with
B(N) Q15 we have

Z(BIN)X1s C{B(NY ®1s, Ad1Q W1 R 1s @L(G))Y,

the right hand side of which is B(N)®ig,G by [16, Theorem 5].
Therefore, (6.6) is proved by (6.7).

The case of {N, B}. 1If B is regular, there exists an action a of G on
N? such that

(6.8) {N,B}~{M®.G,d},
where M = N°,
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(i) = (i) Since Ker B | Z(N®:G)=T(8) = G by Theorem 6.1 and
(i), B =t on Z(N®:G) and hence [a], =¢ on Z(M ® B(I(G))) by
(6.8). Therefore a,=¢ on Z(M) for all ¢t and so a(z)=2z Q1s for
z€Z(M). Since a(z)EM®.G and it commutes with «(M) and
1®R(G), a(z) belongs to Z(M&.G), namely, Z(a(M))C
Z(M®.G). Consequently, (6.8) implies that Z(N*)CZ(N), because
a(M)=(MQR.G)~

(i1) = (i) Since B is regular, there is a weakly continuous unitary
representation u of G in N such that B(u(t))=u(t)@A(t). Since
Z(NP)C Z(N) by (ii), if p is a nonzero projection in Z(N*?), B? is a dual
action of G on N, and t~ u(t), is a weakly continuous unitary
representation of G in N, satisfying B?(u(t),) =
u(t), ®A(t). Therefore spB? =G forall p in Z(N*). Consequently,
Irg)=¢G.

Finally, if a (resp. B) is ergodic on Z(M) (resp. Z(N)), then M*
(resp. N*?) is a factor from the above.

THEOREM 6.4. The following two conditions are equivalent:

(i) MQ®.G (resp. NQ;G) is a factor; and

(i) Z(MR.G)Ca(M) (resp. T'(B) = G) and a (resp. B) is ergodic
on Z(M) (resp. Z(N)).

Proof. The case of {M,a}. ()= (i) If a(z)=z&1; for
z€Z(M), a(z) commutes with a(M) and 1@ R(G), and hence it
belongs to Z(M&.G). Since ME.G is a factor, (ii) follows im-
mediately.

(ii) > (i) We denote the covariant system {(M®.G) &G, a} by
{M,a&}. Since &a(M®.G)= M?, it suffices to show that M? is a
factor. Since & is regular, it suffices to show that

(a) Z(M®:;G)Ca&(M); and

(b) @ is ergodic on Z(M)
by Proposition 6.3. (a) and (b) are immediate from (ii) by Theorem 5.2.

The case of {N, B}. (i) = (ii) Since I'(8) = G is clear, it suffices to
show the ergodicity of B8 on Z(N). If B(z)=z&®1s for z € Z(N),
then B(z) commutes with B(N) and 1 Q L*(G), and hence B(z) belongs
to Z(N®;3G). Since N®jG isafactor by (i), B is ergodic on Z(N).
>0 Let {N,FI={(N®EG)®;G, . _Since BN®LG)=
NP, it suffices to show that N* is a factor. Since B is regular, it suffices
to note that

(c) F(B) G; and

(d) B is ergodic on Z(N)
by Proposition 6.3. (d) is clear from (ii) by Theorem 5.2.
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COROLLARY 6.5. Ifa (resp. B) isregular and if Z(MQ.G) Ca(M)
(resp. I'(B) = G), then a’ (resp. B*) is regular for all p € Z(M*) (resp.
Z(N*®)).

Proof. The case of @. Since a is regular, {M, a} is identified with
{N®)5 G, B} for some {N,B}. Since B.(B(y))=pB(y) and B(1Kf)=
1® f-, it follows that B, = AdA{(t) on NQiG. Since Z(M*)CZ (M)
by Proposition 6.3, p belongs to B(¥)QL*(G), where X is the
underlying Hilbert space of N. An action t+ AdAi(t) on
B(#)RQL*(G) coincides with S, on Z(M*<). Since B.(p)=p,
AdAi(t)(p)=p. Since L"(G)NR(G)=Clg, p is of the form e Q 1,
for some projection e in B(%). Let 7 be an isomorphism of L*(G) into
M, defined by w(f)=e®f (€M,). Then = satisfies a,om =
woAdA'(t) on L*(G). Therefore a” is regular on M,.

The case of B. Since B is regular, there exists a weakly continuous
unitary representation u of G in N such that B(u(t))=
u(t)@A(t). Since Z(NP)CZ(N) by Proposition 6.3, t u(t), is
a weakly continuous unitary representation of G in N, and hence B* is a
regular dual action of G on N,.

LEMMA 6.6. Let p be a projection in M. If
(1) « is regular and Z(M)CM*; and
(ii) p is properly infinite,

then p @1 ~ a(p) in M Q L*(G).

Proof. Since a is regular by (i), {M, a} is identified with {N Q% G, B}
for ~some  covariant dual system {N,B}. Then «a(x)=
AdlyQ V'(x ®1s) for x in M. Since

(6.8) AdIyRQV'IRKf=1XF, (I=1y=1sQ1s)

M @ L*(G) is globally invariant under Ad 1y @ V' by Lemma 8.2. Let
p be the restriction of Ad 1y Q@ V' to M @ L*(G). Then the condition
(i) implies that p = on Z(M)& L*(G) by (6.8). Therefore p Q15 ~
p(p) (= a(p)) by Suzuki’s Theorem [N. Suzuki, Té6hoku Math. J. 7
(1955), 186-191, Theorem 1]*.

THEOREM 6.7. If
(1) G is separable;
(i) B is integrable and T(B)= G; and
(iii) _NP* is properly infinite, -
then {N,t Qo B X1}~ {N,[B]}, where N=N & B(LXG)).

* The author thanks the referee for indicating him this paper.
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Proof. According to (i), (ii) and (iii) we have

(6.9) {N,B}~{N,,[B)}

for some p in N by Theorem 4.3. Since N is properly infinite by (iii),
so is p. Let q be the central carrier of p in N\, Since

(6.10) Z(N®in G)C[BI(N)

by (ii) and Theorem 5.2, it follows from Corollary 6.5 that [B]? is
regular. Therefore we can identify {]\71, [B]?} with {(MR. G, @} for some
covariant system {M,a}. Since Z(N"¥)CZ(N) by Proposition 6.3,
(6.10) implies that Z(N,®«G) is included in [8]*(N) and hence
Z(M)CM". Therefore, if z€Z(M), then [a](z®1ls)=
z®1:R®1s and hence a(z)=z&®1s Namely, Z(M)CM* or
Z(aM)=M*R1s.

Now we apply Lemma 6.6 to the covariant system {« (M), ¢ @ 8} and
the projection p € a(M). Then we have a partial isometry v in
a(M)RL*(G) satisfying wvw*=p®1ls; and v*v=1Q8(p)=
a@up) As 1yQV is a function tr1yQ@A(t) in
(Iy @ R(G))QL(G) and

vWu(oVy)*=w*=pRls (Vu=1uQ V)
(WVm)*oVu=Via @ (p)Vu=p & 1o,

it follows that u = (vVy),e is a unitary in N, ® L*(G) and

[BY (u(1)) = u(®) QA ().

Therefore the note given after Theorem 5.6 gives our desired results.

7. Subgroups and subalgebras.. Throughout this section
H, dy and Ay denote a closed subgroup of G, the right invariant Haar
measure and the modular function, respectively. We define a sub-
algebra of MQ, G (resp. NQjG) associated with H by

(7.1) M. H={a(M),1QA(H)}"
(7.2) (resp. NQi(H\G) ={B(N),1 Q@ (L(G) N A'(H)'}).
Utilizing @ (resp. ), we shall give a correspondence between a subgroup

of G and a subalgebra of M@, G (resp. N®3i G) of the form (7.1) (resp.
(7.2)), which generalizes a result due to Takesaki, [23, Theorems 7.2 and
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7.3]. For the notational convenience we set
F(G/H)=L"(G)NA(H) and Z(H\G)=L(G)NA'(H)

in what follows.

THEOREM 7.1. let N=MQ.,G and B = a.
() MQ.H={yEN:B(y)ENQA(H)"}
=NNI1KRZL(G/H)).
(i) H coincides with the smallest closed subgroup H' of G satisfying
BMQ.H)CNQA(H')".

Proof. (i) Since
Bla(x))=a(x)®@1s and B(A(1))=A(1) DA (1),

it follows that B(MQ,H)CN QA (H)".
Next we shall show that B(y)EN@A(H)" implies y€E
(1RQZL*(G/H)) for y € N. For this we have only to show

(73) PY(G/H)®1s C{AdW(ls QA(H))U1s @ B(LA(G))Y.

Indeed, y®1s; commutes with Ad1IQW(N'QA(H)) and
In @ B(L*(G)) by assumption and hence y commutes with
1R £*(G/H) by (7.3). Now, if fe¥(G/H)NC(G), 8f€
F*(G/H)QL(G), where (6°f)(s,t)=f(ts). Forany g, h € K(G) with
[Aglli =1 we set

Fo=([ 64006 @80 ) (1 @R,

Since fE A(H) and 6°f = AdW(1s ®f), F,. belongs to the right hand
side of (7.3). If ¢ € [X(G)® L*(G), then

(Fut)5.)= [ )8 )dr ) 8y h ()6 s 1)

Since r » f(r7's) is continuous and bounded, if g(r~')dr converges to the
Dirac measure at the unit e, then F,, converges weakly to
f&(A'h). Therefore f @ (A'h) belongs to the right hand side of
(7.3). Making A'h converge weakly to 15, we have the inclusion (7.3)
for °(G/H)N C(G) instead of £*(G/H). Since £*(G/H)N C(G)is
weakly dense in £*(G/H), we have (7.3).

Finally we shall show MR, H=NN1QRL(G/H)). Our proof
will go along the same line as Takesaki’s proof. Suppose that y € NN
(1®Z(G/H)). We may assume that M is standard. Let J be the
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modular conjugation operator of MQ,G. Since J=v(JuQRJs)=
(Ju ® Js)v for a certain weakly continuous unitary representation v of G
in M, we have

JAQZL(G/H))T = (1 QL (H\G)Y

and hence JyYJ EN' N1 QL (H\G)). Here we apply the modified
Blattner-Mackey’s theorem for induced covariance representations [22,

Theorem 4.3]. There exists a natural isomorphism p of (M Q.;xH)'
onto N'N(1&Q Z£*(H\G))' such that

pP(x'@lu)=x'Qls and p(u(t)QAut))=u(t)QA'(t)

for x’€ M’ and ¢t € H, where u is a strongly continuous unitary represen-
tation of G on # implementing « and where Aj is the left regular
representation of H on L*H). Therefore JyJ belongs to
p(M&.uH)'), which is generated by x'®1s; and u(r)@A'(¢) for
x'€M' and t € H. Since v(t)u(t)* € M’ and since

J(x' Q@ 16) = a(Jux'Ty)
and

J@OQQA (O =1Q (),

it follows that y belongs to M), H.
(if) It is clear from the first equality in (i).

In the above proof we have established a bijective correspondence
of a closed subgroup H and a subalgebra #*(G/H) by the relation

$Y(G/HY = {x € B(IL(G)): Ad W*(x ®16) € B(LG)) QA (H)'}.

Indeed, since £*(G/H)' is generated by L*(G) and A (H), it is included in
the right hand side. The converse inclusion is direct from (7.3).
The dual version of Theorem 7.1 is the following.

THEOREM 7.2. Let M =N®:G and o = B.

i) NQIH\G)={xEM:a((x)=xt€E H}
=MNARL(H)).

(i) H={t€G: a,(x)=x,x €E NKQ;(H\G)}.

Proof. (i) Since the action a dual to B is defined by a(z)=
Ad1QRV'(z Q1) for z € NQi G, we have
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a(2)€(s, 1) = (a(2)§) (s, 1)
=(IQV)(zQ1)ARQ V)*E)(s 1)
=A(0z(1Q V)*E) (s, 1)
= Ai(1)zA (1) E (s, 1),

(7.4)

where Ai(t)=1@A'(t). Therefore the second equality in (i) is
proved. Moreover, a, = Ad A{(t) on NK;G.

Now we shall show the first equality. Put af'=a, for all
t€H. «a" is then an action of H on NQ3G. Since NQ§(H\G) is
clearly included in (N®¢ G )", it remains to show the inclusion relation

(7.5) No=(NQ;(H\G)) C(NREG)™)'.
According to Theorem 1.1 we have

(N C(B(N)Y = (N®;G) C(NRLG)™Y

where B" is defined by (7.6) below. Moreover, 1 Q@ A'(H) commutes
with (N®4G)*". Therefore Lemma 7.3 below implies (7.5).

(i) Let H, be the set of all ¢t such that «(x)=x for all
x € NQKQE(H\G). Then H, is a closed subgroup of G. Since H CH,
and NQ§(H\G)CNR4(H\G) by (i), we have H = H,.

Lemma 7.3. If B" is a mapping defined on (NXi(H\G))' by

(7.6) B (y)=Ad1QW(y ®loc),

then (1) B" is a dual action of G on (NR4G(H\G))'; and
(i) (N®X:(H\G)) = {(N @3(H\G)))*", 1QA'(H)}"

Proof. (i) Since [W,1; ® A'(t)] =0 and

AdTRQWH(B(N)®1s)CB(N)QR(G)
AdIQW*(1QZL(H\G)R16)=1QZ(H\G)X Lo,

we have B"(N)CN,QR(G), where N,=(N&®i(H\G)). Since
W &1, satisfies (2.5), B is a dual action of G on N,.

(i) As N COIKQZF*(H\G)), B"(N, is included in
Ny @A(H)". Let p be an isomorphism of A(H)" onto Ay(H)" with
p(A(t))=Au(t) and let By =1 ®poB”, where Ay is the right regular
representation of H. Then By is a dual action of H on N,. Since
1QA(H)CN, and Bu(1QA'(r)=1QA'(r) @ Au(r), N, is generated
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by (No)* and 1 @ A'(H) by a characterization of a crossed product due to
Landstad. Since (Ny)*" = (N,)?+, we complete the proof.

COROLLARY 7.4. There exists a semi-finite faithful normal operator
valued weight E on N®j5G onto NQi(H\G).

ProposSITION 7.5. Let o be an action of G on M and H a closed
subgroup of G.  Then H is normal if and only if M, H is invariant under
AdA(t) for all t.

Proof. Since
AdA(t)(a(x))= a(a(x)), AdA(t)(Ai(s)) = A(est ™),

if H is normal, M @, H is invariant under AdA,(t). On the other hand,
if H is nonnormal, M X, H is not invariant.

8. Galois correspondence. In this section we shall give a
Galois correspondence between closed subgroups of G and globally g
invariant von Neumann subalgebras of N containing N* in Theorem 8.4,
which generalizes [6, Theorem II1.4.3]. If L, is an « invariant sub-
algebra, then a(L,)CL,&® L*(G), and vice versa. Therefore a von
Neumann subalgebra L of N is said to be B invariant if B(L)C
L ®R(G). Insuchcases a[L,and B [L are an action of G on L, and
a dual action of G on L, respectively.

THEOREM 8.1.  Let a be an action of G on M and L a von Neumann
subalgebra with « (M)CL CM®.G. If M is a factor, then the following
two conditions are equivalent :

(i) L is & invariant; and

(ii) there exists a closed subgroup H of G such that L = M, H (or
L={yEMQ®.G:a(y)€(MQ.G)QA(H)").

Before going into the proof we shall prepare the following lemma,
which is implicitly proved in the proof of [17, Theorem 3.1].

LemMA 82. M QLY(G)={a(M),1QL(G)}".
Proof.  Since the right hand side is included in the left hand side, we

want to show the converse inclusion. For this we set y;, for f, g € K(G)
and y EM by

8.1) ye = [ A® Pate (6)g 0y
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Since g € K(G) and |1 @, fla(a;'(y)|=|Ifll-lly ||, the right hand side
of (81) is Bochner integrable and hence y;, exists in
{a(M),1RQ L*(G)}'. If &n € K(G,X), then

it 1m) = [ | GGt 0)gE) 1 ()dids

= [ | 185 @ )€ | m(s)drds

and (s,1)— g(ts)(a, (y)é(s)|n(s)) belongs to K(G x G). If f(¢r")dt
tends to the Dirac measure at the unit ¢ of G, then

Vel [ 1) = ((y Qg)¢ ).

Since ||y |=lgl-laflllyll and K(G, ) is dense in H QLHG), y,
converges weakly toy @ g. Since y and g are arbitrary in M and K(G)
respectively, M & L*(G) is included in {a(M),1 QL (G)}".

Proof of Theorem 8.1. (1) = (ii)) We set N=M&.G. Let H be
the smallest closed subgroup of G satisfying &(L)CN @ A(H)". Since
a(y)ENQA(H)" is equivalent to sp;(y)CH, H coincides with the
closed subgroup spanned by sp;(y) for all y in L. Therefore, L is
included in the set of all y € N with ¢(y) € N @ A(H)", orin MK, H by
Theorem 7.1. Let p be the isomorphism of M, H onto M, H
satisfying p(a(x))=a”(x) and p(A(r)) = Au(r). Then

(8.2) a"(M)Cp(L)CM®.~H.

If we denote (a®)" by B, then I'(8)=Kera”[Z(M) by Theorem
6.1. Since M is a factor by assumption, I'(8) = H.

Now, we shall show that p(L)®jH is a factor. Since I'(8) = H, we
have only to prove B [ Z(p(L)) is ergodic by Theorem 6.4. For this we
suppose that B(z)=z®1y for z in Z(p(L)), that is, z €
Z(p(L))*. (8.2) implies that

a"M)Cp(LY C(M.~H)! =a™(M).
Since M is a factor, so is p(L)". Since Z(p(L))’ is included in
Z(p(L)?), z is a scalar operator.

On the other hand, by (8.2) we have

(8.3) a™(M)@sHCp(L) @3 HI(MQ.H) Qs H.

If we apply Takesaki’s duality to (8.3), we have an isomorphism p" of
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MR.~H)XiH onto M & B(L*(H)) as in the proof of Theorem 2.1
such that

M & L*(H) Cp'(p(L) ®sH) CM & B(L*(H)),

where the first inclusion is obtained by Lemma 8.2. Since p(L) X H is
a factor as shown in the above, we have p'(p(L) Qi H)= M & B(L*(H))
by [6, Lemma II1.4.2]. Therefore

p(L) Qs H=(ME.~H) Q3 H,

which implies p(L)= M Q.#»H by (2.7) and hence L = M K, H.
(if) = (i) We have only to show that a(L)CL @ R(G). Since

d(a(x))=a(x)®ls and a(A(r))=r(r)@A(r)
and L = M®, H, we have a(L)CL QA(H)'CL Q R(G).
The dual version of Theorem 8.1 is the following.

THEOREM 8.3. Let B be a dual action of G on N and L a von
Neumann subalgebra with B(N)CL CN®:G. If NQ§G is a factor,
then the following two conditions are equivalent:

(i) L is B¢ invariant; and

(i) there exists a closed subgroup H of G such that L = NQ§(H\G)
(or L={x ENQLG: B.(x)=x, t € H}).

Proof. We may assume without any loss of generality that N is
standard.

(i) > (ii) Let B’ be the dual action of G on B(N) defined by
(1.10). Theorem 1.1 gives an action @ of G on (Nj;G)' satisfying

{BIN), B}~ {(NQ:G) .G, d},

namely, there exists an isomorphism p of B(N) onto (N ®:5G) K.G
satisfying aep=p @B’

Since L is B¢ invariant by (i), Ad 1 Q@ W*(L Q1) is included in
L@R(G). Since [W,1QA'(r)]=0, Ad1Q W(L' Q1) is included in
L'Q@R(G). Therefore L' is B’ invariant. Moreover, NQiG is a
factor by assumption and

(NQsG)Y CL CB(N).

Therefore we can apply Theorem 8.1 to {(N®j:G)',«} and obtain a
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closed subgroup H of G satisfying
p(L)=(N®:G) Q. H.

Let’s recall the proof of [17, Theorem 8.1]. Then p is of the form
Ad1Q® V'eB' and it satisfies

p(y)=a(y) and pAi(r))=1Q1s QA(r)

for y E(N®:G) and r € G. Therefore L' is generated by (NQ:G)
and 1 ® A'(H) and hence

L=(N@:G)N(1QA(H))=NQz(H\G).

(ii) > (i) The commutant of L =NQ3§(H\G) is generated by
(NX2G) and 1QA'(H). Since B'(y)=y Q1 for y e(NQ;G) by
Theorem 1.1 and

AdIQWARA(N®1:)=1Q A (N)QA(r),

it follows that L' is B’ invariant. Therefore Ad 1Q W(L'® 15) is
included in L'QR(G). Since [W,1QA'(r)]=0, L is B* invariant
similarly as before.

THEOREM 8.4. Assume that G is separable. If

(i) N s a factor, and

(i) B is integrable and T'(B) = G,
then there exists a bijective correspondence between the closed subgroups H
of G and the B invariant von Neumann subalgebras L of N containing N*
in such a way that

Ly, ={y eN: B(y)ENQA(H)"}
H = N{H"B(L)CNQA(H)Y},

where H' runs over closed subgroups of G.

Proof. Let K be an infinite dimensional Hilbert space with dim K =
dimL*(G). Weput N=NQ®B(K)and B =1 ®o°B ®t Then{N,B}
is a covariant dual system. Since K is infinite dimensional, N* =
N? ®B(K) and dimK = dim L*(G), it follows that B is of infinite
multiplicity. Since B is integrable by assumption, so is B. If x €N,
y € B(K), z € B(LX(G)) and f € L*(G), then
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7Bl ®y®2)=[BlQ(x Rz Ry)
T @Ik @le @) =Ivn Q1 QfF R 1k

where 7 =1y, QL R ooy R o Q. Therefore
(N ®B(L(G)) @15 G) = (N @ B(L(G)) Ry G) Q@ B(K).

Since I'([B]) = r)=G by (ii), it follows from Corollary 6.2 that
rp)= F([B]) =G. Since N* is properly infinite, Theorem 6.7 implies
that B is dominant. Therefore {N, B} is equivalent to {M®.G, al,
where M = N®2G and a« =B. Since N is a factor by assumption (i), N
is also a factor and hence 8 is ergodic on Z(N). Since ()= G, M isa
factor by Theorem 6.4.

Now, suppose that L is 8 invariant. Put L =L ® B(K). Then L
is B invariant. Since N* CL CN, a(M)CL CM®.G. Therefore we
can apply Theorem 8.1 to {M, a} and obtain

L,,=L and H; =H (ByTheorem7.1).
Now, since B(L)CN QA (H)" is equivalent to B(L)CN QA (HY,
we have H; = H;. Therefore, if x € Ly, then x @ 1x € Ly, =L and
hence x € L. Since L CLy, is clear, we have L = Ly, .

Moreover, since Ly = Ly QX B(K)=(Ly), we have H=H;, =
HLH®B(K) HLH

9. Appendix. 1. Asshown by Araki and Haagerup [1,9], each
action @ of G on a standard M is implemented by a unitary u in
B(#)Q L*(G) satisfying

Ul Qo) (u@ls)=1&Q6(u)

in such a way a(x)=Adu(x ®1s) by Proposition 3.4. Then the
commutant of M&, G is given by Digerness, [7, 10, 16] as follows:

M. G) ={MQ1lsu(l1QR(G))u*}".
The dual version of this result is the following:

THEOREM 9.1. If a dual action B of G on a standard N is im-
plemented by a unitary w in B(¥)& R(G) satisfying

9.1 W@l @)W ®ls) =1t Qy(w?)
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in such a way B(y)= Adw*(y ®15), then
(N®5G) ={N'® 1, w* (1R L(G))w}".
Proof. We set

7(f)=Adw*(1Qf)

for f€ L*(G). First we shall show 7w (f)E(NQiG). For this it
suffices to show that [7(f),1® g]=0 for all g € L*(G). It is clear that
7(f)€E B(N). Since t Qo(w Q1s) belongs to B(X)X1s Q@ R(G)
and since

IW)W*Rls)o(w*®ls)=(W* Q1)1 Q W)
by (9.1), we have

AdIQWeAdw* R1:(1QfQ1c)=Adw* R 1:(1Qf&Q1s)

and hence B'(7(f)) = m(f) @ 15, where B’ is a dual action of G on B(N)'
defined by (1.10). Then = (f)€(1QL*(G)) by the argument given
after Theorem 7.1.

Now, as M = N4 G is globally invariant under Ad 1 @ A'(t), we
can define an action of G on M'by o, = Ad 1 QA'(t)I M'. Since 7 is
an isomorphism of L*(G) into M’ satisfying a, cm = wo AdA'(t), M’ is
generated by 7 (L*(G)) and (M')* by [16; 17, Theorem 8.3]. Besides

My =M'0N(1QR(G)) ={B(N),1Q L(G),IQR(G)Y.

It suffices to show the right hand side is N' @ 1s.
Since {N, B} and {B(N),t @ v} are equivalent, it follows that

B&L({B(N),1QLY(G),1QR(G)}")
={t®y(B(N)),1Q1: QLY(G),1Q1s QR(G)Y,

which is B(N)Q B(L*(G)) by [16, (38) in the proof of Theorem
3]). Therefore (M')* = N'® 1.

CoroLLARY 9.2. N & B(L*(G))={B(N),1Q B(L(G))}".

2. Haga’s factorization holds always for a regular action. Namely,
if a is regular, M@, G is isomorphic to M* & B(L*(G)) by Theorems
2.5 and 5.6. However, as for the converse, we have only the following
proposition for an abelian G.
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ProposITION 9.3. If G is abelian, the following two conditions are
equivalent :

(1) « is regular; and

(ii) there is an isomorphism p of MR, G onto M= Q B (L*(G)) such
that p7'(M* ® 15) is @ invariant.

Proof. (i) = (ii). If « is regular, {M,a} is equivalent to
{M*®4G, B} for some covariant dual system {M* B}. Therefore

MBI}~ {(M°)", B}~ {M ®.G, &}.

Since G is abelian, [B](y ®1ls)=y R 1 X 1; for y E M. Thus we
have an isomorphism p of M Q.G onto M*® B(L* G)) such that
p '(M*®1s) is @ invariant.

(ii) > (i) We set

(B)=pQuiodop’ and B=Ad1® W*o(B).

Then we have
9-2) {MQ®.G,at~{M* & B(LY(G)),(B)}

Since (B) is a dual action of G on M<*®B(L*G)) and since
AdW*(FR1ls)=fR1s, AdW*A(r)Q1s)=A(r) QA (r) and
AdW*(1s @ A(r)) belongs to L”(G)Q R(G), B is an isomorphism of
M= ® B(L*(G)) into M* @ B(L(G))® R(G). However, G is abelian
by assumption, we have

(9.3) AdW*(1; QA(r) €1 QR(G).
Since M*®1; is (B) invariant by (ii), it is P invariant by

(9.3). Therefore there is an isomorphism B of M* into M* ® R(G)
such that

94) Qo BRL=BIM Qle.

Now, we shall show that Bl M* @ 1s is a dual action of G on
M*®1s. If y €N, then
BRoB(yR®1s)=BRLeAd1Q W*(B)(y ®1c)

=LQoRiBRLOL-AdIRW™(B)(y ®1s) (By(9.4))
=1Q®oRieAdIRIc QW  BRL®Le(B)(y Qls)
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=7(B)@o(B)(y ®1ls) (By (9.4))
(T=1Q0R®1°AdIRIc QW it Qo Qi1cAdIRQ W*R1,)
T°Ad1Q1Ic @W*(B)®(y ®ls Qo)
TeAd(1Q 1 QWHIRXW 1) BRLy ®ls ®1g)
=Ad1IRLI QW BR Ly ®ls ®ls),

where the last equality follows from
WRIc(c QI Q@W=Ad1; Q W*(W R 15).

Consequently, since B is a dual action of G on M*Q1; and
B®L=L®a°[_3[_Ma®IG, B is a dual action of G on M® and
(B)=Ad1Q Wop =[B], which implies that

M~ a(M)=(M®.G)* ~ (M* ® B(L(G))*' = M* Ry

by (9.2). Therefore a is regular.
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