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INVARIANT MEASURES FOR ERGODIC
SEMIGROUPS OF OPERATORS

RYOTARO SATO

In this paper the invariant measure problem is investigated for
ergodic semigroups (in the sense of Eberlein) of positive linear operators
on the Lrspace of a probability measure space. Various results in
operator ergodic theory are generalized and extended to give a unified
approach to the problem. The main step in this approach is the
following result: There exists a positive linear functional φ on the
space B(A) of all bounded real valued functions on a directed set A
such that

lim inf ξ(a) <; φ(ξ) <: lim sup ξ(ά)
aeΛ oceΛ

for all ζeB(A).
Let (X, 3ft, m) be a probability measure space and let LP(X) -

LP(X> 3ft, m), 1 <Ξ p <Ξ oo 9 be the Banach spaces defined as usual with
respect to (X, 3ft, m). For a set A 6 3ft, 1A denotes the indicator
function of A and LP(A) denotes the Banach space of all LP{X)-
functions that vanish a.e. on X — A. If / e LP{X), we define supp
/ to be the set of all x in X at which f(x) Φ 0. Relations introduced
below are assumed to hold modulo sets of m-measure zero.

Let Σ = {T} be a semigroup of positive linear operators on
Lt(X). A function / e LX{X) is called Σ-fixed if Tf = f for every
TeΣ. The problem of finding necessary and sufficient conditions
for the existence of a J-fixed f0 e L^X), with f0 > 0 a.e. on X, has
been studied by many authors (see, for example, [4], [5], [8], [9],
[11], [12], [13], [14], [17], [18], [21], [22], [23], [24], [25], [27], and
others). In the present paper we intend to investigate the problem
for ergodic semigroups Σ in the sense of Eberlein, and generalize
and extend various known results to give a unified approach to the
problem.

For / e L1(X)f we denote by co Σf the closed convex hull of the
set {Tf: TeΣ}. Σ is said to be left [resp. right] ergodic if there
exists a net (Γα, a e A) of positive linear operators on Lt(X) satisfying

(a) limsupα | |Γα | | < oo, ^
(b) for every / e Lt(X) and every a e A, TJ e co Σf,
(c) for every T e Σ, limα TTa - TaT = 0 [resp. limα Ta-Ta = 0],

where the convergence can be either in the uniform, strong, or weak
operator topology. (Cf. Eberlein [7] and Day [3].) The above net
(Γα, a e A) is said to be left [resp. right] Σ-ergodic. If (Ta, aeA) is
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both left and right I'-ergodic, then it is said, simply, to be Σ-ergodic.
If Σ has a J-ergodic net, then Σ is said to be ergodic.

In the next section we investigate the invariant measure problem
for weakly left ergodic semigroups Σ, by making use of the fact
that if A is a directed set, then there exists a positive linear func-
tional φ on the space B{Λ) of all bounded real valued functions on
A satisfying

lim inf ξ(a) <; φ(ζ) <Ξ lim sup ξ(a)
a a

for all ξ 6 B(Λ). Theorem 1 states that if (Ta, a e A) is a weakly
left I'-ergodic net, then there exists a Σ-Άxeά /oe.LL(X), with /0 > 0
a.e. on X, if and only if A e Wl and m(A) > 0 imply

lim inf [ TΛ dm > 0 .

Theorem 2, together with Theorem 1, asserts that if Σ is a weakly
left ergodic semigroup of positive linear contraction operators on
L^X), then there exists a J-fixed f0 e Lλ{X)9 with fQ > 0 a.e. on X,
if and only if 0 <; u e L^X) and ΣϊU ^ ί ^ e LJJK) for some sequence
(T«, n^V) m Σ imply u = 0 a.e. on X; in particular, if J? has a
uniformly left I'-ergodic net (Ta, a e Λ), then there exists a Σ-Άxed
/0 e L,(X), with /0 > 0 a.e. on X, if and only if A e Έl and m(A) > 0
imply lim supα || TtlA ]]„ > 0. Here it should be remarked that Theorems
1 and 2 include results due to Dean and Sucheston [4], Foguel [8],
Lin [14], Neveu [17], [18], and Sachdeva [21], for every (left) amenable
semigroup of uniformly bounded linear operators on LX{X) is uniformly
(left) ergodic (see Day [3]).

In the third section we investigate the problem for weakly or
uniformly ergodic semigroups Σ and obtain two theorems, one of
which states that if (Ta, aeA) is a uniformly I'-ergodic net, then
there exists a I'-ίixed /0 e Lλ(X)f with /0 > 0 a.e. on X, if and only
if A 6 Wl and m(A) > 0 imply lim supα T%1Λ ^ 0, where lim supα T%1A

is defined by

lim sup TtlA — ess inf (ess sup T*1A)
a a \ β>oc /

(cf. Neveu [16], Proposition II.4.1, p. 44).
In the last section we apply these obtained results to explian

some special examples. Among other things, we observe that if T
is a positive linear operator on Lt(X) and r is a positive real number
such that

sup| |σ;(T)| |< - ,
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where σr

n{T), n = 0,1, , denote the Cesaro means of order r of
the sequence (Tn, n ^ 0), then there exists an/oβL^X), with Tfo = fQ

and /o > 0 a.e. on X, if and only if A e Wl and m(A) > 0 imply

^ Ξ£ 0 .

This is a generalization of a result due to Derriennic and Lin [5],
who considered only the case supw2M | | ^ ( T ) | | < oo.

2* Invariant measures for left ergodic semigroups* In this
section we investigate the invariant measure problem for weakly
left ergodic semigroups Σ = {T} of positive linear operators on L^X).
First of all we shall prove the following lemma, which is fundamental
throughout the paper.

LEMMA 1 (S. Banach). Let Λ be a directed set and B(Λ) the space
of all bounded real valued functions on A. Then there exists a

positive linear functional φ on B(Λ) satisfying

(1) lim inf ξ(a) ^ φ(ζ) ^ lim sup ξ(a)
a a

for all ξeB(Λ).

Proof. For a e Λ, let da denote the linear functional on B(Λ)
defined by δa(ξ) = ξ(a) for all ξeB(Λ). Since \\δa\\ = 1 for all aeΛ,
the Banach-Alaoglu theorem (see, for example, Rudin [20], p. 66)
shows that there exists a linear functional φ on B(Λ) which is a
weak-star cluster point of the net (<5α, aeΛ) in B(Λ)*, the dual space
of B(Λ). It is clear that φ satisfies (1) for all ζ e B(Λ).

For a directed set Λ, let GL (Λ) denote the set of all φeB(Λ)*
that satisfy (1) for all ξ eB(Λ). Since GL(Λ) is not empty by the
above lemma, we can define a functional A on B(Λ) by the relation:

(2) Δ{ξ) = sup {φ(ξ): φ 6 GL (Λ)} (ξ 6 B{Λ)) .

It follows from a slight modification of the proof of Lemma 1
that if A is a countable directed set, then

A(ξ) = lim supα ζ(a) for all ξ e B(Λ) .

From now on let us always assume that Σ — {T} is a fixed semi-
group of positive linear operators on LX{X). The boundedness of Σ
is not assumed, unless the contrary is explicitly specified.

THEOREM 1. // (Tα, aeΛ) is a weakly left Σ-ergodic net, then
the following conditions are equivalent:
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(0) There exests a Σ-fixed fQ e L^X) with f0 > 0 a.e. on X.

1i) A 6 Wl and m(A) > 0 imply lim inf a [ Tal dm > 0.
JA

Proof. Choose a β e A and a constant K such that

| |Γ β | | ^K for all α ^ /3 .

Then the proof proceeds as follows.
(0) => (i): For each positive integer n, define

K(x) = min {/o(α?), w} ( a j e l ) .

Then lim^oo ||/0 — ΛΛ||i = 0, and since /0 > 0 a.e. on X, it follows
that, for any A e 9ft with m(A) > 0,

ί fodm - ί TJQάm = [ Tahndm + \ Ta(f0 - hn)dm ,
JA JA JA JA

and that

lim (sup ( Γβ(/0 - K)dm) ^ lim ίΓ||/0 - Λ.IL = 0 .

Therefore, for a sufficiently large n9 we have

n \ Taldm ^ t Tahndm ^ ( /odm - K\\f0 - /̂ JL > 0
JA JA JA

for all a ^ /S, and hence lim infα I Taldm > 0.

(i)=>(0): Let <peGL(/ί), and define a positive linear functional
μ on I/oo(X) by the relation:

where <Γβl,/> - ί(Tal)fdm. Since, for each Γ 6 Σ and each / e L

<T**μ, /> = </ι, Γ*/> - 9>«Γβl, Γ*/»

it follows that T**μ = μ for all T eΣ. Let μ0 denote the maximal
(countably additive) measure, with 0 <ί μ0 <, μ (cf. Neveu [18], Lemma
1), and let g = dμjdm{ e L^X)). It then follows that Tg ^ g for all
TeΣ, and thus if we define another linear functional λ on L^X) by
the relation:

then λ is a (countably additive) measure absolutely continuous with
respect to m, and T**λ = λ for all TeΣ.
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To see that λ is equivalent to m, we note that (i) implies μ(A) > 0
for any A e 9K with m(A) > 0. Hence it follows from Lemma 1 of
[18] that μ0 is equivalent to m, and therefore g > 0 a.e. on X. Putt-
ing, for each positive integer n, gn(x) = min {1, ng(x)} (x e X), we then
obtain l im n ^ || 1 — gn\\x = 0. Let A e Wl with m{A) > 0 be given, and
choose an ε > 0 and an a0 e A so that a0 ^ β and

I Taldm > ε for all a ^ a0 .
JA

Then, for a sufficiently large n, we have

\ Tagdm ^ ( Tagndm > e ~ K\\l - gn\\, > 0
JA JA

n

for all a ^ a0, and therefore lim infα 1 Tagdm > 0. This proves that

λ is equivalent to m.
The proof is complete*

THEOREM 2. Suppose \\T\\£l for all TeΣ. If (Ta,aeΛ) is
a weakly left Σ-ergodic net, then the following conditions are
equivalent:

( i ) A 6 Wl and m(A) > 0 imply infΓ e Γί Tldm > 0.

(ii) A em and m(A) > 0 imply j([ Tαlώm) > 0.

(iii) 0 <; u e LM (X) and Σ~ = 1 Γίw 6 Z/oo (X) for some sequence
(Tn, n ^ 1) in Σ imply u = 0 a.e. <m X.

In particular, if (Ta, aeΛ) is a uniformly left Σ-ergodic net,
then the following condition and the above three conditions are still
equivalent:

(iv) A eTl and m(A) > 0 imply lim supα || Γ ί l J U > 0.

For the proof of this theorem we need the next two lemmas.

LEMMA 2. Suppose \\T\\ ^ 1 for all T e Σ. If 0 ^
satisfies inf {(Tl, u): TeΣ} = 0, then there exists a nonnegative
function h in LJ^X) and a sequence {Tn, n ^ 1) in Σ such that

supp h = supp u and Σ^=i T*h e Lo£X).

LEMMA 3. Let (Ta, aeΛ) be a uniformly left Σ-ergodic net. If
0 <; u e I/oo(X) satisfies ΣϊU T%u e

 IΌO(X) for some sequence (Tn, n^ϊ)
in Σ, then \ίma\\T%u\\oo = 0.

Proof of Lemma 2. This follows from a slight modification of
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the proof of (i)=>(iv) in Proposition 2 of the author [23] (see pp.
193-194 in [23]), and hence we omit the details.

Proof of Lemma 3. Given an ε > 0, define

Ea = {x e X: T*u(x) ^ ε} (aeΛ) ,

and write

Γ = {aeΛ: m(Ea) > 0} .

If aeΓ, pick a nonnegative function faeLι(X)f with supp/αc£7α

and HΛHi = 1, and define ga = Tafa. Then we have

ga ^ 0 , (ga, u) ^ ε, and lim sup || ga \\t < oo .

We now prove that there exists an aoeΛ such that aeΓ and
a > a0 implies aeΓ. Assume the contrary, and let μ denote a
weak-star clustar point of the net (ga,aeΓ) in LJJί)*. (Since
limsupJI^JIi < oo, there exists at least one such.) Then, for each
TeΣ and each feLJJί), we have

\<T**μ - μ, f}\ ^ \(μ - ga, Γ*/>l

+ \<9a~μ,f>\,

and

lim \(Tga - ga, f}\ ^ | | / | U l i m | | Γ Γ α - Ta\\ = 0 .

Moreover, since j« is a weak-star cluster point of the net (ga, aeΓ)9

for any δ > 0 and any aeΓ there exists a /36Γ such that β ^ a,

\<μ-9β,T*f)\<3 and | < J E I - Λ , / > | < 3 .

Hence it follows that | (T**μ - μ, /> | < 2δ, and since <5 was arbitrary,
we see that (T**μ - μ, /> = 0. Therefore T**μ = JM for all TeΣ,
and hence <μ, ̂ > = 0, because

0 ^ n(μ, n) = (/i, Σ Γf Λ ^ ( ^ Σ Γf u\ < <χ> .
i = l

But this is a contradiction, since (ga, u} ^ ε for all aeΓ.
The proof is complete.

Proof of Theorem 2. If (Ta, aeΛ) is a weakly left J-ergodic
net, then the implications (i) => (ii) => (iii) and (i)=>(iv) are immediate.
The implication (iii)=>(i) is a direct consequence of Lemma 2. If
(Ta, aeΛ) is a uniformly left J-ergodic net, then the implication
(iv) => (iii) follows from Lemma 3.
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The proof is complete.

The next theorem is a counterpart to Theorems 1 and 2.

THEOREM 3. Suppose \\T\\ ^ 1 for all TeΣ. If (Ta,aeΛ) is
a weakly left Σ-ergodic net, then the following conditions are equi-
valent:

(0) The only geLx(X) such that Tg = g for all TeΣ is 0.
1 i ) There exists a function u e L^X) such that u > 0 a.e. on

X and mίTeΣ \(TΪ)udm = 0.

(ii) There exists a function ueL^X) such that u > 0 a.e. on

X and j([(Taΐ)ud7ii) = 0.

(iii) There exists a function u e L^X) and a sequence (Tn, n^l)
in Σ such that u > 0 a.e. on X and Σ~=i T*u e L^X).

In particular, if (Ta, aeΛ) is a uniformly left Σ-ergodic net,
then the following condition and the above four conditions are still
equivalent:

(iv) There exists a function u e LJ^X) such that u > 0 a.e. on
X and limβ||Γ*w||oo = 0.

Proof. (0) =* (i): As in the proof of (i) => (0) in Theorem 1, for
φ 6 GL (Λ) define a positive linear functional μ on L^X) by the
relation:

Let μ0 denote the maximal (countably additive) measure with 0 ^
μ0 ^ μ. Then, for each TeΣ, T**μ = μ and T**μ0 ̂  μ0. Thus
T**(μ - μQ) ^ μ - μQ. But, since || T** || = || Γ|| ^ 1, T**(μ —μ0) =
μ — μ0 and T**/ ô = /V Therefore g = dμo/dm( e LX{X)) is J-fixed,
and hence g = 0 a.e. on X, by (0). It now follows from Lemma 1
of [18] that there exists a function ueLoo(X) satisfying

u > 0 a.e. on X and (μ, u) = ?>«Tβl, u)) = 0 .

Thus we have infΓei l(TΊ)i6cίm = 0.

(i) => (0): Let g e Lλ(X) be such that Tg = g for all Γ e Σ. Then,
for each TeΣ, T\g\ ^ |flr| and thus T\g\ = |^ | . By this and a
standard approximation argument, we observe that (i) implies

[\g\udm = inf t(Γ|flr|)wZm ^ inf ( (Γl)^m = 0 .

Hence \\g\udm = 0, and thus g = 0 a.e. on JX", since u > a.e. on X.
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The implication (i) => (iii) is a direct consequence of Lemma 2,
and the implications (iii) =* (ii) => (i) and (iv) => (i) are obvious. If
(Ta, ae Λ) is a uniformly left U'-ergodic net, then the implication
(iii) => (iv) follows from Lemma 3.

The proof is complete.

3* Invariant measure for ergodίc semigroups* In this section
we investigate the invariant measure problem for weakly or uniformly
ergodic semigroups Σ — {T}. For this purpose we need the following
decomposition, which is a generalization of Sucheston's [26] obtained
for power bounded positive linear operators on L^X). See also Der-
riennic and Lin [5] and the author [22], [24], [25].

LEMMA 4. Let (Tα, a e Λ) be a weakly right Σ-ergodic net. Then
the space X decomposes into two measurable sets Y and Z such that

( i ) if f eL,(Z), then Tf eL£Z) and TJeLV(Z) for all TeΣ
and all aeΛ, and furthermore

inf || Tf\\1 = 0 = liminf || TJ\\19
TeΣ

(ii) there exists a nonnegative function e e L^X) with supp e —
Y and T*e = e = Tie for all TeΣ and all aeΛ.

In particular, if (Ta, aeΛ) is a strongly right Σ-ergodic net,
then limβ \\TJ\\, = 0 for all feL,{Z).

Proof. It is easy to see that there exists a nonnegative function
eeL«,(X), with T*e = e for all TeΣ, such that 0 ^ ^eLoo(X) and
T*u = u for all TeΣ imply suppucsupp e. Let Y = suppe and
Z = X - Y. Since for every / e L,(X) and every a e Λ, TJ e co Σf,
it follows that Tie = e for all aeΛ. To prove (i), let <?eGL(J)
and choose a nonnegative function u e L^X) so that

</, ^> = 9*<Tβ/, 1» for all / e L,(X) .

Since (Ta, aeΛ) is a weakly right J-ergodic net, it then follows
that T*u = u for every TeΣ. Therefore suppucsuppe=Y, and
hence, for 0 ^ f eL^Z), we have

inf HΓ/IL ^ liminf | |Γα/|L ^ <f, u) = 0 ,
TΣTeΣ

which proves the second part of (i). The first part of (i) is a direct
consequence of (ii).

In particular, if (Ta, aeΛ) is a strongly right J-ergodic net,
then, for each TeΣ and each
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lim sup || ΓJΊIi ^ Una sup (|| TaTf - TJ\l + ||

Henee, by (i), we obtain

lim sup 11TJIL S (lim sup 11 Ta | |)(inf 11 Tf \ \) = 0 .

The proof is complete.

Let us now assume that (Ta, aeΛ) is a weakly J-ergodic net,
and let Y, Z, and e be as in Lemma 4. If TeΣ and aeΛ, define

and ! > / ) - e(TJ) (

Then, since {e/ /eL^Γ)} is a dense subspace of Lt(Y), and since
l|T'(e/)lli ^ Ilβ/IL and imίβ/JIL ^ He/IL for all / e L ^ Γ ) , Γ and Ta

can be regarded as positive linear contraction operators on LX{Y).
Clearly, 2" = {T": Γ e J } is a semigroup. Furthermore, for all / e
LX(Y) and all aeΛ,

T'a(ef)ecδΣ'(ef)

and

weak-limα (T'X - Ta){ef) - 0 - weak-limα ( T O - Γ;)(β/) .

Thus, by an approximation argument, (T'a, aeΛ) is a weakly Σ'-
ergodic net. It is immediate that if (Ta, aeΛ) is strongly J-ergodic,
then (T'a, aeΛ) is strongly 2"-ergodic.

THEOREM 4. Let (Ta, aeΛ) be a weakly Σ-ergodic net. Then
the following conditions are equivalent:

(0) There exists a Σ-fixed f0 e Lt(X) with f0 > 0 a.e. on X.

1i) A e Wl and m(A) > 0 imply j([ Taldm) > 0 .

Proof. By virtue of Theorem 1, it is enough to show that (i)
implies (0).

Assume that (ί) holds. It then follows from an approximation
argument that

<LΓ-lγdm) > 0

for any A e 3ft with AaY and m{A) > 0. By this and Theorem 2
and the fact that e > 0 a.e. on Y, we observe that
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inf ί Taldm ^ inf f Talγdm = inf \ (T'ae)/e dm > 0
aeΛ JA ae A J A aeΛ JA

for any Aeffll with 4 c F and m(A) > 0. (A similar but more
complete vesrion of this argument appeared in the proof of Lemma
1 of Fong [9].) Hence the argument in the proof of (i) => (0) in
Theorem 1 can be applied to infer that there exists a nonnegative
Σ-fϊxeά / O G L ^ X ) , with /0 > 0 a.e. on Y.

Let F = X - supp f0 and let φ e GL (A). Since Taf0 == /0 for every
aeΛ, it follows that

and the weak J-ergodicity of the net (Γα, α e i ) implies that

for every Γ e J . Hence >̂M Taldmj = 0, since Lemma 4 asserts

that m£{\\TlF\\l:TeI} = 0, and since lim supα 11Ta\\ < oo. Conse-
quently we have m(F) — 0, by (i).

This completes the proof.

LEMMA 5. Suppose (Ta, aeΛ) is a uniformly Σ-ergodic net. If
0 <Ξ u 6 Loo(F) satisfies Σ~= 1 T̂ *w e Loo( Y) /or some sequence (T'n, n ̂  1)
iw 2" = {Γ': Γ e Σ}, then lim supα T'a*u = 0 a.e. o^ Y.

Proof. Fix an w ̂  1, and define

JS(n) = [xeY: e(x) ̂  1/n} .

Given an ε > 0, write, for each aeΛ,

Ea(n) = {a 6 JE7(n): T'*u(x) ^ e} .

Then, as in the proof of Lemma 3, we see that there exists an
such that if a ^ a0 then m{Ea(n)) — 0. Hence it follows that

This completes the proof, since Y = (Jn=i -E(̂ )

LEMMA 6. Let (Ta, aeΛ) be a weakly right Σ-ergodic net, and
let Y, Z, and e be as in Lemma 4. Suppose (Sΐf ΎeΓ) is a net of
positive linear operators on L^X) satisfying

(a) lim sup | |S r | | < oo,
(b) for every f e L,(X) and every 7 e Γ, Srf e cδΣf,
(c) for every T e Σ, there corresponds a net (Rr, ΎeΓ) of positive
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linear operators on L^X) with

lim | | β r | | = 0 and SrT - Sr + Rr ^ 0 for all ΎeΓ .
r

Define s = lim supr Sfl. Then 0 ̂  s e L^X), supp s =Y, T*s ^ s for
all TeΣ, and T%s ^ s for all aeΛ.

Proof. It is clear that 0 ̂  seL^X). If TeΣ, then we have

Γ*s = Wlim sup S*l) ^ lim sup (SrT)*l
\ r / r

^ lim sup (Sr*l - R?ϊ) = lim sup S*l = s ,

from which we also have T*s ̂  s for all aeΛ, since Γ β /6coJ/ for
all feL,(X) and all aeΛ. Now, let O^feL^Z). Then, since
</, s> ̂  </, Γ*s> ^ HΓ/IUIβlU for all TeΣ, and since

by Lemma 4, </, s> = 0. This proves s = 0 a.e. on ̂ . On the other
hand, (b) implies S?e = e for all T 6 Γ, hence we have supp e c supp s.

This completes the proof.

THEOREM 5. Suppose (Ta, aeΛ) is a uniformly Σ-ergodic net.
Then the following conditions are equivalent:

(0) There exists a Σ-fixed f0 e LX(X) with /0 > 0 a.e. on X.

1i) A e 3ft and m(A) > 0 imply lim supα i Taldm > 0 .

(ii) A e Wl and m{A) > 0 imply lim supα T*1A =έ 0.

Proof. (0) => (i): Immediate from Theorem 1.
(i) => (ii): Let A 6 3ft satisfy lim supα T£l4 = 0 a.e. on X. Then

we can choose a sequence (an, n ^ 1) in Λί, with αw + 1 ^ an for every
ii, such that

lim (ess sup T*1A) = 0 a.e. on X .

Then, by Fatou's lemma and by Lebesgue's bounded convergence
theorem,

lim sup 1 Taldm <Ξ lim \(ess sup Tt = 0 .

Hence (i) implies m(A) = 0.
(ii) ==> (0): Let 0 ̂  u e L^Y) satisfy Σ~=i T'*u e LJY) for some

sequence (T'n, n ^ 1) in ί ' = { Γ : Γ e J} . Then, by Lemma 5,
limsupαT*u = 0 a.e. on Γ. Since T«*u = (l/e)Γί(e^) for all aeΛ, we
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then observe that lim supα Tt{eu) = 0 a.e. on X. Since e > 0 a.e. on F,
this and (ii) imply u = 0 a.e. on X. Therefore, using Lemma 2, we
see that

inf [ Tldm > 0
TeΣ JA

for any A e9ft with i c 7 and m(A) > 0 (cf. the proof of (i) => (0)
in Theorem 4). Hence, as in the proof of (i) => (0) in Theorem 1, we
can find a nonnegative I'-fixed f0 e L^X), with f0 > 0 a.e. on F. Let
F — X — supp/0. To prove that m(F) = 0, define

s — lim sup T*l .
α

Since limα | |ΓαΓ — Ta\\ - 0 for every Tel*, Lemma 6 can be applied
to (Ta, a € Λ) instead of (S7f ΎeΓ) to infer that supp s —Y (cf. Chacon
and Krengel [1]). It follows that lim supα T%1F — 0 a.e. on X, since
TalF = 0 a.e. on supp/0 and s = 0 a.e. on F - I - supp/0 c I - 7 .
Hence (ii) implies m{F) = 0.

This completes the proof.

4* Examples* In this section we apply the above general results
to explain some special examples. The first two theorems are con-
cerned with the invariant measure problem for a single operator T
and the last two theorems are concerned with the problem for a one-
parameter semigroup Σ — {Tt: 0 < t < °o}.

THEOREM 6. Suppose T is a positive linear operator on
such that

(3) sup
O<A<1

<

Then the following conditions are equivalent:
( 0) There exists an f0 e L,(X) with TfQ = /0 and fQ > 0 a.e. on

X.
( i ) A e 9ft and m(A) > 0 imply

lim inf (1 - λ) x Σ *>*T*nlA =έ 0 .
λ-*l— 0 n = 0

(ii) A 6 3ft α̂ cZ m(A) > 0 imply lim sup^^o (1 — λ) x Σt=oλ>nT*nlA ^ 0.
In particular, i/ | |Γ | | ^ 1, £/i,e?ι ίAe following condition and the

above three conditions are still equivalent:
(iii) A e 9ft and m(A) > 0 imply

oo j I

lim sup (1 — λ) x Σ V*r*"l J > 0 .
2-»l-0 w=0 I loo
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Proof. Write Tι = (l- λ) ΣΓ = 0 λ Γ for 0 < λ < 1. Then, by
(3), we have

limllΓΓ, -2^11 = 0 .
Λ-1-0

Thus {Tλ, 0 < λ < 1) is a uniformly J-ergodic net, with Σ = {Tn: n ^ 0},
and let Y, Z, and e be as in Lemma 4. Then the proof proceeds
as follows.

(0) => (i): By the Radon-Nikodym theorem, we may and do assume
without loss of generality that Π = 1. Then, since

l i ^ \τ*\f\dm = J !/ |dm for all

T* can be extended to a positive linear contraction operator S on
Lλ{X). It is clear that S*/= Tf for all / e L^(X). Since Se = T*β = e,
supp e = Y, and

inf HS^I^IL- inf \\Tnlz\\γ - 0

by Lemma 4, it follows from standard arguments that Y and Z are
the conservative and dissipative parts (cf. [8]) of S, respectively.
Hence, using Chacon-Ornstein's ratio ergodic theorem [2], we see
that for any feLJJί) the limit

lim -ί Σ Γ*7 - lim — Σ S 7

exists a.e. on X.
Let A e 3K with m(A) > 0 be given. Then

= [ T*nlAdm + ί Tnlzdm for all n ^ 0 ,

and by Lemma 4,

inf ( Tnlzdm ^ inf || Γ ^ I L - 0 .

Thus Γ*fel^ ^ / for some k ^ 0 and some 0 ^ / e Loo(X), with supp/ c
Γ and II/ILX). Therefore

^ lim — Σ Γ 7 a.e. on X ,
% 0

and

since <1,1/n Σ?=o

ι T**f) = <1, f)Φθ for all « ^ 0. Hence
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lim (1 - λ) Σ λ Γ l^ = lim -± Σ T*ΊΛ Φ 0
Λ-+1—0 % = 0 n-*oo Ύl ϊ=0

by a well-known theorem of the theory of summability (cf. Zygmund
[28], Theorem (1.33), p. 80), and thus we have proved that (0)
implies (i).

The implications (i) => (ii) => (iii) are immediate. The implication
(ii) => (0) follows from Theorem 5, and if || T\\ ^ 1, then the implication
(iii) => (0) follows from Theorems 1 and 2.

The proof is complete.

For a positive linear operator T on L^X) and a real number
r > — 1 , we denote by σr

n{T), n — 0, 1, , the Cesaro means of order
r of the sequence (Tn, n ^ 0), i.e.,

I Σ
+ n \ *=o
n

The next theorem is a generalization of results due to Foguel
[8] and Derriennic and Lin [5]; Foguel considered the case | |Γ | | ̂  1,
and Derriennic and Lin considered the case supwέ0 l|0"i(Γ)ll < °°

THEOREM 7. Let T be a positive linear operator on Lγ(X) and
r a positive real number. If

(4) sup^ 0 | |σ ;(Γ) | |< oo ,

then the following conditions are equivalent'.
( 0) There exists an f0 e LX{X) with Tf0 = f0 and fϋ > 0 a.e. on

X.
( i ) AeίSR and m(A) > 0 imply lim sup^σr

n(T)*lA Φ 0.
In particular, if | | T | | < ; 1 , then the following condition and

the above two conditions are still equivalent:
(ii) A em and m(A) > 0 imply limsup»^o||α ;(21)*lil||co > 0.

Proof. An elementary computation (cf. [28], Chapter III) shows
that, for any λ > 0,

Tσi(T) - σi(T) = -2^[σi-,\{T) - I] (n ̂  0) .
n + 1

Applying this equation to λ = r + 1, we observe that {σr

n+\T), n^0)
is a uniformly J-ergodic sequence, with Σ = {Tn: n ^ 0}. (This argu-
ment is due to Lloyd. See [15].) Let Y, Z, and e be as in Lemma
4. Then the proof proceeds as follows.

(i) => (0): Let T be the positive linear contraction operator on
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LX(Y) satisfying

T'(ef) = e(Tf) for all feL^Y).

Then we see that

lim || T'σ'n(T') - σ'n(T')\\ = \im—^—\\σl'+\{Tf) - 7|| = 0 .

In fact, if r ^ 1, then this is immediate. If 0 < r < 1, then, writing

+ n^j for λ > - 1 and n ^ 0, we have

T'σl{T') - ') ^ Γ ^ Σ
w + 1 L A +ϊ <=o

Σ I^ ΓΊ < °° , and lim nA;-1 = co
%=0 %-coo

therefore we obtain the desired conclusion. Hence (ar

n(Tf), n ^ 0) is
a uniformly 2"-ergodic sequence, with Σf = {T"%: ̂  ^ 0}. Since

σ:(T')*f = (l/e)σ:(TΠef) for all / e L J Γ ) ,

(i) implies that if Ae3ft, AaY and m(A) > 0, then

lim sup σl (T')*1A m 0 .
n—>oo

Therefore, applying Theorem 2 to 2" and to {σr

n(Tf), n ^ 0), and doing
as in the proof of (ii) ==> (0) in Theorem 5, we observe that (i) implies
the existence of a nonnegative f0 e L1{X)y with Tf0 = f0 and /0 > 0
a.e. on Y.

Let F — X — supp/0 and s — lim sup%_oo σl(T)*l. An elementary
computation shows that there exists a sequence (Rn, n ^ 0) of positive
linear operators on LX(X) such that

Γσ;(Γ) - σl+1(T) + Rn ^ 0 for all n ^ 0 ,

and

Hence it follows from a slight modification of the proof of Lemma
6 that supp 8 = Y, and therefore

lim sup σr

n(T)*lP = 0 a.e. on X ,

since σr

n(T)*lF = 0 a.e. on supp/0 and s = 0 a.e. on .F == X — supp/0;c
X — y. This and (i) imply m{F) — 0, and hence we have proved that
(i) implies (0).
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The implications (0) ==> (i) => (ii) are immediate from Fatou's lemma.
If | |Γ | | ^ 1, then the implication (ii) => (0) follows from Theorem 2,
since (σr

n(T), n ^ 0) is a uniformly J-ergodic sequence, with Σ =
{Tn: n ^ 0}.

The proof is complete.

A one-parameter semigroup Σ = {Tt: 0 < t < ^} (i.e., TtTt, = T.t

for all ί, ί' > 0) of positive linear operators on Lλ(X) is said to
strongly continuous if, for every / e Lλ(X) and every tf > 0,

In the remainder of the paper weshall assume that Σ = {Tt: 0 < t < c°}
is strongly continuous. Then, by an approximation argument (cf.
Ornstein [19], §4), we observe that, given an / e LX{X)} there exists a
scalar function g(t, x) defined on (0, oo) x X, measurable with respect to
the product of Lebesgue measure and m, such that for each ί>0, g(t, x)f

as a function of x, belongs to the equivalence class of Ttf. In the
sequel, g(t, x) will be denoted by Ttf{x). Using Fubini's theorem, we
then see that there exists a measurable set E(f)dX with m{E(f)) — 0,
dependent on / but independent of t, such that if x £ E(f) then the
scalar function t h-> Ttf (x) is Lebesgue integrable on every finite

S b

Ttf(x)dt, as
S a

Ttfdt( ε Li(X)),
a

where \ ΎJ dt denotes the Bochner integral of the vector valued
J a

function 11-» Ttf with respect to Lebesgue measure on the interval
(a, b).

Similarly, if there exist nonnegative real numbers λ0 and a such
that, for all λ > λ0, the vector valued function t H> e~λtTJ is Bochner
integrable on the interval (α, oo), then there exists a measurable set
E\f) c X with m{E\f)) = 0, dependent on / but independent of t9

such that if x g E'(f) then, for all λ > λ0, the scalar function t H->
eΓιtTJ(x) is Lebesgue integrable on the interval (α, oo), and the inte-
gral I e~λtTJ{x)dt, as a function of x, belongs to the equivalence
class o'f

Next, let 21* — {Tf: 0 < t < ^} denote the adjoint semigroup of
Therefore 21* acts on L^X), and (u, Tff) = (Ttu, /> for all u e

all feLooiX), and all ί > 0. For 0 < a < b < co, the integral
for feL^(X) is defined by the relation:

u, \[τΐfdt) = (\[τtudt, f) (u e LAX)) .
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Similarly, if λ > 0 and if, for all ueL^X), the vector valued

function t\r-+e~λtTtu is Bochner integrable on some interval (α, oo),

then the mapping u h-> \ e~λtTtudt is a positive linear operator on

L&X), and hence the integral (V"Γf/eZί(eLoo(X)) for feL^X) is
j a

still defined by the relation:

(u, \y~λtT?fdt} = (§°e-λTtudt, /) (u e L,(X)) .

A slight modification of the proof of Theorem 1.1 of Lin [14] shows
that, given an / 6 L^X), there exists a scalar function g(t, x) defined
on (0, oo) x Xf measurable with respect to the product of Lebesgue
measure and m, and a measurable subset E(f) c X with m(E(f)) = 0,
dependent on / but independent of £, such that if x£E{f) then the
scalar function £ H-> g(t, x) is Lebesgue integrable on every finite

ί b

g(t, x)dt, as a
T*fdt.

a

Similarly, if there exist nonnegative real numbers λ0 and a such
that, for all λ > λ0 and all u e L^X), the vector valued function £ ^
e~λtTtu is Bochner integrable on the interval (a, oo), then there exists
a measurable set E\f) c X with m(E\f)) = 0, dependent on / but
independent of £, such that if x g J5(/) then, for all λ > λ0, the scalar
function t\-+e~~λtg(t, x) is Lebesgue integrable on the interval (α, oo),

S oo

e~λtg(t, x)dt, as a function of &, belongs to the
a Coo

equivalence class of I e~λtT*fdt.

S b poo

g(t, x)dt and I e~λtg(t, x)dt will be denoted by
I Tff(x)dt and 1 e~»Tff(x)dt, respectively.
J α Jα

The next theorem is a generalization of results due to Lin [14]
and the author [24].

THEOREM 8. Let Σ = {Tt: 0 <t < 00} be a strongly continuous
one-parameter semigroup of positive linear operators on Lγ{X) and
r a positive real number. If
(5) sup 111

b> II b
p

b>r

< 00 for all feL,{X) ,

then the following conditions are equivalent:
(0) There exists a Σ-fixed fQ e L^X) with fQ > 0 a.e. on X.

1i) A e 3ft and m(A) > 0 imply lim inf6_ l/bΫT*lA(x)dt =£ 0.

(ii) A e Sft and m(A) > 0 imply lim s u p ^ 1/& ί TflA(x)dt =£ 0.
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In particular, if \\Tt\\ ̂  1 for all t > 0, then the following
condition and the above three conditions are still equivalent:

S b

TflA(x)dt > 0.
r oo

Proof. By the uniform boundedness principle (cf. [6], Corollary
II.3.21, p. 66), we have a constant K such that, for all / e L^X) and
all b > r,

i r&

0 Jr

Define

s(x) = lim sup — Γ T?l(x)dt (xeX) .
b-*oo f) j r

It follows that 0<^seLoo(X) and, by an easy computation, that
T*8 ^ 8 for all t > 0. Thus we can define another nonnegative func-
tion e in Loo(X) by the relation:

e(x) = lim — (& Tfs(x)dt (x e X) .
δ-»oo b J r

It is then clear that Tfe = e for all ί > 0, and if we let Y =
supp e( = supp s) and Z — X — Y, then for any / e Lγ(Z) ,

TJeL^Z) for all t > 0 and lim— Γ
δ-*oo ft J r

TJ dt = 0 .

(Cf. [24].) Using this fact and the continuous version of Chacon-
Ornstein's ratio ergodic theorem (see, for example, Pong and Sucheston
[10]), the implication (0) => (i) follows as in the proof of (0) => (i) in
Theorem 6. The implications (i) ==> (ii) ==> (iii) are obvious, and the
implication (ii) ==> (0) follows as in the proof of (i) => (0) in Theorem
7. If || Γ*|| ^ 1 for all t > 0, then the implication (iii) ==> (0) follows
from Theorems 1 and 2, because (1/(6 — r) I Ttdt, b > r j is a uniformly

J-ergodic net.
The proof is complete.

THEOREM 9. Let Σ — {Tt: 0 < t < °°} be a strongly continuous
one-parameter semigroup of positive linear operators on LX{X) and
r a positive real number. If

(6) sup s:λ β-uTJdt\\ < oo for all

then the following conditions are equivalent:
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(0) There exists a Σ-fixed fQ e L^X) with /0 > 0 a.e. on X.

1i) AeΈl and m(A) > 0 imply lim inf^+0λίV'T?lA(x)dt m 0.

k
(ii) A e Wl and m(A) > 0 imply lim sup^ + 0 λl e~λtTf lA(x)dt Έ£ 0.

Jr

In particular, if H Γ4 | | ^ 1 for all t > 0, then the following
condition and the above three conditions are still equivalent:

(in) A e 2K and m(A) > 0 imply
lim sup >0 .

Proof. Write i? ;/ = λ ^e~λtTtfdt for all λ > 0 and all / e LX(X).

Then Rλ is a positive linear operator on L^X) and sup^>0 ]|iϊ;|| < °°.
Furthemore,

lim || TtRλ - JBJI = 0 for every t > 0 .

Hence the remainder of the proof is now immediate from the
above arguments, and we omit the details.

REMARK. It is easily seen that if r is a positive real number,
then (4) implies (3) and (5) implies (6).
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