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INVARIANT MEASURES FOR ERGODIC
SEMIGROUPS OF OPERATORS

RYOTARO SATO

In this paper the invariant measure problem is investigated for
ergodic semigroups (in the sense of Eberlein) of positive linear operators
on the L,-space of a probability measure space. Various results in
operator ergodic theory are generalized and extended to give a unified
approach to the problem. The main step in this approach is the
following result: There exists a positive linear functional ¢ on the
space B(4) of all bounded real valued functions on a directed set 4
such that

lim inf &(a) = (¢) = lim sup &(a)

for all & e B(4).

Let (X, IX, m) be a probability measure space and let L, (X) =
L, (X, M, m),1 < p < o, be the Banach spaces defined as usual with
respect to (X, M, m). For a set AcI, 1, denotes the indicator
function of A and L,(A4) denotes the Banach space of all L,(X)-
functions that vanish a.e. on X — A, If feL,(X), we define supp
S to be the set of all x in X at which f(x) #0. Relations introduced
below are assumed to hold modulo sets of m-measure zero.

Let ¥ = {T} be a semigroup of positive linear operators on
L(X). A function feL/(X) is called 3-fized if T'f = f for every
TeX. The problem of finding necessary and sufficient conditions
for the existence of a X-fixed f, e L/(X), with f, > 0 a.e. on X, has
been studied by many authors (see, for example, [4], [5], [8], [9],
[11], [12], [13], [14], [17], [18], [21], [22], [23], [24], [25], [27], and
others). In the present paper we intend to investigate the problem
for ergodic semigroups Y in the sense of Eberlein, and generalize
and extend various known results to give a unified approach to the
problem. _

For feL,(X), we denote by coXf the closed convex hull of the
set {Tf:Tel}). 2 is said to be left [resp. right] ergodic if there
exists a net (T,, @ € 4) of positive linear operators on L,(X) satisfying

(@) limsup, || T.|| < oo,

(b) for every feL,(X) and every ac4, T,f eco 3f,

(c) for every TeJX,lim,TT, — T,T = 0 [resp. lim, T, — T, = 0],

where the convergence can be either in the uniform, strong, or weak
operator topology. (Cf. Eberlein [7] and Day [3].) The above net
(T, e 4) is said to be left [resp. right] T-ergodic. If (T, acd) is
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both left and right 3-ergodic, then it is said, simply, to be 3-ergodic.
If 3 has a Y-ergodic net, then 3 is said to be ergodic.

In the next section we investigate the invariant measure problem
for weakly left ergodic semigroups X, by making use of the fact
that if 4 is a directed set, then there exists a positive linear fune-
tional ¢ on the space B(4) of all bounded real valued functions on
A satisfying

lim inf &(@) < @() < lim sup &(«)

for all £e€ B(4). Theorem 1 states that if (T,, ®e€4) is a weakly
left 3-ergodic net, then there exists a 3-fixed f, e L,(X), with f, >0
a.e. on X, if and only if A€ and m(4) > 0 imply

lim inf S Tldm>0.
a A4

Theorem 2, together with Theorem 1, asserts that if Y is a weakly
left ergodic semigroup of positive linear contraction operators on
L,(X), then there exists a XY-fixed f, e L(X), with f, > 0 a.e. on X,
if and only if 0 £ we L. (X) and >3, T}u e L.(X) for some sequence
(T,,n=1)in ¥ imply =0 a.e. on X; in particular, if 3 has a
uniformly left Y-ergodic net (T,, @ € 4), then there exists a 2X-fixed
fie L(X), with f, > 0 a.e. on X, if and only if AeI and m(4) >0
imply lim sup, || T¥1,]l. > 0. Here it should be remarked that Theorems
1 and 2 include results due to Dean and Sucheston [4], Foguel [8],
Lin [14], Neveu [17], [18], and Sachdeva [21], for every (left) amenable
semigroup of uniformly bounded linear operators on L,(X) is uniformly
(left) ergodic (see Day [3]).

In the third section we investigate the problem for weakly or
uniformly ergodic semigroups ¥ and obtain two theorems, one of
which states that if (T,, @€ 4) is a uniformly X-ergodic net, then
there exists a 3-fixed f,e L,(X), with f, > 0 a.e. on X, if and only
if AeI and m(4) > 0 imply lim sup, T 1, = 0, where lim sup, 751,
is defined by

lim sup T}1, = essinf (ess; sup T,’;IA)
a « >a

(cf. Neveu [16], Proposition II.4.1, p. 44).

In the last section we apply these obtained results to explian
some special examples. Among other things, we observe that if T
is a positive linear operator on L,(X) and 7 is a positive real number
such that

ﬁgglloz(T)H < oo,
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where o¢i(T),n =0,1, -+, denote the Cesaro means of order r of
the sequenee (T, n = 0), then there exists an f, € L(X), with Tf, = f,
and f, > 0 a.e. on X, if and only if AeIM and m(4) > 0 imply

lim sup o;(T)*1, £ 0.
This is a generalization of a result due to Derriennic and Lin [5],
who considered only the case sup,s, ||05(T)|| < oo.

2. Invariant measures for left ergodic semigroups. In this
section we investigate the invariant measure problem for weakly
left ergodic semigroups ¥ = {T} of positive linear operators on L,(X).
First of all we shall prove the following lemma, which is fundamental
throughout the paper.

LEMMA 1 (S. Banach). Let 4 be a directed set and B(A) the space
of all bounded real valued functions on A. Then there exists a
positive linear functional @ on B(A) satisfying

(1) lim inf &(@) < (&) < lim sup é(a)
for all &€ B(4).

Proof. For acd, let 6, denote the linear functional on B(A)
defined by 6.(8) = &(a) for all £e B(4). Since ||d,]| =1 for all a€ 4,
the Banach-Alaoglu theorem (see, for example, Rudin [20], p. 66)
shows that there exists a linear functional ¢ on B(4) which is a
weak-star cluster point of the net (0,, @ € 4) in B(4)*, the dual space
of B(4). It is clear that ¢ satisfies (1) for all &< B(4).

For a directed set 4, let GL (4) denote the set of all @€ B(4)*
that satisfy (1) for all £ B(4). Since GL(4) is not empty by the
above lemma, we can define a functional 4 on B(4) by the relation:

(2) 4(6) = sup {p(): p e GL (4)} (§€ B(4)) .

It follows from a slight modification of the proof of Lemma 1
that if 4 is a countable directed set, then

4(8) = lim sup, &(@) for all £e B(4).

From now on let us always assume that ¥ = {T'} is a fixed semi-
group of positive linear operators on L,(X). The boundedness of X
is not assumed, unless the contrary is explicitly specified.

THEOREM 1. If (T,, e A) is a weakly left Z-ergodic met, then
the following conditions are equivalent:
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(0) There exests a 3-fixed fye L(X) with f, > 0a.e. on X.
(i) AeM and m(4) > 0 imply lim inf, S T.,ldm > 0.
A

Proof. Choose a BSe4 and a constant K such that
1T, =K forall az=p5.

Then the proof proceeds as follows.
(0)=(i): For each positive integer =, define

h,(®) = min {f(z), n} (@xeX).
Then lim,_. ||f, — k,]l, =0, and since f, >0 a.e. on X, it follows
that, for any 4eM with m(4) > 0,
(0<) S fdm = S T,f,dm = S Th.dm + S Tf, — h)dm ,
A4 A A4 A4
and that

lim (sug) SATa(fo - h,,)dm) < lim K|/, — R, = 0.

n—oo \ a2

Therefore, for a sufficiently large », we have

'nS Taldng T,,h%dng fidm — K| fy = hy|l, > 0
A A A

for all @« = B, and hence lim inf, \ T,1dm > 0.

(1) = (0): Let o e GL (4), and ﬁeﬁne a positive linear functional
¢ on L.(X) by the relation:

U ) =o(TA, ) (feLo(X)),

where (T,1, f>= S(Tal)fdm. Since, for each T € X and each f € L. (X)*

T, f) =<, TS = p((Tal, T*f))
=TT, ) = p(Tel, ) =<, f)

it follows that T**u = ¢ for all TeX. Let ¢, denote the maximal
(countably additive) measure, with 0 < p¢, < ¢ (cf. Neveu [18], Lemma
1), and let g = dy/dm( e L(X)). It then follows that Tg < g for all
TeZ, and thus if we define another linear functional \ on L.(X) by
the relation:

N ) = o((Tag, ) (f e La(X)),

then N is a (countably additive) measure absolutely continuous with
respect to m, and T**\ =\ for all Te Z.
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To see that \ is equivalent to m, we note that (i) implies p(4) > 0
for any A eI with m(A) > 0. Hence it follows from Lemma 1 of
[18] that x, is equivalent to m, and therefore g > 0 a.e. on X. Putt-
ing, for each positive integer n, g,(x) = min {1, ng(x)} (x € X), we then
obtain lim, .. ||1 — g,], = 0. Let AeMM with m(4) >0 be given, and
choose an ¢ > 0 and an @,€4 so that @, = 8 and

S Tldm>¢ forall az=a,.
A4
Then, for a sufficiently large n, we have

nS T,gdm = S T.g.dm > ¢ — K||1 — g, ||, > 0
A4 4

for all @« = «,, and therefore lim infag T.9dm > 0. This proves that
A

A\ is equivalent to m.
The proof is complete.

THEOREM 2. Suppose ||T|| <1 for all Teld. If (T,acd) is
o weakly left X-ergodic met, then the following conditions are
equivalent:

(i) AeM and m(4) > 0 imply infMS Tldm > 0.
4

(i) AeM and m(A) >0 imply A(LT,,,ldm) > 0.

(ili) 0=sueLl,.(X) and Yo  TrueL.(X) for some sequence
T,n=1) in ¥ imply w =0 a.e. on X.

In particular, if (T, € d) is a uniformly left Z-ergodic net,
then the following condition and the above three conditions are still
equivalent:

(iv) AeM and m(4) > 0 imply lim sup, ||T*1,||. > 0.
For the proof of this theorem we need the next two lemmas.
LEMMA 2. Suppose ||T|| <1 for all TeX. If 0=<ueL,(X)

satisfies inf {(T1,u): Te€X} =0, then there exists a mnonnegative
function b in L. (X) and o sequence (T,,n = 1) in X such that

supp kh = supp u and >,o., T h e L(X).
LemMMA 3. Let (T., a€d) be a uniformly left X-ergodic net. If
0 £ ue L (X) satisfies Sy THu € L (X) for some sequence (T,, n=1)

in X, then lim, || T*u|l. = 0.

Proof of Lemma 2. This follows from a slight modification of
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the proof of (i) = (iv) in Proposition 2 of the author [23] (see pp.
193-194 in [23]), and hence we omit the details.

Proof of Lemma 3. Given an ¢ > 0, define
E,={xzecX:T}wx) =} (xed),
and write
I'={aed: m(E,) > 0}.

If ael’, pick a nonnegative function f,eL,(X), with supp /., C E,
and ||f,|l, =1, and define g, = T,f,. Then we have

9.=0, {(gayuy = €, and limsup|/g.ll, < .
ael

We now prove that there exists an @,€4 such that ¢e" and
a > a, implies acl’. Assume the contrary, and let g denote a
weak-star clustar point of the net (g,,acl’) in L. (X)*. (Since
lim sup, || .||, < o, there exists at least one such.) Then, for each
TeZX and each feL.(X), we have

KT e =, Y1 = Kt = oo T*F)| + 1T — 9o )|
+I<ga_#,f>| ’

and

lim [<Tg, = g, £ = ||f |l im [|TT, — T.]| = 0.

Moreover, since ¢ is a weak-star cluster point of the net (g,, ® € ),
for any 6 > 0 and any a <" there exists a S¢c/" such that f = «,

K¢t — g5 T*FY1 <8 and [ (¢t — gp )] <.

Hence it follows that |(T**p — u, f)| < 28, and since 6 was arbitrary,
we see that (T**p¢ — y, f> = 0. Therefore T**p¢ = ¢ for all TeZ,
and hence <{g¢, u) = 0, because

0= ndp, uy =<y,§_lT2‘u>§<p,ng§u>< oo,

But this is a contradiction, since {g,, uy = ¢ for all acI.
The proof is complete.

Proof of Theorem 2. If (T., acd) is a weakly left S-ergodic
net, then the implications (i)= (ii)=(iii) and (i)=(iv) are immediate.
The implication (iii) = (i) is a direct consequence of Lemma 2. If
(T, ac4) is a uniformly left X-ergodic net, then the implication
(iv) = (iii) follows from Lemma 3.
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The proof is complete.

The next theorem is a counterpart to Theorems 1 and 2.

THEOREM 3. Suppose ||T|| <1 for all TeX. If (T,,aed) is
o weakly left X-ergodic met, then the following conditions are equi-
valent:

(0) The only ge L(X) such that Tg = g for all TeX 4s 0.

(1) There exists a function u € L. (X) such that w >0 a.e. on
X and infp.s S(Tl)udm = 0.

(ii) There exists a function w e L. (X) such that w > 0 a.e. on
X and A(S(Tal)udm) = 0.

(iii) There exists a function u € L.(X) and a sequence (T,, n=1)
in 3 such that w > 0 a.e. on X and D5, TFu e L (X).

In particular, if (T, acd) is a uniformly left X-ergodic mnet,
then the following condition and the above four conditions are still

equivalent:
(iv) There exists a function u € L. (X) such that uw >0 a.e. on

X and lim, ||T¥u|l. = 0.

Proof. (0)=(i): As in the proof of (i)=(0) in Theorem 1, for
@ €GL (4) define a positive linear functional g on L.(X) by the
relation:

)= o(T.d, ) (feLuX)) .

Let ¢, denote the maximal (countably additive) measure with 0 <
Yo < tt. Then, for each T'el, T**u = p and T**y, < 4, Thus
T**( — ) = £ — t4  But, since ||[T**|| =|[|T|| <1, T** (e — ) =
p— tt, and T**p, = p,. Therefore g = dyp,/dm(e L,(X)) is 3-fixed,
and hence g = 0 a.e. on X, by (0). It now follows from Lemma 1
of [18] that there exists a function u € L. (X) satisfying

w>0ae on X and (¢ u)=KT1, u))=0,

Thus we have inf;.s S(Tl)udm = 0.

(i) = (0): Let ge L,(X) be such that Tg = g for all T € 3. Then,
for each TeZ, T|g| = |g| and thus T|g| = |g|. By this and a
standard approximation argument, we observe that (i) implies

S]g[udm = inf S(T]g[)udm < inf S(Tl)udm —0.

Hence glgludm =0, and thus g = 0 a.e. on X, since u > a.e. on X.
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The implication (i) = (iii) is a direct consequence of Lemma 2,
and the implications (iii) = (ii) = (i) and (iv) = (i) are obvious. If
(T,,xcd) is a uniformly left 3-ergodic net, then the implication
(iii) = (iv) follows from Lemma 3.

The proof is complete.

3. Invariant measure for ergodic semigroups. In this section
we investigate the invariant measure problem for weakly or uniformly
ergodic semigroups 3 = {T}. For this purpose we need the following
decomposition, which is a generalization of Sucheston’s [26] obtained
for power bounded positive linear operators on L,(X). See also Der-
riennic and Lin [5] and the author [22], [24], [25].

LEMMA 4. Let (T,, e € 4) be a weakly right X-ergodic net. Then
the space X decomposes into two measurable sets Y and Z such that

(i) ¢f feL(Z), then TfeL(Z) and T.f € L(Z) for all TeX
and all acd, and furthermore

inf [| T[], = 0 = lim inf [| T,.f ], ,
Tel a

(i) there exists a nonnegative function e € L (X) with supp e =
Y and T*e = e = Tke for all TeS and all ae .

In particular, if (T,, x€ ) is a strongly right Z-ergodic mnet,
then lim, || T.f|l, = 0 for all feL(Z).

Proof. It is easy to see that there exists a nonnegative function
ec L. (X), with T*%¢ = ¢ for all T'€Z¥, such that 0 < u € L.(X) and
T*uw = u for all TeZX imply suppu Csupp e. Let Y = suppe and
Z =X -Y. Since for every feL,(X) and every ae4, T.f €coZf,
it follows that T¥e = e for all @eAd. To prove (i), let p e GL (4)
and choose a nonnegative function u € L.(X) so that

(fyup = p(KTof, 1) for all felL/(X).

Since (T, «c€ 1) is a weakly right X-ergodic net, it then follows
that T*u = u for every T €3. Therefore suppu Csuppe =Y, and
hence, for 0 < f e L(Z), we have

inf Tfl, = liminf [|[T.f|l, = {fiu) =0,
Te a
which proves the second part of (i). The first part of (i) is a direct
consequence of (ii).

In particular, if (7., ac4) is a strongly right Y-ergodic net,
then, for each T €Y and each f e L,(Z),
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lim sup || T.fl, = lim sup (|| TS — Tof |l + [| TT£1L)

= (tim sup || 7. )1 7S 1, -
Hence, by (i), we obtain
lim sup | 7./ ||, £ (im sup || T, |)(int | T£.) = 0.
The proof is complete.

Let us now assume that (T,, ac4) is a weakly 3-ergodic net,
and let Y, Z, and ¢ be as in Lemma 4. If TeX and ac4, define

T'(ef) = e(Tf) and Tief) = e(T.f) (feL(Y)).

Then, since {ef: feL,(Y)} is a dense subspace of L,(Y), and since
T'(e)l, < llef ]l and [|To(eN|. = llef ], for all feL(Y), T and T,
can be regarded as positive linear contraction operators on L,(Y).
Clearly, 3' = {T": T3} is a semigroup. Furthermore, for all fe
L(Y) and all «e 4,

T(ef) eco 3'(ef)
and
weak-lim, (T.T" — T.)(ef) = 0 = weak-lim, (T'T, — T.)(ef) .

Thus, by an approximation argument, (7., @€ 4) is a weakly 3'-
ergodic net. It is immediate that if (T,, @ € 4) is strongly J-ergodie,
then (T, @ € 4) is strongly 3'-ergodic.

THEOREM 4. Let (T,, acd) be a weakly X-ergodic met. Then
the following conditions are equivalent:
(0) There exists o X-fized f,e L(X) with f, > 0 a.e. on X.

(i) AeM and m(A) > 0 imply A(g Taldm> >0.
A

Proof. By virtue of Theorem 1, it is enough to show that (i)
implies (0).

Assume that (i) holds. It then follows from an approximation
argument that

A(LT;lydm> >0

for any Ae I with AcCY and m(4) > 0. By this and Theorem 2
and the fact that ¢ > 0 a.e. on Y, we observe that
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inf | T 1dm = inf§ T1,dm = infg (T'¢)je dm > 0
A aed JA

ae SA. ae.d

for any AeI with ACY and m(4) > 0. (A similar but more
complete vesrion of this argument appeared in the proof of Lemma
1 of Fong [9].) Hence the argument in the proof of (i)= (0) in
Theorem 1 can be applied to infer that there exists a nonnegative
J-fixed f,e L(X), with f, > 0 a.e. on Y,

Let F'= X — supp f, and let ¢ € GL (4). Since T, f, = f, for every
aed, it follows that

| gz><gFTa1dm> < @(STalpdm> ,
and the weak Y-ergodicity of the net (T,, a € 4) implies that

@(gTalpdm) = c;)(STaTlem)

for every T e€X. Hence CPG Taldm) = 0, since Lemma 4 asserts
F /
that inf {||T1;||: T3} =0, and since lim sup, ||T.|| < . Conse-
quently we have m(F') = 0, by (i).
This completes the proof.

LEMMA 5. Suppose (T,, acd) is a uniformly Z-ergodic net. If
0 < ue L. (Y) satisfies S, T'*u € L (Y) for some sequence (T,, n=1)
in X' ={T": T €2}, then limsup, T.*u = 0 a.e. on Y.
Proof. Fix an n =1, and define
E(n) = {xeY:e(x) = 1/n}.
Given an ¢ > 0, write, for each ae 4,
E. (n) = {x € E(n): TXu(x) = €} .

Then, as in the proof of Lemma 3, we see that there exists an o, €4
such that if @ = @, then m(E,(n)) = 0. Hence it follows that

lim, [[(Tu)lgmlle = 0.
This completes the proof, since Y = Us_, E(n) .

LEMMA 6. Let (T,, «c ) be a weakly right Z-ergodic mnet, and
let Y,Z, and e be as in Lemma 4. Suppose (S;, Ve€I') is & net of
positive linear operators on L,(X) satisfying

(@ limsup [[S;| < o=,

(b) for every feL/(X) and every Y€, S.f €colf,

(e) for every T e 3, there corresponds & net (R,,Y € I') of positive
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linear operators on L(X) with

lim||R,||=0 and S;T—S,+ R, =0 forall vel.
T

Define s = lim sup, Sf1. Then 0 < s€ L.(X), supps =Y, T*s = s for
aoll TeX, and T*s = s for all ac .

Proof. It is clear that 0 < se L.(X). If TeZ, then we have

T*s = T*(limrsup S;‘l) = lim sup (S,7)*1
= lim sup (S}1 — R}1) = limsup Sf1 = s,
r 7

from which we also have T*s = s for all @ e 4, since T,f €coXf for
all feL/(X) and all a¢c4. Now, let 0 < feL,(Z). Then, since
{f,8) =S, T*s) < ||Tf|llls]l» for all T e€ZX, and since

inf (|| Tf|l: Te3} =0

by Lemma 4, {f,s) = 0. This proves s = 0 a.e. on Z. On the other
hand, (b) implies S}e = e for all Y€ ", hence we have supp ¢ C supp s.
This completes the proof.

THEOREM 5. Suppose (T, ac ) is a uniformly Z-ergodic met.
Then the following conditions are equivalent:

(0) There exists a X-fivzed f,€ L(X) with f, >0 a.e. on X.

(i) AeT and m(A) >0 imply lim supag T 1dmm > 0 .

(ii) AeT and m(A) >0 imply lim sup, 11, % 0.

Proof. (0)= (i): Immediate from Theorem 1.

(i) = (ii): Let AecI satisfy lim sup, T*1, = 0 a.e. on X. Then
we can choose a sequence («,, n = 1) in 4, with «,,, = «, for every
n, such that

lim (ess sup T:1A> =0 a.e. on X.

N—00 azan

Then, by Fatou’s lemma and by Lebesgue’s bounded convergence
theorem,

lim supg T1dm < lim S(ess sup T2, )dm = 0 .
a 4 N—>00 agay,
Hence (i) implies m(4) = 0.
(ii) = (0): Let 0 < u e L (Y) satisfy o, T*u € L.(Y) for some
sequence (7, n =1) in ' ={T':Te€Z3}. Then, by Lemma 5,
lim sup, T"*u = 0 a.e. on Y. Since T.*u = (1/e)T}(eu) for all @€ 4, we
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then observe that lim sup, T(eu) =0 a.e. on X. Sincee¢>0a.e.onY,
this and (ii) imply » = 0 a.e. on X. Therefore, using Lemma 2, we
see that

mfgzudm¢>o
Tel J4a

for any AeM with AcY and m(4) > 0 (cf. the proof of (i) = (0)
in Theorem 4). Hence, as in the proof of (i) = (0) in Theorem 1, we
can find a nonnegative 3-fixed f, € L,(X), with f, >0 a.e.onY. Let
F =X —suppf,. To prove that m(F) = 0, define

s =limsup T#1.

Since lim, ||T,T — T,|| = 0 for every T €3, Lemma 6 can be applied
to (T,, @€ A) instead of (S,, v eI') to infer that supp s =Y (cf. Chacon
and Krengel [1]). It follows that lim sup, T%1, = 0 a.e. on X, since
T:1, =0 a.e. on suppf, and s =0 a.e. on FF = X —suppf,Cc X —Y.
Hence (ii) implies m(F') = 0.

This completes the proof.

4. Examples. In this section we apply the above general results
to explain some special examples. The first two theorems are con-
cerned with the invariant measure problem for a single operator T
and the last two theorems are concerned with the problem for a one-
parameter semigroup 3 = {T,: 0 < ¢t < oo},

THEOREM 6. Suppose T is a positive linear operator on L. (X)
such that

< oo,

L —N) S AT
n=0

(3) sup
0<2<1
Then the following conditions are equivalent:
(0) There exists an f,€ L(X) with Tf, = f, and f, >0 a.e. on
X.
(i) AeM and m(4) > 0 imply

liminf (1 — \) x SIAT**1, = 0.
A—1—0 n=0
(ii) AeMand m(A)>0imply limsup,.,_,(1—N) X S A"T*"1, 0.
In particular, if ||T|| < 1, then the following condition and the
above three conditions are still equivalent:
(iii)) AeM and m(4) > 0 imply

hmwﬂmeoxixT”LH>0.
n=0 o

2-1-0
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Proof. Write T, = (1 — N) 32 \*T" for 0 < » < 1. Then, by
(8), we have

lim |77, — 7| = 0.

Thus (T, 0 < M < 1) is a uniformly Y-ergodic net, with 3 = {T™: n = 0},
and let Y, Z, and ¢ be as in Lemma 4. Then the proof proceeds
as follows.

(0) = (i): By the Radon-Nikodym theorem, we may and do assume
without loss of generality that T1 = 1. Then, since

(T f 1= (T Fldm = |If1dm for all feLu(X),

T* can be extended to a positive linear contraction operator S on
L(X). Itis clear that S*f= Tf for all f € L.(X). Since Se=T*¢=e,
suppe =Y, and

inf |81, |, = inf [[T"1,[, = 0

n20

by Lemma 4, it follows from standard arguments that Y and Z are
the conservative and dissipative parts (cf. [8]) of S, respectively.
Hence, using Chacon-Ornstein’s ratio ergodic theorem [2], we see
that for any f € L.(X) the limit

lim LS o f = lim L S 87

n—o0 N =1 n—-00 Y, =0

exists a.e. on X.
Let AeIN with m(A) > 0 be given. Then

m(4) = g T*"1.dm + g T"1,dm for all » =0,
Y A
and by Lemma 4,
infg T*1,dm < inf || T*1, |, = 0 .
A n20

n20

Thus T**1, = f for some k=0 and some 0 < f € L.(X), with supp f C
Y and || f|]. > 0. Therefore

lim L "i]lT*“’lA = lim—l— nz_]lT*ff a.e. on X,

n—oo P, t=0 n—-o Y, 2=0
and

im LS 7rr 20,

n—oo Y, 1=0

since (1, 1/n 32 T*f> = (1, f) # 0 for all » = 0. Hence
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h{no(l —\) Z, A T*"1, = lim — - Z,OT*‘I Zz0

by a well-known theorem of the theory of summability (cf. Zygmund
[28], Theorem (1.383), p. 80), and thus we have proved that (0)
implies (i).

The implications (i) = (ii) = (iii) are immediate. The implication
(ii) = (0) follows from Theorem 5, and if ||T'|| < 1, then the implication
(iii) = (0) follows from Theorems 1 and 2.

The proof is complete.

For a positive linear operator T on L,(X) and a real number
r > —1, we denote by o,(T),n =0, 1, ---, the Cesaro means of order
7 of the sequence (T, n = 0), i.e.,
('r +4—1
7

o (T 3
(T) = (’7‘ + n ) z=;>
)
The next theorem is a generalization of results due to Foguel

[8] and Derriennic and Lin [5]; Foguel considered the case ||T|| <1,
and Derriennic and Lin considered the case sup,s,||o:(T)|| < ce.

.

)T"_" (nz=0).

THEOREM 7. Let T be a positive linear operator on L(X) and
r a positive real number. If

(4) SUD,zo || WD) || < oo,

then the following conditions are equivalent:

(0) There exists an f,€ L(X) with Tf, = f, and f, >0 a.e. on
X.

(i) AeM and m(A) > 0 imply lim sup,_.. o,(T)*1, # 0.

In particular, if |T|| £ 1, then the following condition and
the above two conditions are still equivalent:

(ii) AeM and m(4) > 0 tmply lim sup, .. [|7(T)*1,|l. > O.

Proof. An elementary computation (cf. [28], Chapter III) shows
that, for any x > 0,

To)(T) — 0)(T) = ——[o3(T) — I] (v =0).
n+1
Applying this equation to » = » + 1, we observe that (¢;*(T), n = 0)
is a uniformly 3-ergodic sequence, with ¥ = {T™: » = 0}. (This argu-
ment is due to Lloyd. See [15].) Let Y, Z, and e¢ be as in Lemma
4. Then the proof proceeds as follows.
(i) = (0): Let T’ be the positive linear contraction operator on
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L(Y) satisfying
T'(ef) = e(Tf) for all feL(Y).

Then we see that

lim || T'03(T") — oW(T") || = lim ——|g734(T") — I|| = 0.
B—r00 n—o N + l

In fact, if » = 1, then this is immediate. If 0 < 2 < 1, then, writing
Aib:(?v—ql%—n) for » > —1 and » = 0, we have

n+1
T'o(T") — oy(T") = —- [ 1 AT — I] ,
() () n+ 1L Ar7 ;’

SUJA? < oo, and limndl™ = oo ;

n=0 n—r00
therefore we obtain the desired conclusion. Hence (03(1"), n = 0) is
a uniformly 3’-ergodic sequence, with 3’ = {T"": n = 0}. Since

o (T)f = (e)or(T)*(ef) for all feL.(Y),
(i) implies that if 4eIM, ACY and m(4) > 0, then
lim sup o7, (T")*1, = 0 .

Therefore, applying Theorem 2 to 3’ and to (¢3(T"), n = 0), and doing
as in the proof of (ii) = (0) in Theorem 5, we observe that (i) implies
the existence of a nonnegative f,e L,(X), with Tf, = f, and f, >0
a.e. on Y.

Let FF= X — supp f, and s = lim sup,_.. 65(T)*1. An elementary
computation shows that there exists a sequence (R,, n = 0) of positive
linear operators on L,(X) such that

Toy(T) -0, (TY+ R, =0 forall =0,
and
lim||R,||=0.

Hence it follows from a slight modification of the proof of Lemma
6 that supps =Y, and therefore

lim sup ¢(T)*1; =0 a.e. on X,

N~—+0

since 0,(T)*1, = 0 a.e. on supp f, and s = 0 a.e. on F = X — supp fiC
X —Y. This and (i) imply m(F') = 0, and hence we have proved that
(i) implies (0).
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The implications (0) = (i) = (ii) are immediate from Fatou’s lemma.
If ||T]| £1, then the implication (ii) = (0) follows from Theorem 2,
since (05(T), » = 0) is a uniformly X-ergodic sequence, with 3 =
{T*: n = 0}.

The proof is complete.

A one-parameter semigroup Y = {T,:0 <t < o} (le.,, T\T,, = Ty,
for all ¢, ¢’ > 0) of positive linear operators on L,(X) is said to be
strongly continuous if, for every f e L /(X) and every ¢’ > 0,

lin} Hth - Tz'le =0.

In the remainder of the paper weshall assume that 3 = {T,: 0 <t < oo}
is strongly continuous. Then, by an approximation argument (cf.
Ornstein [19], §4), we observe that, given an f € L,(X), there exists a
scalar function g(¢, x) defined on (0, ==) x X, measurable with respect to
the product of Lebesgue measure and m, such that for each t>0, g(¢, %),
as a function of z, belongs to the equivalence class of T,f. In the
sequel, g(¢, ) will be denoted by T,f(z). Using Fubini’s theorem, we
then see that there exists a measurable set E(f)C X with m(E(f)) =0,
dependent on f but independent of ¢, such that if x¢ FE(f) then the
scalar function ¢— T,.f(x) is Lebesgue integrable on every finite

interval (e, b), with 0 < @ < b < <, and the integral thf(m)dt, as
b a

a functiczn of z, belongs to the equivalence class of S T.fdt( e L(X)),

where S T.f dt denotes the Bochner integral of the vector valued

functionat — T.f with respect to Lebesgue measure on the interval
(@, b).

Similarly, if there exist nonnegative real numbers ), and ¢ such
that, for all » > \,, the vector valued function ¢+ ¢ #T',f is Bochner
integrable on the interval (a, =), then there exists a measurable set
E'(f) c X with m(E'(f)) = 0, dependent on f but independent of ¢,
such that if x¢ E’(f) then, for all A > ), the scalar function ¢+
e *T,f(x) is Lebesgue integrable on the interval (e, ), and the inte-

gral re‘“Tt f(x)dt, as a function of =, belongs to the equivalence
class of S e T, fdt(e L(X)).
Next, let 3* = {TF:0 < t < o} denote the adjoint semigroup of

Y. Therefore 3* acts on L..(X), and {u, T} f> = (T, ) forall u €
Lbl(X)’ all feL.(X), and all £ > 0. For 0 < a < b < oo, the integral

S Tyfdt(e L.(X)) for feL.(X) is defined by the relation:

<u, SZT;“fdt> - <g:Ttudt, f> (e L(X)) .
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Similarly, if » > 0 and if, for all » e L,(X), the vector valued
function ¢+ e *Tu is Bochner integrable on some interval (a, «),

then the mapping u — Swe‘“Ttudt is a positive linear operator on
L/(X), and hence the intzegral S e Tk fdt(e L.(X)) for feL,(X) is
still defined by the relation: ’

<u, Sje““T?‘fdt> - <S:’e-mudt, f> (u e L(X)) .

A slight modification of the proof of Theorem 1.1 of Lin [14] shows
that, given an f € L.(X), there exists a scalar function g(t, x) defined
on (0, =) x X, measurable with respect to the product of Lebesgue
measure and m, and a measurable subset E(f) < X with m(E(f)) =0,
dependent on f but independent of ¢, such that if z¢ E(f) then the
scalar function ¢+ g (¢, x) is Lebesgue integrable on every finite
interval (@, b), with 0 < a < b < oo, and the integralb ibg(t, x)dt, as a
function of z, belongs to the equivalence class of g T?‘fdt.

Similarly, if there exist nonnegative real numbgrs X, and a such
that, for all » > X, and all u e L,(X), the vector valued function ¢ —
¢ *Tw is Bochner integrable on the interval (a, =), then there exists
a measurable set E'(f) c X with m(&'(f)) = 0, dependent on f but
independent of ¢, such that if x¢ F(f) then, for all A > \,, the scalar
function ¢ e *g(t, ) is Lebesgue integrable on the interval (a, o),

®

and the integral S e *g(t, x)dt, as a function of z, belongs to the
equivalence class of S e Tk fdt.

\ In the sequei, S:g(t, x)dt and re‘“g(t, x)dt will be denoted by
g *f(x)dt and S e “T¥f(x)dt, respectively.

The next theforem is a generalization of results due to Lin [14]
and the author [24].

THEOREM 8. Let ¥ = {T,:0 <t < «} be a strongly continuous
one-parameter semigroup of positive limear operators on L(X) and
r o positive real number. If

(5) sup %SiT’fdtH1< o for all feL(X),

b>r
then the following conditions are equivalent:
(0) There exists a X-fived f,€ L(X) with f, >0 a.e. on X.
b
(i) AeMM and m(4) >0 imply liminf, ., 1/bS TF1,(x)dt = 0.

r
b

(ii) AeM and m(4) > 0 imply lim sup,-.. 1/b S TF1,(x)dt = 0.
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In particular, of ||T:|| =1 for all t >0, then the following
condition and the above three conditions are still equivalent:

(i) AeM and m(A) > 0 imply lim sup,_... 1/b§bT;"1A(x)dtll > 0.

Proof. By the uniform boundedness principle (cf. [6], Corollary
11.3.21, p. 66), we have a constant K such that, for all f € L,(X) and
all b > »,

H% Sb T,fdt”l < K|fl.

Define

s(x) = lirrbx sup %— gb THl(x)dt (xeX).

It follows that 0 < seL.(X) and, by an easy computation, that
T}s = s for all ¢ > 0. Thus we can define another nonnegative func-
tion e in L. (X) by the relation:

(@) = lim % S" Trs@)dt (veX).

It is then clear that Tfe=-¢ for all £t >0, and if we let Y =
supp e(=supps) and Z = X — Y, then for any feL,(Z),

b

T.f

dt=0.
1

r

T.f € L(Z) for all t > 0 and 1bim_11)-§

(Cf. [24].) Using this fact and the continuous version of Chacon-
Ornstein’s ratio ergodic theorem (see, for example, Fong and Sucheston
[10]), the implication (0) = (i) follows as in the proof of (0)= (i) in
Theorem 6. The implications (i) = (ii) = (iii) are obvious, and the
implication (ii) = (0) follows as in the proof of (i) = (0) in Theorem
7. If ||T,]| £1 for all ¢ > 0, then the imbplication (iii) = (0) follows
from Theorems 1 and 2, because <1/(b —7) § T.dt, b> r) is a uniformly

Y-ergodic net.
The proof is complete.

THEOREM 9. Let X ={T,:0 <t < =} be a strongly continuous
one-parameter semigroup of positive linear operators on L(X) and
r a positive real number. If

(6) sup xre‘“thdt“ < oo for all feL(X),

then the following conditions are equivalent:
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(0) There exists a 3-fized f,€ L(X) with f, >0 a.e. on X.
(i) AeM and m(4) > 0 imply lim infzad,ohs e T, (x)dt = 0.

(i) Ae and m(A) > 0 imply lim sup,.., xre‘“T;*lA(x)dt = 0.

In particular, +f ||T,|| <1 for all t >0, then the following
condition and the above three conditions are still equivalent:
(iii) AeM and m(4) > 0 imply

lim sup Hx gje'“Tz*lA(x)dth >0.

A—+0

Proof. Write R,f = \ Swe‘“thdt for all A > 0 and all f € L(X).

Then R, is a positive linear z)perator on L,(X) and sup;s, || R;|| < <°.
Furthemore,

%im |T.R, — R;|| =0 for every ¢>0.
—+0

Hence the remainder of the proof is now immediate from the
above arguments, and we omit the details.

REMARK. It is easily seen that if » is a positive real number,
then (4) implies (3) and (5) implies (6).
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