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MULTIPLICATION ALTERATION AND RELATED
RIGIDITY PROPERTIES OF ALGEBRAS

DAVE RIFFELMACHER

Given an algebra C over a commutative ring k and an
element (called a C-two-cocycle) σ = 2* α* ® δ; ® d in C ®&
C ®A; C satisfying certain relations, Sweedler defined a new
multiplication * on C by x*y = S< aiXhyd for all #, 2/ in C
and denoted C with this new multiplication by Q7. This
paper studies three rigidity properties which arise by asking
whether:

( i ) Cσ ~ C as algebras;
(ii) a certain functor from the category of C-bimodules

to the category of C^-bimodules is an equivalence;
(iii) a certain functor from the category of algebras

over C to the category of algebras over Cσ is an equivalence.
For certain algebras over a field k (including finite dimen-
sional algebras possessing a Wedderburn factor), these rigidi-
ty properties are shown to be equivalent to (respectively):
(i) all ^-separable subalgebras B of C are commutative and
for a separability idempotent Σ% %i®Vi of B7 {c e C | Σ* %icyi=θ}
is an ideal with square {0}; (ii) all /^-separable subalgebras of
C are central; (iii) k is the only ^-separable subalgebra of C.

We recall Sweedler's basic definitions [7] and determine some
elementary properties of multiplication alteration in §§1 and 2. The
behavior of an algebra under alteration by Waterhouse's C-two-
cocycle σe = e ® l + l(8)e — (e(x) 1)(1 (x) e) associated with a fc-separa-
ble subalgebra B of C having separability idempotent e is studied
in §3.

Section 4 introduces the notion of dominance: the ά-algebra C
is said to dominate the fc-algebra D (written C > D) if there is a
C-two-cocycle σ with D cz C°. C is called rigid if C > D implies
D cz C. Dominance is a partial order on the class of ά-algebras. In
the course of proving this an alternate characterization of a C-two-
cocycle σ in terms of the existence of a certain functor Fσ: A(C)~*A(Cσ)
is given. (For any Λ-algebra Z), A(D) is the category of ά-algebras
over D.) We provide a dominance description of the central simple
algebras over a field k as the "highly nonrigid" algebras and charact-
erize those algebras over a perfect field k with nilpotent Jacobson
radical J(C) and k-dirn C/J(C) finite which are rigid. The main step
in our study of rigidity is a theorem which states that if the kernel
of an idempotent algebra endomorphism p of C satisfies a certain
nilpotency condition every C-two-cocycle a is "equivalent" to the
p(C)-two cocycle p(σ) (cf. Theorem 4.7).
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Section 5 deals with a notion of rigidity on the bimodule level.
H o = Σ i aί Θ bί 0 Ci is a C-two-cocycle and M is an object of the
category M(C) of C-bimodules, we define actions of Cσ on M by
xσ*rn = Σ i cbiXbiinCi and m*af = Σ i α<mδ<a?c< for all a? in C, m in M.
Denoting the resulting Cσ-bimodule by M% we obtain a functor
( )*: M(C) —> M(Cσ) taking M to Mσ which we show can also be describ-
ed as the change of rings functor associated with a certain algebra
map φσ: C

σ (g)k C°—*C(x)fc C°. C is called modularly rigid (modularly
semi-rigid) if ( )° is an equivalence (dense) for all C-two-cocycles σ.
If & is a field, we find ( )°e dense for some separability idempotent
e of B £ C implies B is central in C. We use this to prove: If k
is a field, and C is a &-algebra with nilpotent Jacobson radical J(C)
and C/J(C) locally finite, then C is modularly rigid iff C is modularly
semi-rigid iff all Λ-separable subalgebras of C are central.

As mentioned above, σ being a C-two-cocycle is equivalent to the
existence of a certain functor F°: A(C) —> A{Cσ). In §6 we study
these functors. We show that if C is commutative and a is an
Amitsur (i.e., invertible) C-two-cocycle, then F° is an equivalence of
categories. C is called categorically rigid (categorically semi-rigid)
if Fσ is an equivalence (dense) for all C-two-cocycles σ. The paper
concludes with a theorem relating categorically rigid algebras and
algebras with all two-cocycles invertible. This theorem includes:
If k is a field, a fc-algebra C with nilpotent Jacobson radical J(C)
and C/J(C) locally finite is categorically rigid iff C is categorically
semi-rigid iff C has no nontrivial Λ-separable subalgebras iff all C-
two-cocycles are invertible.

The author wishes to thank Moss Sweedler for suggesting the
study of these rigidity notions as a thesis problem and for directing
this research.

l Review of basic notions* Throughout this paper k will
always denote at least a commutative ring with unit 1. By an
algebra over & or a &-algebra we mean an associative, unitary algebra
over k. Unadorned (x), Horn represent (x)fc, Hom& respectively. For

any ά-algebra C, we denote the w-fold tensor product C® ® C by

Cs*. Given a map C —• D of ^-algebras, we have an induced algebra
map C2n —> D®n for each n given by xx ® <g) xn i—• /(
for Xi in C which we denote by f®n or by / if no confusion seems
likely. If C is a Λ-algebra, we denote its opposite ^-algebra by C°
and we call a left C ® C°-module a C-bimodule. By an ideal of the
ά-algebra C we mean a two-sided ideal of C. J(C) denotes the
Jacobson radical of C and Z(C) denotes the center of C. By a
central simple algebra over the field k we mean a finite A-dimensional
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^-algebra C with no proper ideals and Z(C) = k. Semi-simple means
that the Jacobson radical is trivial and the descending chain condition
on left ideals holds.

In this section we give a brief review of the theory of multipli-
cation alteration by two-cocycles introduced by Sweedier [7]. Given
an algebra C over the commutative ring k, let (7 = ^ ^ ® ^ ® ^
be in C (x) C (g) C. We form a new Λ -algebra C° as follows. As an
abelian group, Cσ is equal to C. For any x in C we use the notation
xσ to indicate that we are considering % as an element of Cσ. We
define the product * of any two elements xσ and yσ in C° by

xa*y° = ( Σ a.xbiVCtY .

DEFINITION 1.1. σ is called a C-two-cocycle if

(1.1a) Σ aiaό Θ δi ® <>A (g) cf = Σ αf <g) My ®&i ® CΛ

and there is an element eσ in C with

(1.1b) Σ α<eA (E)ci = l ® l = Σ α t ® ^β^c* .
i ί

If σ is a C-two-cocycle C* is an associative fc-algebra with unit
element eσ

σ. This paper may be briefly described as follows: Given
a fc-algebra C and an arbitrary C-two-cocycle σ, we "compare" Ca

with C. In §§4 through 6 we investigate three ways of "comparing"
Cσ with C, including whether C° ~ C as fc-algebras.

EXAMPLE 1.2. Let C be a commutative fc-algebra and σ =
Σΐ αc (g) δ, ® <?t be a C-two-cocycle. From (1.1b) (Σ* aACi)eσ = 1 and
hence eσ is invertible in C with e"1 = Σ* afiiCi. Since α?<7*̂ /<; = {xye~l)a

for any α, y in C, the fc-linear map C—>Cσ given by a π(xeσ)
σ is a

fc-algebra map and is bijective since eσ is invertible. Thus Cσ ci C.

Let σ = Σ i ai ® &iΘ ci a n ( i r = Σ< r i Θ si ® *i be C-two-cocycles.
Associated with any element <5 = Σί ui ® v i i n C0C we have a
linear map Rδ:Cσ-+Cτ given by α;σ H> ( Σ Ϊ ^ ^ ^ Ϊ ) Γ .

DEFINITION 1.3. σ is cohomologous to τ via <5, denoted σ ^ δ r ,
if

, (g) V,^ ,

Σ ^^α^i = er .
i

Thus if σ~ δτ, Rδ:Cσ-+Cr is a Λ>algebra map.

DEFINITION 1.4. δ = Σ* ̂ i ® v i i s called vertible if there is an
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element 5 = Σ< w, 0 vf in C (x) C with

(1.4a) Σ uβj (g) t ; ^ = 1 (x) 1 — Σ

5 is called the verse of d.
Rδ

Hence if σ ~ δ τ with <5 vertible the map Cδ —> CΓ is an isomorphism

of ^-algebras with inverse Rδ. Because of the existence of this nice
isomorphism, we say that σ and τ are equivalent if a ~* τ with d
vertible.

EXAMPLES 1.5.

( a ) Let C = k 0 k and / = (1, 0). Then

σ, = 1 (x) 1 (x) 1 + / ® /(x) 1 + 1 (x) /(g) / - /(x) 1 <g)/~ 1 (g)/(g) 1

is a C-two-cocycle with eσ/ = 1.

( b ) Let C = fc[α>] with α;2 = 0. Then
σx = l(g)l(g)l + χ(^)x(g)lJrl(g)x(g)x — a? ® 1 ® a?

is a C-two-cocycle with effβ = 1. In addition, </,. ̂ δ 1 ® 1 (x) 1 with
a;®a; vertible.

2* Structure of C inherited by G\ Let σ be a C-two-cocycle.
If I is an ideal of C, we have an injective map {ideals of C} —• {ideals
of Cσ} given by I\-+Iσ. Also, ( f )2 = M ς (J.]) σ = (P)ff and by
induction (Iσ)n £ (Γ)° for all w. Hence, if J(C) is nilpotent J(C)σ £ J(Cσ).
If C—>D is an algebra map, /®3(σ) is a D-two-cocycle with β/(σ) = f(eσ).
In particular, if I is any ideal of C we may take D = C/I and / the
canonical projection C —* C/1. If C ζZ D we may take / to be the
inclusion and in this way view a C-two-cocycle as a D-two-cocycle.

If C/J(C) is commutative and C ̂  C/J(C) is the canonical projection,
{C/J(C)}π{σ) ^ Cσ/J(C)% and C/J(C) and CσA/(C)σ are isomorphic by Ex-
ample 1.2. Thus J{C*/J(CY} = {0}* and J(C)* 2 J(C).

For any x in ^(C) and # in C, (1.1b) implies (α?eσ)**i/tf = yσ*(%eσ)
σ.

Therefore (Z(C)eσ)
σ Q Z(Cσ). The map Z(C) Λ Z(Cσ) given by α? ι— (xeσ)

σ

is an injective algebra map by (1.1b). Suppose C/J(C) is commuta-

tive and let σ = Σ * «t ® &t ® ^ b e a C-two-cocycle. Then

{βα + J(C)}{Σ αAc< + J(C)} = 1 + J(C)

by (1.1b). Therefore βσ + J(C) is in vertible in G/J(C) which implies
that βσ is invertible in C. If we let τ = Σ< α ί ® eσδi (8) W&1, τ is a
C-two-cocycle with er = 1 and τ ~ δ σ, where δ = 1 (x) βσ is vertible.

For convenience, we assemble our preceding comments and two
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easy consequences in the following lemma.

LEMMA 2.1. Let σ be a C-two-cocycle.

( i ) If I is an ideal of C, Γ is an ideal of G°.
(ii) If J{C) is nilpotent, J(C)σ £ J(Cσ).
(iii) If CIJ(C) is commutative, J{C°) S J{C)\
(iv) There is a k-algebra injection Z(C) <=-* Z(Cσ).
(v) If C° is simple (i.e., has no proper ideals), C is simple.
(vi) If Cσ has center k, C has center k.

3* Water house two-cocycles* In this section, C is a fixed k-
algebra and B is a fe-separable subalgebra of C. We investigate
some properties of a 5-two-cocycle discovered by Waterhouse. Recall
that the fc-algebra B is separable over k iff there is an element
e = Σ* ai Θ &< i n B® B (called a separability idempotent for B over
&) with

(3.1) Σ *A = 1
i

Σ< ^αt ® &< = Σf α i ® biX for all a? in B .

The reader may verify that σβ = e ® l + l(g)e — (e(g) 1)(1 (g)e)
is a 5-two-cocycle with eσe — 1.

DEFINITION 3.2. <7e is called the Waterhouse two-cocycle associ-
ated to the separable fc-algebra B with separability idempotent e.

The Waterhouse two-cocycle σe figures prominently in our work.
In fact, Example 1.5(a) is the Waterhouse two-cocycle for B = k φ k
and separability idempotent / ® / + (1 — /) (8) (1 — / ) , / = (1, 0).
Using (3.1) it can be shown that σ\ = σe in 5®3. Since B is a sub-
algebra of C, we may view σe as a C-two-cocycle as mentioned in
§2. We examine the algebra C°e in detail.

Define Γe:C~+C by Γe(x) = Σίaίχbi for any x in C. Γe is a
Zc(B)-moάale endomorphism of C, where ZC(B) = {α; in c | α;6 = 6α; for
all b in 5}. We have a ^(B)-module decomposition C=Zσ(B)φKer Γ,.
Let a, b be in ZC(B), x, y be in Ker Γe. Then it is easily seen from
the definition of σe that

aa *b°* = (αδ)σ^

Thus (Ker Γe)
σ° is an ideal of O with (Ker /*,)*• * (Ker Γe)

σ« = {0}σ .̂

EXAMPLE 3.4. Let C be a central simple algebra of dimension
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n over a field k and choose a separability idempotent e for C over
k. If a?i, •••, xn_! are indeterminates over k,

Cσ*~k[x19 •• ,^_1]/<{α;Λ.}?ji>.

4* Rigidity* Using the method of multiplication alteration by
two-cocycles, we introduce a partial order on the class of λ -algebras
and study a related rigidity property.

DEFINITION 4.1 (Sweedler). Let C and D be algebras over the
commutative ring k. We say that C dominates D, written C > D,
if there is a C-two-cocycle a with Ώ ~ C°. C is called rigid if C > D
implies that D ~ C.

Since for any A-algebra C the element 1 (x) 1 (g) 1 is a C-two-
cocycle, dominance is reflexive. To prove that dominance is transi-
tive we first develop another approach to C-two-cocycles. Let
A(C) denote the category of A -algebras over C. The objects of

f
A(C) are A -algebra maps C —>D with D a A -algebra. The morphisms

/
are obvious. Let s$?{C) denote the category with objects C—>D,
where C, D are ^-modules with multiplications (i.e., A-linear maps
C®C~+C and D (x) D—+D) and / is a multiplicative ^-module map.
Again take the obvious morphisms. Note that A(C) is a subcategory
of J^(C).

Given any element σ = Σ* &* ® bt (x) ct in C ® C 0 C and an object
C ^D of A(C), we have an object C°^Df{a) of j^(Cσ) with the
multiplication in jD/(σ) given by

and /σ(α;σ) = f(x)f{σ) for α, /̂ in C. In this manner we obtain a func-

tor A(C) ^

NOTATION. For any fe-algebra C, we denote the free algebra
obtained by adjoining three noncommuting indeterminants X, Y, Z
by C{X, Γ, Z).

The following lemma gives a characterization of a C-two-cocycle
σ in terms of the functor Fσ.

LEMMA 4.2 (Sweedler). Let C be an algebra over the commuta-
tive ring k and σ be in C 0 C ® C. The following are equivalent:

( i ) σ is a C-two-cocycle.
(ii) The image of F° lies in A{Cσ), i.e., Fa is a functor from

A(C) to A{Cσ).
(iii) C{X, Y, Z}σ is an associative unitary k-algebra.
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Proof. (ί)=>(ii). If σ is a C-two-cocycle and C-+D is in A(C),

f(σ) is a D-two-cocycle and hence Cσ^Dfiσ) is in A(Cσ).

(ii)=>(iii). C-+C{X, Y, Z) where f(c) = c for all c in C is an

object of A(C) and thus by hypothesis & £ C{X, Y, Z}fiσ) is an object
of A{C°). Hence C{X, Γ, Z)nσ) =*= C{X, F, Z}* is an associative unitary
fc-algebra.

(iii) => (i). The unit eσ

a of C{X, Y, Z}° must lie in C and we have
χ°*eσ

σ = Xσ = eσ

σ*Xσ which implies (l.lb) By associativity, Xσ*(Yσ*Zσ) =
(Xσ*Yσ)*Zσ which implies (1.1a). Thus σ is a C-two-cocycle.

PROPOSITION 4.3. Dominance is transitive.

Proof. Suppose we have a C-two-cocycle σ = ]Γ^ α< (2) &i 0 î and a
Cσ-two-cocycle τ = Σ Ϊ d? ® e? Θ Λσ Let α;, y be in C. Then writing
out (xσ)7*(yσy shows that we will be done if we can prove that

is a C-two-cocycle with βr = βΓ since then Cr ̂  (Cσ)Γ via α?r H> (α;σ)Γ.
By Lemma 4.2 we have functors Fσ: A(C)^A(C°) and 2^:4(0*)-*
A((Cσ)τ) The composite FτoFσ is just F r . Hence 7 is a C-two-
cocycle by Lemma 4.2. It is easily checked that er = eτ.

Therefore dominance is a partial order on the class of fc-algebras.
pa

In §6 we study the functors A(C)-»A(Cσ) in detail.

REMARKS 4.4. ( a ) Example 1.2 shows that commutative k-
algebras are rigid.

(b) If C = M(n, k) and σ = σe is a Waterhouse two-cocycle for
C, G° is commutative (cf. Example 3.4). Hence dominance is not
symmetric.

The following two theorems provide a dominance characterization
of central simple fe-algebras.

THEOREM 4.5. Let C be an algebra over a field k. If C domi-
nates a separable k-algebraf C is separable over k.

Proof. There exists a C-two-cocycle a with C° fc-separable.
Hence by [6, Theorem 3.1] ά-dim C = fc-dim Cσ is finite. It then
follows from Lemma 2.1 that J(C)° Q J{Cϋ) = {0}σ, proving C to be
semi-simple. Since Z(C) ^ Z(C°) by Lemma 2.1 and Z(Ca) is a com-
mutative separable Λ-algebra [1, Theorem 111.12], Z(C) is Λ-separable.
Therefore C is ^-separable, again using [1, Theorem 111.21].
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THEOREM 4.6. Let kbe a field and C a k-algebra with k-άim C=n.
The following are equivalent:

( a ) C dominates a central simple k-algebra.
(b) C is a central simple k-algebra.
( c ) C> D for all k-algebras D with k-dimD = n.

(d) C > k 0 •*• φ k and C > k[x]/(xn).
(e) C dominates a separable k-algebra and C dominates a

purely inseparable k-algebra.

Proof. Recall that an algebra A over the field k is a purely
inseparable A-algebra [8, Definition 1] if the contraction map A (x)
A0—>A given by α(g)δoh->α& provides an A® A0 protective cover
of A. If &-dimA<oo, A is purely inseparable over k iff A/J(A)
is a purely inseparable (in the usual sense) field extension of k [8,
Corollary 13(b)].

(a) <=> (b). This is clear from the reflexive property of dominance
and (v) and (vi) of Lemma 2.1.

(b) ==> (c); Let D be any fc-algebra of ^-dimension n. We may
then identify C and D as fc-spaces. Since C is central simple, by
[7, 1.3a and 1.6] we have a linear isomorphism C(g)C(x)C^
Horn (C(g)C, C) given by

Xi (x) a* ® #31 • (Vi (x) 2/2" • ViV&ViVά .

Since a multiplication on ΰ is a linear map C®C—>C we have an
element tf in CΘ3 with Cσ ĉ  D as fc-algebras. By [7, Proposition 1.6]
σ is a C-two-cocycle, and thus G > D.

(c) => (d). Clear.

(d) => (e). Clear since & 0 0 k is Λ-separable and k[x]/(xn) is
fc-purely inseparable.

(e) => (b). By Theorem 4.5, C is fe-separable. In particular, G
is a finite fc-dimensional semi-simple fc-algebra and Z(C) is fc-separable.
We have a C-two-cocycle τ with CΓ purely inseparable over k. Since
Z(C)^C7 (cf. 2.1 (iv)), Z(C) is purely inseparable k [8, Corollary
7(c)]. Thus Z(C) is both separable and purely inseparable over ft,
which implies Z(C) = Λ [8, Corollary 7(a)]. Since C is semisimple
and Z(C) = &, it follows that C is simple.

We now study the structure of rigid algebras. The crucial
theorem is

THEOREM 4.7. Let kbe a commutative ring and C be a k-algebra.
Suppose there is a k-algebra map p:C—*C such that p2 = p and
(Ker (p)) (g) C° + G (g) (Ker (p))° £ J(C ® C°). Γfee^ βwry C-two-cocycle
is equivalent to a p(C)-two-cocycle.
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Proof. Let σ = Σ* a% ® h ® ci be a C-two-cocycle. Since

b ® 1°1(Σ P(αΛ)δι ® c?) = Σ P(α*

= b ®
and ker (p (g) 1°) £ J(C (g) C°) by hypothesis, Σ< P^o)h ® β? is inver-
tible in C(x)C°. Thus <5X = ]£4 p(αiβα)δ< (x) cέ is vertible. Denote its
verse by Σ* ̂  ® ̂  τι ~1 σ defines a C-two-cocycle τγ with eri = p(eσ)
and it follows from the associativity relation for σ that

?i = Σ P(α<) ® &^i ® ^i^i

By an obvious analog of the argument used for δx above, one may
see that δ2 = ̂ itj p(a%) (g) biUjpie^jCi) is vertible. Call its verse
Σ< χi ® V%' Note that Σ t »< ® ̂  = Σ t Pi35*) ® ?/i by uniqueness of
verse (uniqueness of inverse in C(g)C0).

τ2^
δ2τ1 defines a C-two-cocycle r2 with eT2 = βTl and it follows

from the associativity relation for τx that

^ = Σ 2>(α<)»i Θ 2/A î ® p(̂ iC,) .

Thus τ% is in p(C) (g) C® p(C).
We claim that τ2 in fact lies in p{Cψz. To see this, apply the

map (1 ® mβ ® l)o(l (g) p (g) 1 (g) 1) to the associativity relation for r2,
where me: C(g)C~+C is given by a ® 6 H* αer2δ. Since p2 = p, this
yields that τ2 is in

THEOREM 4.8. k perfect field. Let C be a k-algebra with J(C)
nίlpotent and C/J(C) locally finite (i.e., every finite subset of G/J(G)
generates a finite dimensional Λ-algebra). If every k-sepamble sub-
algebra B of C is commutative and Ker Γe is an ideal of square
zero for some separability ίdempotent e of B, then C is rigid.

Proof. Let σ = Σ?=i ̂  <g) δ< Θ ̂  be a C-two-cocycle and let D be
the subalgebra of C generated by {<&<, 6t, ci9 eo}?=1 U /(C). Since J(C)
is a nilpotent ideal of D, J(C) £ J(D). The locally finiteness of C/J(C)
implies that D/J(C) is finite dimensional. Hence the radical J(D/J(C) =
J(D)/J(C) of D/J(G) is nilpotent. Since J(C) is nilpotent, it follows
that J(D) is nilpotent.

D/J(D) is Λ-separable. Hence by the Wedderburn Principal
Theorem D = J50 J(D) for some ^-separable subalgebra J5 of C. (cf.
[4, Theorem 72.19]. To remove the finite dimension restriction on
D, induct on the index of nilpotency of J(D).) By Theorem 4.7 σ is
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equivalent to a i?-two-cocycle. Hence we need only show Cσ ± C if
σ is in B®z. Since B is commutative by hypothesis, we may assume
eσ = l.

Recall that C = Zc(B)@KeτΓβ. By hypothesis we may assume
KerΓe is an ideal of square zero. For a, b in Z(C), x, y in KerΓe,
we have

aσ*bσ = (ab)σ

a°*y° = (ay)σ

x°*bσ = (xby

Thus Cσ ~ C via cσ — c.
We now study dominance and Waterhouse two-cocyeles in order

to prove a partial converse of Theorem 4.8.

LEMMA 4.9. Let C be a k-algebra with J(C) = {0}. Suppose that
B is a k-separable subalgebra of C with separability idempotent e.
If O ~ C, B £ Z(C).

Proof. J(Cσή = {0Y* so the nilpotent ideal (Ker Γe)
σ« must be the

zero ideal. Hence C — ZC{B) and B is central.

LEMMA 4.10. Let C be an algebra over the field k, B a k-separa-
ble subalgebra with separability idempotent e. If C°e — C, B is
commutative.

Proof. Consider the canonical projection C ̂ > C/J(C). B — π(B)
is a fc-separable subalgebra of C = C/J(C) with separability idempotent
e = π(e). Since C°e ̂  C, we have Cσ' ~ C. Hence by Lemma 4.9 B
is central in C. Thus for all x, y in B xy — yx is in JS Π J(C). Since
J5 is finite dimensional over &, B Π /(C) is a nil ideal of 5. Because
B is separable, /(B) = {0} and hence B n /(C) = {0}. Therefore β is
commutative.

THEOREM 4.11. Let k be a perfect field and C be a k-algebra
with J(C) nilpotent and k-dimension of G/J(C) finite. If C is rigid
every k-separable subalgebra B of C is commutative and Eer Γe is
an ideal of square zero for some separability idempotent e for B.

Proof. Every fc-separable subalgebra of C is commutative by
Lemma 4.10. Using the Wedderburn Principal Theorem we have
C = J?o0J(C) for some fc-separable subalgebra Bo of C. For any
separability idempotent e0 for j?o, C% en C implies that there is a k-
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separable subalgebra Bι of C with separability idempotent eι such
that B1 ^ Bo and Ker Γei is an ideal of square zero. Since any two
Wedderburn factors of C are ίsomorphic by an inner automorphism
of C (cf [4, p. 491]) and any fc-separable subalgebra of C is contained
in some Wedderburn factor, we are done.

Combining Theorems 4.8 and 4.11 we have

THEOREM 4.12. Let k be a perfect field and C be a k-algebra
with J(C) nίlpotent and k-dimension of C/J(C) finite. Then C is
rigid iff every k-separable subalgebra B of C is commutative and
Ker Γe is an ideal of square zero for some separability idempotent
e for B.

5* Modular rigidity* Given a fc-algebra C, we denote by M{G)
the category of C-bimodules. Let σ == Σ* α, ® bt (g> cf be a C-two-
cocycle. If M is C-bimodule, we form a C^-bimodule from M in the
following manner. Starting with an abelian group M° isioinorphic
with M via mσ<=>m, we define left and right actions of Cσ on M°
by

%°*m° = ( X aiXbimCi)0

ϊ

ma*xσ — (ΣJΪ aimbiXCiY x in C, m in M.

Using the defining relations (1.1) of a C-two-cocycie, it is readily
checked that this provides Mσ with a Cσ-bimodule structure. Given

a C-bimodule map M-^N we let Mσ^Nσ by fa{m°) = f{m)\ These
constructions define a faithful functor from M(C) to M(Cσ) which we
denote by { ) \

We define a linear

xσ (2) 2/σ0 — > Σ aidsjXbj (x) (cj
ιΣ

LEMMA 5.1. 9?σ is α map o/ k-algebras.

Proof. Since <pσ is linear and φσ{e°σ (g) ef) = 1 (x) 1°, we need only
check that ψa is multiplicative. This follows from the two-cocycle
associativity relation for σ:

* (%ΐ Θ yf)} =

= Σ amanai%bixιcA(g)(cnbmajyιbjycjcmγ
it j,in,n

= Σ ^α^δ^Aδ.α, (x) (K
ij
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ί,j,mtn

= {Σ a*vbmat (g) (&^O°}{Σ ajanxj>n (x) (c
i

The change of rings functor induced by <£>σ is the functor that
we called ( )σ.

Recall that a functor F from a category j ^ to a category ^
is dense if given any object B of & there is an object A of
with -F(A) isomorphic to B in ^ .

REMARKS 5.2. (a) Cσ (g> Cσ is a faithful Cσ (g) Cσ -module. Thus
if ( Y is dense, φσ is injective since φσ(Σui x% ® 2/?°) = 0 implies
(ΣfS? ® yf)*Mσ = {0}σ for all Λf in ilf(C).

(b) If ^ σ is an isomorphism, () σ is an equivalence of categories.
(c) If C is a finite dimensional algebra over a field &, parts

(a) and (b) imply that ( )σ is an equivalence iff φσ is an isomorphism
since A -dim C <g) C° = k-Aim Cσ (g) Cσ°.

DEFINITION 5.3 (Sweedler). Let C be a fc-algebra. We say that
C is modularly rigid (modularly semi-rigid) if ( )σ is an equivalence
(dense) for all C-two-cocycles σ.

Note that modular rigidity implies modular semi-rigidity. We
will later show that for certain types of algebras over a field k, e.g.,
finite dimensional ones, modular rigidity is equivalent to modular
semi-rigidity.

EXAMPLES 5.4. ( a ) Let C be a commutative ring and σ be a
C-two-cocycle. By Example 1.2, eσ is invertible. For x, y in C,
φσ(%σ(&yσ0) = (α<E> l/ 0 )^ 1 ® eάl0). Hence C is modularly rigid by
(5.2b).

(b) Let C = 17(2, k), the algebra of upper triangular two by
two matrices over k, and take σe to be the Waterhouse two-cocycle
associated with B = fcβu 0 ke22 and separability idempotent e — en (g)
βn + 622 ® 2̂2. Since φOe(e[i (g) βS0) = 0 by direct calculation, ( )*• is
not dense by (5.2a). Thus U{2, k) is rigid (by Theorem 4.7) but not
modularly rigid.

The remainder of this section is devoted to studying the struc-
ture of modularly rigid algebras over a field k.
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LEMMA 5.5. Let C be an algebra over a commutative ring k.
Suppose that a = Σ * tf{ (g) &f ® ci is a C-two-cocycle and let

%σ = Σ a>i<x>s ®zw)b] <8> cfo <gW> c\

in C®zw) C°(x)C®Z(c) C°. Then ifzσ is invertible, φa is an isomorphism.

Proof. Let z'1 = Σ* Pi ®z(o r\ ® $ι ®zίo i\ Define a map Λσ:
C<g)C°-+Cσ®C<'0 by

Λ ( Σ Xi ® 2/?) - Σ (Pί^r,) ' (x) (s^^O0 0

Then «7ι2α = 1 implies Aσφσ = IσαS.σ3θ and z^" 1 = 1 implies ^ σ i σ = Ic2lCo.
Hence Λσ = φjι.

In preparation for the next theorem, we need the following

LEMMA 5.6. k field. Let C be an algebraic k-algebra with all
k-separable subalgebras of C/J(C) central. Then every semi-simple
subalgebra of C/J(C) is commutative.

This lemma may be proved using Wedderburn-Artin structure
theory and the Jacobson-Noether theorem [5, Theorem 3.2.1].

THEOREM 5.7. k field.* Let C be a k-algebra with J(C) nilpotent
and C/J(C) locally finite. If all k-separable subalgebras of C are
central, φσ is an isomorphism for all C-two-cocycles σ.

Proof. As in the proof of Theorem 4.8, let a — Σ?=i ai Θ &* ® ci
be a C-two-cocycle and let D be the subalgebra of G generated by
{aif bif cif eJJU U J(C). If B is any &-separέιble subalgebra of D/J(D),
we may lift B isomorphically to a fc-separable subalgebra B Q D £ C
by the Wedderburn Principal Theorem. By hypothesis, B £ Z(C),
and so also B Q Z(D) and B £ Z(p/J(D)). Therefore D/J(D) is com-
mutative by Lemma 5.6.

Let D = D/J(D). Since D is commutative and finite dimensional,
there exists a unique maximal ^-separable subalgebra S of D and D
is a purely inseparable S-algebra (to see this, use structure theory
to write D as a finite product of field extensions of k). Lift S via
the Wedderburn Principal Theorem to a fc-separable subalgebra S in
the center .of C.

Let z '= Σ<,y αi^y Θ-s.'δJ ®Csbi ®s c°t. We claim that 2 is invertible.
Once this is established, we would be able to complete the proof by
noting that then the , image zσ of z in C ®Z(o C° (g) C <g>Zιc) C° is
invertible and hence Lemma 5.5 applies.

Thus we need only show that z is invertible. First, we note
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that z is in D ® SD° 0 D (x) J9°. Since J(D) is nilpotent, 5; is inver-
tible in (D ® SD

0)®2 iff its image 2 under the natural map

D®sD
0(g)D(g) SD° —» D(g)sD(g)D(g)sD

is invertible.
Because 5 is purely inseparable over S, the kernel of the con-

traction map D®sD°^D is contained in J(D (g) sD°). J(D (g) sD°) is
nilpotent since D (x) 3Z)0 is a finite dimensional Λ-algebra and hence z
is invertible iff its image under the map m (x) m is invertible (note
that m is an algebra map since D is commutative). Since {m (x) m}(#)
clearly has inverse eσ 0 ββ, we done.

We use Waterhouse two-cocycles to obtain the converse of the
above theorem.

LEMMA 5.8. Let C be an algebra over the field k and B a k-
separable subalgebra of C with separability idempotent e. Then if
φOe is injective B is central in C.

Proof. If B were not central, we would have a nonzero x in
Ker/V Then φσe(%°e (8) %σ<°) = 0 by explicit calculation.

COROLLARY, k field. If C is modularly semi-rigid, all k-
separable subalgebras B of C are central.

Proof. Since C is modularly semi-rigid, in particular ( )°e is
dense for all Waterhouse two-cocycles σe. By Remark 5.2a we thus
have φσe injective for all σe. Hence all λ -separable subalgebras of
C are central by the lemma.

We have thus shown

THEOREM 5.9. k field. Let C be a k-algebra with J{C) nilpotent
and C/J(C) locally finite. The following are equivalent:

( a ) C is modularly rigid.
(b) C is modularly semi-rigid.
(c) All k-separable subalgebras of C are central.
(d) φo is an isomorphism for all C-two-cocycles σ.

6* Categorical rigidity* In this section we take a "functorial"
approach to multiplication alteration by two-cocycles. As in §4 we
let A(C) denote the category of fc-algebras over C. Recall that

given a C-two-cocycle σ and an object G~*D of A(C), f(o) is a

JD-two-cocycle and C° £ Df{σ) is an object of A(Cσ) with f%%°) = f(x)f{σ)
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for x in C. This map describes a faithful functor from A(C) to
A(Cσ) which we denoted F\

DEFINITION 6.1 (Sweedler). Let C be a ά-algebra. We say that
C is categorically rigid (categorically semi-rigid) if F° is an equivalence
(dense) for all C-two-cocycles σ.

Note that categorical rigidity implies categorical semi-rigidity.
We will later show that for certain types of algebras over a field
k, e.g., finite dimensional ones, categorical rigidity is equivalent to
categorical semi-rigidity.

Suppose σ, τ are C-two-cocycles with σ ~ δ τ, δ == Σ* ui ® Vv
Then the map Rδ:Cσ —»CΓ given by xa \-^ (Σ* ̂ i^0 Γ induces a functor
A{Cτ)-^A{C°) by "composition." For G-^D in A(C), define

to be

JQf(o) _

\
/

in A(Cσ). T describes a natural transformation F° to &δFτ. If δ is
vertible the reader may check that T is a natural equivalence. Since
&δ is an equivalence when d is vertible we have

LEMMA 6.2. Let σ, τ be C-two-cocycles with σ~δτ, δ vertible.
Then Fσ is dense (resp. full) iff Fτ is dense (resp. full).

We now direct our attention to the structure of algebras over
a field k which are categorically rigid.

LEMMA 6.3. Let C be an algebra over the commutative ring kΨ

Suppose σ = Σ * a% ®bi®ci is a C-two-cocycle with eσ = 1. Let

wσ = Σ (ahahahau)° (x) bu ® (c^)0 (x) ci3bh <g) ( β ^ ) 0 ® ciχ

in (C° ® C)®3. ΓΛe^ if wσ is invertible there is a Cσ-two-cocycle v
with FT o Fσ = F1®1®1, w/̂ c/z, is ίAe identity functor on A(C).

Proof. There is an element

Wo1 = Σ wS
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in (C° <g> C)®3 with wzιwa = 1. This implies

Thus we will be done if we show that

T = Σ («,Vί) Θ (»/*/)• <8> (2/A )* = Σ

is a C'-two-coeycle with eτ = 1.
Let C{X, Y, Z) be the free algebra on noncommuting indetermi-

nants X, Y, Z as in Lemma 4.2. From the last paragraph we have
(C{X, Y, ̂ r ) Γ 2ί C{X, Y, Z) as fc-algebras via (x<γ v->x ίoτ x in C{X,
Y, Z). In particular, (C{X, Y, Z}°)τ is an associative algebra with
unit element 1. This two-cocycle unitary property for τ is then a
consequence of (lσ)Γ*(^σ)Γ = (XσY = (Xσ)Γ*(lσ)Γ. Since (C{X, Y, Z}°)τ is
associative we have

The two-cocycle associativity relation for τ follows from this.
We have left the tedious verifications to the reader since they

are straightforward applications of the two-cocycle relations for σ
and the invertibility of wσ.

COROLLARY. Let C be commutative k-algebra and σ be an
Amitsur two-cocycle (i.e., an invertible C-two-cocycle). Then Fσ is
an equivalence.

Proof. Since C is commutative, eσ is invertible and hence we
may assume eσ = 1 by Lemma 6.2. wσ is clearly invertible so by
Lemma 6.3 there is a Cσ-two-cocycle τ with Fτ ° Fσ = Fm®\ Thus
Fτ is dense and Fa is full. It is easy to see that τ is an invertible
Cσ-two-cocycle by its construction and another application of Lemma
6.3 proves that Fτ is full. Hence Fτ is an equivalence, which im-
plies that Fσ is dense.

THEOREM 6.4. Let C be an algebra over a field k with J(C)
nilpotent and C/J(C) locally finite. Then C has no k-separable sub-
algebras (except k) <=* all C-two-cocycles are invertible.

Proof. (<==) If C had a nontrivial ^-separable subalgebra B,
any Waterhouse J5-two-cocycle σe would be a nontrivial idempotent
element of C (x) C (g) C and hence would not be invertible.
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(==>) As in the proof of Lemma 4.8, let σ = Σf=1

 ai Θ &< ® c*
be a C-two-cocycle and let D be the subalgebra of C generated by
{aif bif cif eσ}7=1 U J(C). If S is any ^-separable subalgebra of D/J(D),
we may lift S isomorphically to a A -separable subalgebra S £ D £ C
by the Wedderburn Principal Theorem. By hypothesis, S = k so
S = k. It follows from Wedderburn-Artin structure theory that
D/J(D) is a purely inseparable field extension of k. Since J(J9) is
nilpotent σ is invertible iff σ = p(σ) is invertible, where p: D—>D/J(D)
is the natural map. But σ is a D/J(J3)-two-cocycle and hence inverti-
ble [7, 2.15].

Note that D/J(D) commutative implies that eσ is invertible and
σ is equivalent to a C-two-cocycle τ with βΓ = 1 (cf. §2).

THEOREM 6.5. Let C be an algebra over a field k with J(C)
nilpotent and C/J(C) locally finite. If all C-two-cocycles are inverti-
ble, C is categorically rigid.

Proof. Let σ be a C-two-cocycle. By the remark at the end
of Theorem 6.4 and Lemma 6.2 we may assume that ea = 1. Let D
be as in Theorem 6.4 and consider the element wσ in (D° (x) D)®3 as
in Lemma 6.3. Since J(D) is nilpotent, wσ is invertible iff wσ — p(wσ)
is invertible, where p: D-+ D/J(D) is the natural map. Because a
is invertible and D/J(D) is commutative, wσ is clearly invertible.
Therefore, by Lemma 6.3 we have a C'-two-cocycle τ with Fτ°Fσ =
Fm®\ Fa is full, Fv is dense, and we will be done if we show F"
is also full, i.e. Fτ is an equivalence.

Let E be the subalgebra of Cσ generated by {d% e% /j} U J(C)σ.
Noting how τ = Σ i d) (x) ea

ά (x) f) arose, we have E Q Dσ. Since J{C)°
is a nilpotent ideal of E, J(C)σ Q J(E) and E/J(C)σ Q Dσ/J(C)σ =
(D/J(C))σ. Hence E/J(C)σ is finite dimensional and it follows that
Jίϋ/) is nilpotent. C7 has no ̂ -separable subalgebras and thus E/J(E)
is commutative by Wedderburn-Artin theory. The invertibility of
τ follows easily from the proof of Lemma 6.3 and it follows that
wT is invertible in (E° (g) E)®3. Thus Fv is full by Lemma 6.3.

Now we use Waterhouse two-cocycles to prove the converse of
the above theorem.

LEMMA 6.6. Let k be a field, C be a k-algebra, and B a k-separa-
ble subalgebra with separability idempotent e and associated Water-
house two-cocycle σe. Then, if F°e is dense, B = k.

Proof. Let E = End, (C7*) and Cσ° ̂  E be given by xσ° H+ (left
f

multiplication by x°e). There is an object C—>D in A(C) with
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\ /
f°e\ /

eommutative. In particular, / is injective.
B = f(B) is a fc-separable subalgebra of D with separability

idempotent e = f(e) and associated Waterhouse two-cocycle σ = f(σe).
Thus we have D° = Zz>C§)d 0 (Ker Λ)* with (Ker Γ9f an ideal of
square zero. Since J(Dd) = {0}" and Z(Z>5) = fc, we have f(B)=BQk.
Because / is an injective A -algebra map we have B = k.

Combining the above results we have

THEOREM 6.7. Let C be an algebra over the field k with J(C)
nilpotent.

Consider the following statements:
(1) σ~<5σl(g)l(g)l for some vertible δσ for all C-two-cocycles σ.
(2) C is categorically rigid.
(3) C is categorically semi-rigid.
(4) C has no fc-separable subalgebras (except k).
(5) All C-two-cocycles are invertible.

Then
( a ) (l)=>(2)-(3)=>(4)<=(5).
(b) If C/J(C) is locally finite, (2)-(5) are equivalent.

Proof, ( a ) (1)=>(2) follows from Lemma 6.2. <2)=>(3) is
trivial and (3) => (4) holds by Lemma 6.6. For (5) => (4), see Theorem
6.4, proof of («=).

(b) (2)->(3)=*(4)-(5) by part (a). (4)-(5) and (5)-> (2)
follow from Theorem 6.4 and Theorem 6.5, respectively.
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