MAXIMAL SUBMONOIDS OF THE TRANSLATIONAL HULL

Mario Petrich

Abstract

Maximal submonoids of a semigroup have recently attracted attention in semigroup literature. This is particularly true for the semigroup $\mathscr{B}(X)$ of binary relations on a set. The interesting results of Zareckiil in this direction point to the fact that some of these statements pertain to the more general situation of the translational hull of a Rees matrix semigroup. More generally, we consider here maximal submonoids of the translational hull of a regular semigroup.

The first, and the main, theorem in this paper says that if ω is an idempotent bitranslation of a regular semigroup S, then $\omega \Omega(S) \omega \cong$ $\Omega(\omega S \omega)$; here $\omega \Omega(S) \omega$ is a maximal submonoid of $\Omega(S)$. The second theorem pertains to subdirect irreducibility of certain subsemigroups of the translational hull of a Rees matrix semigroup. Finally, the third theorem concerns regular semigroups in which every maximal submonoid is a retract. These results have a number of consequences. The paper ends with several examples of concrete semigroups to which some of the preceding results are applied.

We start with a list of needed definitions and simple results. Let S be a semigroup. A function λ (resp. ρ), written on the left (resp. right) is a left (resp. right) translation of S if $\lambda(x y)=(\lambda x) y$ (resp. ($x y$) $\rho=x(y \rho)$) for all $x, y \in S$. The set $\Lambda(S)$ (resp. $P(S)$) of all left (resp. right) translations of S under composition $(\lambda \lambda)^{\prime} x=$ $\lambda\left(\lambda^{\prime} z\right)$ (resp. $\left.x\left(\rho \rho^{\prime}\right)=(x \rho) \rho^{\prime}\right)$ is a semigroup. The pair $(\lambda, \rho) \in \Lambda(S) \times$ $P(S)$ is a bitranslation of S if $x(\lambda y)=(x \rho) y$ for all $x, y \in S$; the subsemigroup of $\Lambda(S) \times P(S)$ consisting of all bitranslations is the translational hull $\Omega(S)$ of S. Its elements will be usually written as $\omega=(\lambda, \rho)$, where ω is considered as a bioperator on S. For any $s \in S$, the function λ_{s} (resp. ρ_{s}) defined by $\lambda_{s}=s x$ (resp. $x \rho_{s}=x s$) for all $x \in S$, is the inner left (resp. right) translation and $\pi_{s}=$ $\left(\lambda_{s}, \rho_{s}\right)$ is the inner bitranslation of S induced by s. The set $\Pi(S)=\left\{\pi_{s} \mid s \in S\right\}$ is an ideal of $\Omega(S)$ called its inner part. The mapping $\pi: s \rightarrow \pi_{s}$ is the canonical homomorphism of S into $\Omega(S)$. It is one-to-one if and only if S is weakly reductive. In such a case for any $(\lambda, \rho),\left(\lambda^{\prime}, \rho^{\prime}\right) \in \Omega(S), s \in S$, we have $(\lambda s) \rho=\lambda(s \rho)$, and thus all parentheses may be omitted.

An element $s \in S$ is regular if $s=s t s$ for some $t \in S$; if also $t=t s t$, then t is an inverse of s. A semigroup in which every element is regular is a regular semigroup. Note that every regular
element has an inverse, and that a regular semigroup is weakly reductive, and hence the canonical homomorphism above is one-toone. A semigroup S is completely regular if every element of S has an inverse with which it commutes (equivalently, S is a union of groups).

An element e of S is idempotent if $e^{2}=e$; the set of all idempotents of S will be denoted by E_{S}. If $e \in E_{S}$, then the set $e S e=$ $\{e s e \mid s \in S\}$ is the set of all elements of S having e as a (two-sided) identity, and is thus called a maximal submonoid of S (since a semigroup with an identity element is called a monoid). It is easy to see that every maximal submonoid of a regular semigroup is again a regular semigroup. If $\omega=(\lambda, \rho) \in E_{\Omega(S)}$, the above definitions and conventions yield

$$
\begin{equation*}
\omega S \omega=\{\lambda s \rho \mid s \in S\}=\{s \in S \mid s=\lambda s=s \rho\} \tag{1}
\end{equation*}
$$

If I is an ideal of S, then S is an (ideal) extension of $I ; S$ is a dense extension of I if the equality relation on S is the only congruence on S whose restriction to I is the equality relation; if S is a maximal dense extension of I, then I is a densely embedded ideal of S. For a weakly reductive semigroup $S, \Pi(S)$ is a densely embedded ideal of $\Omega(S)$.

The proofs of the above statements as well as the concepts used in the paper but not defined can be found in the book [5]. This reference as well as the survey article [2] contain a comprehensive collection of results concerning the translational hull.
2. The main theorem. This result gives a suitable isomorphic copy of maximal submonoids of the translational hull of a regular semigroup.

Theorem 1. Let S be a regular semigroup. If $\omega \in E_{\Omega(S)}$, then the function χ defined by

$$
\chi:(\varphi, \psi) \longrightarrow\left(\left.\varphi\right|_{\omega S \omega},\left.\psi\right|_{\omega S \omega}\right) \quad((\varphi, \psi) \in \omega \Omega(S) \omega),
$$

is an isomorphism of $\omega \Omega(S) \omega$ onto $\Omega(\omega S \omega)$.
Proof. Let $\omega=(\lambda, \rho)$ and note that

$$
\begin{equation*}
\omega \Omega(S) \omega=\{(\varphi, \psi) \in \Omega(S) \mid \varphi=\lambda \varphi=\varphi \lambda, \lambda=\rho \psi=\psi \rho\} \tag{2}
\end{equation*}
$$

Next let $(\varphi, \psi) \in \omega \Omega(S) \omega$. For any $x \in \omega S \omega$, using (1) and (2) we have

$$
\varphi x=(\lambda \varphi)(x \rho)=\lambda(\varphi x) \rho \in \omega S \omega
$$

so that $\left.\varphi\right|_{\omega S \omega}$ maps $\omega S \omega$ into itself. Similarly $\left.\psi\right|_{\omega S \omega}$ has the same property. It then follows without difficulty that χ is a homomorphism of $\omega \Omega(S) \omega$ into $\Omega(\omega S \omega)$.

Next let $(\varphi, \psi),\left(\varphi^{\prime}, \psi^{\prime}\right) \in \omega \Omega(S) \omega$ and assume that $(\varphi, \psi) \chi=$ ($\left.\varphi^{\prime}, \psi^{\prime}\right) \chi$. Let $x \in S$; there exists $u \in S$ such that $\lambda x=(\lambda x) u(\lambda x)$. Then $\lambda(x u) \rho \in \omega S \omega$ and

$$
\begin{aligned}
\varphi x & =(\varphi \lambda) x=\varphi(\lambda x)=\varphi[(\lambda x) u(\lambda x)]=[\varphi(\lambda(x u) \rho)] x \\
& =\left[\varphi^{\prime}(\lambda(x u) \rho)\right] x=\varphi^{\prime}[(\lambda x) u(\lambda x)]=\varphi^{\prime}(\lambda x)=\left(\varphi^{\prime} \lambda\right) x=\varphi^{\prime} x
\end{aligned}
$$

so that $\varphi=\varphi^{\prime}$; analogously $\psi=\psi^{\prime}$. Consequently χ is one-to-one.
Next let $(\varphi, \psi) \in \Omega(\omega S \omega)$. Define φ^{\prime} and ψ^{\prime} on S by

$$
\begin{array}{lll}
\varphi^{\prime} x=[\varphi(\lambda(x u) \rho)] x & \text { if } & \lambda x=(\lambda x) u(\lambda x), \\
x \psi^{\prime}=x[(\lambda(v x) \rho) \psi] & \text { if } & x \rho=(x \rho) v(x \rho) .
\end{array}
$$

We will show first that the definition of ϕ^{\prime} is independent of the choice of the element u. Hence assume that

$$
\lambda x=(\lambda x) u(\lambda x)=(\lambda x) t(\lambda x)
$$

Then

$$
\lambda(x u) \rho=(\lambda x)(u \rho)=(\lambda x) t(\lambda x)(u \rho)=[\lambda(x t) \rho][\lambda(x u) \rho]
$$

so that

$$
\begin{align*}
{[\rho(\lambda(x u) \rho)] x } & =\{\varphi[((\lambda(x t) \rho)(\lambda(x u) \rho)]\} x=[\varphi(\lambda(x t) \rho)][\lambda(x u) \rho] x \tag{3}\\
& =[\rho(\lambda(x t) \rho)](\lambda x) u(\lambda x)=[\rho(\lambda(x t) \rho)](\lambda x)
\end{align*}
$$

which evidently implies independence of φ^{\prime} on the choice of u. Similarly the definition of ψ^{\prime} is independent of the choice of v.

Now let $x, y \in S, \lambda x=(\lambda x) u(\lambda x), \lambda(x y)=\lambda(x y) w \lambda(x y)$. Using (3), we obtain

$$
\begin{aligned}
\left(\varphi^{\prime} x\right) y & =[\varphi(\lambda(x u) \rho)] x y=[\rho(\lambda(x u) \rho)](\lambda x) y \\
& =[\varphi(\lambda(x u) \rho)] \lambda(x y) w \lambda(x y)=[\rho(\lambda(x u) \rho)][\lambda(x y w) \rho] x y \\
& =\{\varphi[(\lambda(x u) \rho)(\lambda(x y w) \rho)]\} x y \\
& =\{\varphi[(\lambda(x u) \rho)(\lambda x)(y w) \rho)]\} x y \\
& =\{\varphi[(\lambda x) u(\lambda x)(y w) \rho]\} x y \\
& =\{\varphi[(\lambda x)(y w) \rho]\} x y=\left[\rho(\lambda(x y w) \rho] x y=\varphi^{\prime}(x y)\right.
\end{aligned}
$$

Hence φ^{\prime} is a left translation of S, a symmetric proof shows that ψ^{\prime} is a right translation of S.

Let $x, y \in S, x \rho=(x \rho) s(x \rho), \lambda y=(\lambda y) z(\lambda y) . \quad$ Then

$$
\begin{aligned}
x\left(\varphi^{\prime} y\right) & =x[\rho(\lambda(y z)) \rho)] y=x[(\lambda \rho)(\lambda(y z) \rho)] y \\
& =x[\lambda[(\varphi(y z) \rho)] y=(x \rho)[\rho(\lambda(y z) \rho)] y \\
& =x \rho) s(x \rho)[\rho(\lambda(y z) \rho)] y=x[\lambda(s x) \rho][\rho(\lambda(y z) \rho)] y \\
& =x[(\lambda(s x) \rho) \psi][\lambda(y z) \rho] y=x[(\lambda(s x) \rho) \psi]](\lambda y) z(\lambda y) \\
& =x[(\lambda(s x) \rho) \psi](\lambda y)=x[[(\lambda(s x) \rho) \psi] \rho\} y \\
& =x[(\lambda(s x) \rho)(\psi \rho)] y=x[(\lambda(s x) \rho) \psi] y=\left(x \psi^{\prime}\right) y
\end{aligned}
$$

which implies that ($\left.\varphi^{\prime}, \psi^{\prime}\right) \in \Omega(S)$.
Further, for $x \in S$ and $\lambda x=(\lambda x) u(\lambda x)$, we have

$$
\begin{aligned}
\left(\lambda \varphi^{\prime}\right) x & =\lambda\left(\varphi^{\prime} x\right)=\lambda\{[\rho(\lambda(x u) \rho)] x\}=[(\lambda \varphi)(\lambda(x u) \rho)] x \\
& =[\varphi(\lambda(x u) \rho)] x=\varphi^{\prime} x, \\
\left(\varphi^{\prime} \lambda\right) x & \left.=\varphi^{\prime}(\lambda x)=[\varphi(\lambda(x u) \rho))\right] x=\varphi^{\prime} x
\end{aligned}
$$

which proves that $\varphi^{\prime}=\lambda \varphi^{\prime}=\varphi^{\prime} \lambda$; analogously $\psi^{\prime}=\rho \psi^{\prime}=\psi^{\prime} \rho$. Consequently ($\left.\varphi^{\prime}, \psi^{\prime}\right) \in \omega \Omega(S) \omega$.

Finally let $x \in \omega S \omega, x=x u x$. Recall formula (3); then

$$
\begin{aligned}
\varphi^{\prime} x & =[\varphi(\lambda(x u) \rho)] x=\{\varphi[(\lambda x)(u \rho)]\} x=\{\varphi[(x \rho)(u \rho)]\} x \\
& =\{\varphi[x(\lambda u \rho)]\} x=\varphi[x(\lambda u \rho) x]=\varphi[(x \rho)(u \rho) x] \\
& =\varphi[x u(\lambda x)]=\varphi(x u x)=\varphi x
\end{aligned}
$$

so that $\left.\varphi^{\prime}\right|_{\text {os } \omega}=\varphi$, analogously $\left.\psi^{\prime}\right|_{\text {os } \omega}=\psi$. Therefore $\left(\varphi^{\prime}, \psi^{\prime}\right) \chi=(\varphi, \psi)$ and χ maps $\omega \Omega(S) \omega$ onto $\Omega(\omega S \omega)$.

Corollary 1. Let S be a regular semigroup. If $\omega \in E_{\Omega(S)}$, then $\omega \Omega(S) \omega \cap \Pi(S)$ is a densely embedded ideal of $\omega \Omega(S) \omega$.

Proof. Let $\pi: S \rightarrow \Omega(S)$ be the canonical homomorphism. It is easy to verify that

$$
\Pi(\omega S \omega) \cong \omega S \omega \cong \pi(\omega S \omega)=\omega \Omega(S) \omega \cap \Pi(S)
$$

On the other hand, $\Pi(\omega S \omega)$ is a densely embedded ideal of $\Omega(\omega S \omega)$, which is in turn isomorphic to $\omega \Omega(S) \omega$ by the theorem.

Corollary 2. If $\Omega(S)$ is a regular semigroup, and $\omega \in E_{\Omega(S)}$, then $\Omega(\omega S \omega)$ is a regular semigroup.

Proof. This follows from the theorem since $\Omega(\omega S \omega) \cong \omega \Omega(S) \omega$ and any maximal submonoid of a regular semigroup is regular.

Lemma 1. If S is a regular semigroup and $\omega \in E_{\Omega(S)}$, then $\omega S \omega$ is a regular semigroup.

Proof. Let $x \in \omega S \omega$ and x^{\prime} be an inverse of x. Then

$$
\left.x=x x^{\prime} x=(x \rho) x^{\prime}(\lambda x)=x\left(\lambda x^{\prime}\right) \rho\right) x
$$

which shows that $\omega S \omega$ is regular.
Corollary. If S is an inverse semigroup (resp. a semilattice of groups) and $\omega \in E_{\Omega(S)}$, then both $\omega S \omega$ and $\Omega(\omega S \omega)$ are inverse semigroups (resp. semilattices of groups).

Proof. In view of the lemma, the assertion follows easily from ([5], V.4.6) (resp. V.6.6).
3. Rees matrix semigroups. The theorem of this section relates subdirect irreducibility of a maximal subgroup of a Rees matrix semigroup S with that of a number of subsemigroups of $\Omega(S)$. We start with a general discussion and a string of lemmas.

Throughout this section we fix a (regular) Rees matrix semigroup $S=\mathscr{M}^{\circ}(I, G, M ; P)$. We outline briefly a construction of $\Omega(S)$, see ([5], V.3). For a partial transformation α on I, whose domain is denoted by $d \alpha$, and a function φ mapping $d \alpha$ into G, the mapping λ defined by

$$
\lambda(i, g, \mu)=(\alpha i,(\varphi i) g, \mu) \quad \text { if } \quad i \in \boldsymbol{d} \alpha
$$

and $\lambda(i, g, \mu)=0$ otherwise, is a left translation of S; analogously

$$
(i, g, \mu) \rho=(i, g(\mu \psi), \mu \beta) \quad \text { if } \quad \mu \in \boldsymbol{d} \beta
$$

and $(i, g, \mu) \rho=0$ otherwise, is a right translation of S; they are linked if and only if

$$
\left\{\begin{align*}
i \in d \alpha, p_{\mu(\alpha i)} \neq 0 & \Longleftrightarrow \mu \in \boldsymbol{d} \beta, p_{(\mu \beta) i} \neq 0 \tag{4}\\
& \Longrightarrow p_{\mu(\alpha i)}(\varphi i)=(\mu \psi) p_{(\mu \beta) i}
\end{align*}\right.
$$

In such a case, we write $\omega=(\lambda, \rho) \sim(\alpha, \varphi ; \beta, \psi)$. Conversely, every bitranslation of S is of this form for unique parameters $\alpha, \varphi, \beta, \psi$. It is easy to verify that $\omega^{2}=\omega$ if and only if

$$
\left.\alpha\right|_{r \alpha}=\iota_{r \alpha},\left.\varphi\right|_{r \alpha}: r \alpha \longrightarrow 1,\left.\quad \beta\right|_{r \beta}=\iota_{r \beta},\left.\psi\right|_{r \beta}: r \beta \longrightarrow 1
$$

where $r \alpha$ is the range of $\alpha, c_{r \alpha}$ is the identity mapping on $r \alpha, 1$ is the identity of G, etc. With this notation, we have

Lemma 2. If $\omega \in E_{\Omega(S)}$, then $\omega S \omega=\mathscr{M}^{\circ}\left(\boldsymbol{r} \alpha, G, \boldsymbol{r} \beta ; P^{\omega}\right)$ where P^{ω} is the restriction of P to $\boldsymbol{r} \beta \times \boldsymbol{r} \alpha$.

Proof. Indeed, for $0 \neq(i, g, \mu) \in S$, we have

$$
\begin{aligned}
(i, g, \mu) \in \omega S \omega & \Longleftrightarrow(i, g, \mu)=\lambda(i, g, \mu)=(i, g, \mu) \rho \\
& \Longleftrightarrow(i, g, \mu)=(\alpha i,(\varphi i) g, \mu)=(i, g(\mu \psi), \mu \beta) \\
& \Longleftrightarrow i=\alpha i, \varphi i=1, \mu \psi=\mu, \mu \beta=\mu \\
& \Longleftrightarrow i \in \boldsymbol{r} \alpha, \mu \in \boldsymbol{r} \beta .
\end{aligned}
$$

By Lemma 1, $\omega \mathrm{S} \omega$ is regular, hence the sandwich matrix P^{ω} has a nonzero element in each row and each column.

If the sandwich matrix P has no two distinct rows (or columns) which have the corresponding entries simultaneously nonzero, then P (and also S) is said to have no contractions, see ([3], §6). The importance of this notion stems from the fact that these are precisely completely 0 -simple semigroups all of whose proper congruences are contained in \mathscr{H}.

Lemma 3. Let the notation be as in Lemma 2. If P has no contractions, then neither does P^{ω}.

Proof. Let $i, j \in \boldsymbol{r} \alpha$ and assume that

$$
\begin{equation*}
p_{\mu_{i}} \neq 0 \Longleftrightarrow p_{\mu j} \neq 0 \quad(\mu \in \boldsymbol{d} \beta) . \tag{5}
\end{equation*}
$$

Let $\mu \in M$ be such that $p_{\mu_{i}} \neq 0$. Now $i \in \boldsymbol{r} \alpha$ implies that $i \in \boldsymbol{d} \alpha$ and $\alpha i=i$ since $\alpha^{2}=\alpha$. Hence $i \in \boldsymbol{d} \alpha$ and $p_{\mu(\alpha i)} \neq 0$ which by (4) implies that $\mu \in \boldsymbol{d} \beta$ and $p_{(\mu \beta)_{i}} \neq 0$. Here $\mu \beta \in \boldsymbol{r} \beta$ and $p_{(\mu \beta)_{i}} \neq 0$ so that by (5), we have $p_{(\mu \beta) j} \neq 0$. But then $\mu \in \boldsymbol{d} \beta$ and $p_{(\mu \beta) j} \neq 0$ and hence $j \in \boldsymbol{d} \alpha$ and $p_{\mu(\alpha j)} \neq 0$ by (4). Since $\alpha j=j$, it follows that $p_{\mu j} \neq 0$. By symmetry, we conclude that

$$
p_{\mu i} \neq 0 \Longleftrightarrow p_{\mu j} \neq 0 \quad(\mu \in M),
$$

which by hypothesis that P has no contractions implies that $i=j$. One proves symmetrically that for $\mu, \nu \in \boldsymbol{r} \beta$,

$$
p_{\mu_{i}} \neq 0 \Longleftrightarrow p_{\nu i} \neq 0 \quad(i \in \boldsymbol{r} \alpha)
$$

implies $\mu=\nu$. Therefore P^{ω} has no contractions.
The next result is of general interest for extensions of regular semigroups.

Lemma 4. Let V be an extension of a regular semigroup S. Then every congruence on S contained in \mathscr{H} can be extended to a congruence on V.

Proof. Let σ be a congruence on S contained in \mathscr{H} and τ be the equivalence relation on V whose classes are the σ-classes and singletons $\{v\}$ with $v \in V \backslash S$. Then τ is a congruence if and only if for any $v \in V, a, b \in S$, $a \sigma b$ implies $v a \sigma v b$ and $a v \sigma b v$. Let $a, b \in S$ be such that $a \sigma b$. The hypothesis implies that $a \mathscr{H} b$, and thus $a=b x$ for some $x \in S$. Let b^{\prime} be an inverse of b. Then

$$
a=b x=\left(b b^{\prime} b\right) x=b b^{\prime}(b x)=b b^{\prime} a
$$

and thus for any $v \in V$, we have

$$
v a=v\left(b b^{\prime} a\right)=\left(v b b^{\prime}\right) a \sigma\left(v b b^{\prime}\right) b=v b
$$

since $v b b^{\prime} \in S$. A symmetric argument can be used to show that $a v \sigma b v$. Consequently τ is a congruence and is obviously an extension of σ.

Lemma 5. Let V be a dense extension of a semigroup S. If S is subdirectly irreducible, then so is V. The converse holds if every congruence on S can be extended to a congruence on V.

Proof. This is a part of ([5], III.5.19 Exerc. 5).
We can now prove the desired result.
Theorem 2. Let $S=\mathscr{M}^{\circ}(I, G, M ; P)$ and assume that P has no contractions. Let $\omega \in E_{\Omega(S)}$ and V be a subsemigroup of $\Omega(S)$ such that

$$
\omega \Omega(S) \omega \cap \Pi(S) \cong V \cong \omega \Omega(S) \omega
$$

Then G and V are simultaneously subdirectly reducible or irreducible.

Proof. We have mentioned above that the hypothesis that P has no contractions is equivalent to S having all proper congruences contained in \mathscr{H} ([3], Proposition 6.2). Any one of the numerous descriptions of congruences on a Rees matrix semigroup can be used to easily show that the lattice of all congruences on S contained in \mathscr{H} is isomorphic to the lattice of all congruences (and thus normal subgroups) on G. Under our hypothesis this means that G is subdirectly irreducible if and only if S is.

By Lemma 3, the matrix P^{ω} has no contractions. The above argument for S is now valid for $\omega S \omega$ in view of Lemma 2. Hence G and $\omega S \omega$ are simultaneously subdirectly irreducible or not. By Lemma $1, \omega S \omega$ is regular. It follows that

$$
\begin{equation*}
\omega S \omega \cong \omega \Omega(S) \omega \cap \Pi(S) \tag{6}
\end{equation*}
$$

as in the proof of Corollary 1 to Theorem 1. According to the last reference, we also have that $\omega \Omega(S) \omega \cap \Pi(S)$ is a densely embedded ideal of $\omega \Omega(S) \omega$. Hence by ([5], III.5.6), V given in the statement of the theorem is a dense extension of $\omega \Omega(S) \omega \cap \Pi(S)$. Since the last semigroup has no contractions, its proper congruences are contained in \mathscr{H}, so by Lemma 4, are extendible to V. But then Lemma 5 asserts that $\omega \Omega(S) \omega \cap \Pi(S)$ is subdirectly irreducible if and only if V is.

Now a combination of the statements concerning G and $\omega S \omega$, (6), and $\omega \Omega(S) \omega \cap \Pi(S)$ and V, establishes the theorem.

Note that for $\omega=\left(\iota_{s}, \ell_{s}\right)$, the identity bitranslation, we may take $V=\Pi(S)$ (and $\Pi(S) \cong S$), or $V=\Omega(S)$. Also for any nonzero idempotent e of S, the bitranslation $\omega=\left(\lambda_{e}, \rho_{e}\right)$ gives for $\omega S \omega$ the maximal subgroup G_{e} of S with identity e (and $G_{e} \cong G$). Also observe that we have used Theorem 1 via its Corollary 1.
4. Retracts. A subsemigroup T of a semigroup S is a retract (of S) if there exists a homomorphism φ of S onto T which leaves all elements of T fixed; φ is then a retraction. We discuss here regular semigroups in which all its maximal submonoids are retracts. A related condition will be expressed by means of bitranslations; for this reason we introduce

Definition. Let S be a semigroup and $(\lambda, \rho) \in E_{\Omega(S)}$ such that (λx) $\rho=\lambda(x \rho)$ for all $x \in S$ (so we can write $\lambda x \rho$ without ambiguity). The mapping

$$
[\lambda, \rho]: x \longrightarrow \lambda x \rho \quad(x \in S)
$$

is said to be induced by (λ, ρ).
Lemma 6. Consider the following conditions on a semigroup S.
(a) For any $a, b \in S, e \in E_{s}$, eabe $=$ eaebe.
(b) Every maximal submonoid of S is a retract.
(c) Every idempotent inner bitranslation on S induces a retraction.
Then (a) and (b) are equivalent; (c) implies (a); and (a) implies (c) if S is weakly reductive.

Proof. Straightforward.
Recall that an idempotent semigroup satisfying the condition
(a) in Lemma 6 is called a regular band. We are now ready for the theorem of this section.

Theorem 3. Let S be a regular semigroup. If S satisfies condition (a) in Lemma 6, then it also satisfies the following conditions.
(d) S is completely regular.
(e) Every idempotent bitranslation induces a retraction.
(f) Idempotents of S form a regular band.

Proof. (d). Let a^{\prime} be an inverse of an element a of S. Then

$$
a=\left(a \alpha^{\prime}\right) \alpha \alpha^{\prime}\left(\alpha \alpha^{\prime}\right) a=\left(\alpha \alpha^{\prime}\right) a\left(a \alpha^{\prime}\right) a^{\prime}\left(a \alpha^{\prime}\right) a \in \alpha^{2} S a
$$

which by ([5], IV.1.6) implies that S is completely regular.
(e) Let $(\lambda, \rho) \in E_{\Omega(S)}, x, y \in S$. Using part (d), for any element $z \in S$, we let z^{\prime} be the inverse of z in the maximal subgroup of S containing z. We compute

$$
\begin{aligned}
\lambda(x y) \rho & =[\lambda(x y) \rho][\lambda(x y) \rho]^{\prime}[\lambda(x y) \rho] \\
& =\left\{\left[(\lambda x)(\lambda x)^{\prime}\right](\lambda x)(y \rho)[\lambda(x y) \rho]^{\prime}\left[(\lambda x)(\lambda x)^{\prime}\right]\right\}(\lambda x)(y \rho) \\
& =\left\{\left[(\lambda x)(\lambda x)^{\prime}\right](\lambda x)\left[(\lambda x)(\lambda x)^{\prime}\right](y \rho)[\lambda(x y) \rho]^{\prime}\left[(\lambda x)(\lambda x)^{\prime}\right]\right\}(\lambda x)(y \rho) \\
& \left.\left.=\left\{\left[(\lambda x)(\lambda x)^{\prime}\right](\lambda x \rho)\left[(\lambda x)(\lambda x)^{\prime}\right]\right](y \rho)[\lambda(x y) \rho]^{\prime}\left[(\lambda x)(\lambda x)^{\prime}\right]\right\}(\lambda x)\right)(y \rho) \\
& =\left\{\left[(\lambda x)(\lambda x)^{\prime}\right](\lambda x \rho)(y \rho)[\lambda(x y) \rho]^{\prime}\left[(\lambda x)(\lambda x)^{\prime}\right]\right\}(\lambda x)(y \rho) \\
& =(\lambda x)(\lambda y \rho)[\lambda(x y) \rho]^{\prime}[\lambda(x y) \rho] \\
& =(\lambda x \rho)(\lambda y \rho)[\lambda(x y) \rho]^{\prime}[\lambda(x y) \rho] ;
\end{aligned}
$$

analogously

$$
\lambda(x y) \rho=[\lambda(x y) \rho][\lambda(x y) \rho]^{\prime}(\lambda x \rho)(\lambda y \rho) .
$$

On the other hand,

$$
\begin{aligned}
(\lambda x \rho)(\lambda y \rho)= & (\lambda x \rho)(\lambda y \rho)[(\lambda x \rho)(\lambda y \rho)]^{\prime}(\lambda x \rho)(\lambda y \rho) \\
= & {\left[(\lambda x \rho)(\lambda x \rho)^{\prime}\right](\lambda x \rho)(y \rho)[(\lambda x \rho)(\lambda y \rho)]^{\prime}\left[(\lambda x \rho)(\lambda x \rho)^{\prime}\right](\lambda x \rho)(\lambda y \rho) } \\
= & {\left[(\lambda x \rho)(\lambda x \rho)^{\prime}\right](\lambda x \rho)\left[(\lambda x \rho)(\lambda x \rho)^{\prime}\right](y \rho) } \\
& \times[(\lambda x \rho)(\lambda y \rho)]^{\prime}\left[(\lambda x \rho)(\lambda x \rho)^{\prime}\right](\lambda x \rho)(\lambda y \rho) \\
= & {\left[(\lambda x \rho)(\lambda x \rho)^{\prime}\right](\lambda x)\left[(\lambda x \rho)(\lambda x \rho)^{\prime}\right](y \rho) } \\
& \times[(\lambda x \rho)(\lambda y \rho)]^{\prime}\left[(\lambda x \rho)(\lambda x \rho)^{\prime}\right](\lambda x \rho)(\lambda x \rho) \\
= & (\lambda x \rho)(\lambda x \rho)^{\prime}[\lambda(x y) \rho][(\lambda x \rho)(\lambda y \rho)]^{\prime}(\lambda x \rho)(\lambda y \rho) .
\end{aligned}
$$

The conjunction of (7) and (9) shows that $\lambda(x y) \rho$ and $(\lambda x \rho)(\lambda y \rho)$ are \mathscr{J}-related. Since S is completely regular, they are contained in a completely simple subsemigroup of S. Hence (7) and (8) imply that
they are also contained in the same maximal subgroup G of S. But then $[\lambda(x y) \rho]^{\prime}[\lambda(x y) \rho]$ must the identity of G, which together with (7) shows that $\lambda(x y) \rho=(\lambda x \rho)(\lambda y \rho)$. This is evidently equivalent to the statement that the bitranslation (λ, ρ) induces a retraction.
(f) It suffices to show that idempotents of S form a subsemigroup. Using a Rees matrix representation of a completely simple semigroup T, it is an easy exercise to show that condition (a) in Lemma 6 implies that E_{T} is a subsemigroup of T. Since S is a semilattice of completely simple semigroups, ([5], IV.3.7) implies that E_{S} is a subsemigroup of S.

Comparing Lemma 6 with Theorem 3, we see that if in a regular semigroup every idempotent inner bitranslation induces a retraction, then so does every idempotent bitranslation. The semigroup S of all transformations on a set of two elements is regular and trivially satisfies condition (a); in this semigroup \mathscr{H} is not a congruence. However, if S is a regular semigroup satisfying (a) in which \mathscr{H} is a congruence, then it follows easily from ([4], Theorem 3.2) that S is a subdirect (even spined) product of a semilattice of groups and a regular band. Conversely, it is easy to see that a regular semigroup S which is a subdirect product of a semilattice of groups and a regular band must satisfy (a) and \mathscr{H} is a congruence on S. It seems unlikely that conditions (d) and (f) in Theorem 3 imply condition (a).

One might conjecture that if a regular semigroup S satisfies condition (a) and $\Omega(S)$ is regular, then $\Omega(S)$ also satisfies (a). This, however, is far from being the case. If T is the semigroup of all transformations on a set with at least three elements, then the constants in T form an ideal S of T such that: $(\alpha) S$ is a left (if the transformations are written on the left) zero semigroup, thus regular and satisfying (a), (β) $\Omega(S) \cong T$ so that $\Omega(S)$ is a regular semigroup. If $\Omega(S)$ satisfied (a), then by Theorem 3, it would have to be completely regular. But T is not completely regular, so $\Omega(S)$ does not satisfy (a).
5. Examples. The following examples illustrate some of the applications of Theorems 1 and 2. The proofs of many assertions that follow are either omitted or can be found in [5].
(a) The semigroup $\mathscr{T}(X)$ of transformations on a set X (written on the left). For the constants $\mathscr{T}_{0}(X)$, we have

$$
\mathscr{T}_{0}(X) \cong \mathscr{M}(X, 1,\{X\} ; P)
$$

with $P=\left(p_{X a}\right), p_{X a}=1$ (right zero semigroup on X), 1 is a one element group,

$$
\mathscr{T}(X) \cong \Omega(\mathscr{M}(X, 1,\{X\}, P))
$$

For any $\alpha \in E_{\sigma(X)}$, we have

$$
\alpha \mathscr{T}(X) \alpha \cong \Omega\left(\mathscr{M}\left(r \alpha, 1,\{r \alpha\} ; P^{\alpha}\right)\right) \cong \mathscr{T}(\alpha X)
$$

where P^{α} is essentially the restriction of P.
(b) The semigroup $\mathscr{F}(X)$ of partial transformations on a set X (written on the left). For the (partial) constants $\mathscr{F}_{0}(X)$, we have

$$
\mathscr{F}_{0}(X) \cong \mathscr{M}^{0}\left(X, 1, \mathfrak{P}(X) ; P_{X}\right)
$$

where $\mathfrak{P}(X)$ is the set of all nonempty subsets of $X, P_{X}=\left(p_{A q}\right)$, $p_{A a}=1$ if $a \in A, p_{A a}=0$ if $\alpha \notin A$;

$$
\begin{equation*}
\mathscr{F}(X) \cong \Omega\left(\mathscr{M}^{0}\left(X, 1, \mathfrak{F}(X) ; P_{X}\right)\right) \tag{10}
\end{equation*}
$$

For any $\alpha \in E_{F(X)}$, we have

$$
\begin{equation*}
\alpha \mathscr{F}(X) \alpha \cong \Omega\left(\mathscr{A}^{0}\left(r \alpha, 1, r \beta ; P^{\alpha}\right)\right) \tag{11}
\end{equation*}
$$

where β is a partial transformation on $\mathfrak{P}(X)$ with

$$
\begin{aligned}
\boldsymbol{d} \beta & =\{B \subseteq X \mid B \cap \boldsymbol{r} \alpha \neq \varnothing\}, \\
B \beta & =\{x \in \boldsymbol{d} \alpha \mid \alpha x \in B\} \quad \text { if } \quad B \in \boldsymbol{d} \beta \\
\boldsymbol{r} \beta & =\{B \mid B \cap \boldsymbol{r} \alpha \neq \varnothing\},
\end{aligned}
$$

and P^{α} is essentially the restriction of P_{X}. It can be proved that

$$
\begin{equation*}
\mathscr{M}^{0}\left(r \alpha, 1, r \beta ; P^{\alpha}\right) \cong \mathscr{M}^{0}\left(r \alpha, 1, \mathfrak{P}(r \alpha) ; P_{r \alpha}\right) \tag{12}
\end{equation*}
$$

and thus (10)-(12) yield

$$
\alpha \mathscr{F}(X) \alpha \cong \mathscr{F}(r \alpha)
$$

It can be shown that none of the Rees matrix semigroups here has contractions. Hence all these semigroups are subdirectly irreducible.
(c) The semigroup $\mathscr{S}(V)$ of linear transformations on a (left) vector space V (written on the right). We will use the notation and results of ([6], I.2). The semigroup $\mathscr{S}_{0}(V)$ of linear transformations of rank $\leqq 1$ has the property

$$
\mathscr{S}_{0}(V) \cong \mathscr{N}^{0}\left(I_{V^{*}}, \mathscr{N L}^{-}, I_{V} ; P\right)
$$

and

$$
\mathscr{S}(V) \cong \Omega\left(\mathscr{M}^{0}\left(I_{V^{*}}, \mathscr{N}^{-}, I_{V} ; P\right)\right)
$$

For any $0 \neq \alpha \in E_{\mathcal{S}(V)}$, we have

$$
\alpha \mathscr{S}(V) \alpha \cong \Omega\left(\mathscr{M}^{0}\left(I_{\alpha^{*} V^{*}}, \mathscr{M} S^{-}, I_{V \alpha} ; P^{\alpha}\right)\right) \cong \mathscr{S}(V \alpha)
$$

It can be shown that the matrix P has no contractions. Consequently $\mathscr{N} \Delta^{-}$(the multiplicative group of nonzero elements of the division ring Δ of the vector space V), $\mathscr{S}_{0}(V)$ and $\mathscr{S}(V)$ are simultaneously subdirectly reducible or irreducible.
(d) Brandt semigroups $S=\mathscr{M}^{0}(X, G, X ; \Delta)$. For $0 \neq \omega \in E_{\Omega(S)}$, we have

$$
\omega \Omega(S) \omega \cong \Omega\left(\mathscr{L}^{0}(r \alpha, G, r \alpha ; \Delta)\right)
$$

Let $\mathscr{F}(X)$ be the semigroup of partial 1-1 transformations on X, and $\mathscr{I}_{0}(X)$ be the partial 1-1 constants on X. Then

$$
\begin{aligned}
& \mathscr{I}_{0}(X) \cong \mathscr{M}^{0}(X, 1, X ; \Delta) \\
& \mathscr{I}(X) \cong \Omega\left(\mathscr{M}^{0}(X, 1, X ; \Delta)\right)
\end{aligned}
$$

and if $0 \neq \alpha \in E_{\mathcal{J}(X)}$, then

$$
\alpha \mathscr{J}(X) \alpha \cong \Omega\left(\mathscr{M}^{0}(r \alpha, 1, r \alpha ; \Delta)\right) \cong \mathscr{I}(r \alpha)
$$

None of these Rees matrix semigroups has contractions; hence G, $\mathscr{M}^{\circ}(X, G, X ; \Delta), \Omega\left(\mathscr{M}^{0}(X, G, X ; \Delta)\right)$ are simultaneously subdirectly reducible or irreducible. In particular both $\mathscr{I}_{0}(X)$ and $\mathscr{I}(X)$ are subdirectly irreducible.
(e) The semigroup $\mathscr{B}(X)$ of binary relations on a set X. For the semigroup $\mathscr{R}(X)$ of all rectangular binary relations on X, we have

$$
\mathscr{R}(X) \cong \mathscr{M}^{0}(\mathfrak{P}(X), 1, \mathfrak{F}(X) ; P)
$$

with $p_{A B}=1$ if $A \cap B \neq \varnothing$ and $p_{A B}=0$ otherwise. Further,

$$
\mathscr{B}(X) \cong \Omega\left(\mathscr{N}^{0}(\mathfrak{P}(X), 1, \mathfrak{P}(X) ; P)\right) .
$$

Let $0 \neq \sigma \in E_{\mathscr{B}_{(X)}}$. Then

$$
\sigma \mathscr{B}(X) \sigma \cong \Omega\left(\mathscr{M}^{0}\left(r \alpha, 1, r \beta ; P^{\sigma}\right)\right)
$$

where α and β are partial transformations on X for which

$$
\begin{aligned}
& d \alpha=\{A \cong X \mid(X \times A) \cap \sigma \neq \varnothing\} \\
& \alpha A=\{x \in X \mid x \sigma y \text { for some } y \in A\} \text { if } A \in d \alpha
\end{aligned}
$$

and $d \beta$ and $B \beta$ are defined symmetrically, P^{α} is essentially the restriction of P; see [1]. We may let $Y=(r \beta \cup\{\varnothing\}) \backslash(X \sigma)$ and

$$
\begin{equation*}
T=\mathscr{M}^{0}(Y, 1, \boldsymbol{r} \beta ; Q) \tag{13}
\end{equation*}
$$

with $Q=\left(q_{A B}\right), q_{A B}=1$ if $A \nsubseteq B$ and $q_{A B}=0$ otherwise. Using some results of Zareckii [7], one can show that

$$
\mathscr{M}^{0}\left(r \alpha, 1, r \beta ; P^{o}\right) \cong \mathscr{M}^{0}(Y, 1, r \beta ; Q)
$$

so that

$$
\sigma \mathscr{B}(X) \sigma \cong \Omega\left(\mathscr{A}^{0}(Y, 1, r \beta ; Q)\right)
$$

None of these Rees matrix semigroups has contractions. Hence all these semigroups are subdirectly irreducible. In particular, this implies ([7], Proposition 4.4). Also Corollary 1 to Theorem 1 for $S=\mathscr{R}(X)$ implies ([7], Theorem 3.2). The semigroup T in (13) is particularly interesting since it can be constructed directly by means of a completely distributive lattice, which then yields an abstract characterization of maximal submonoids of $\mathscr{B}(X)$, see [7].

References

1. M. Petrich, The translational hull and semigroups of binary relations, Glasgow Math. J., 9 (1968), 12-21.
2. ——, The translational hull in semigroups and rings, Semigroup Forum, 1 (1970), 283-360.
3. ——, Regular semigroups satisfying certain conditions on idempotents and ideals, Trans. Amer. Math. Soc., 179 (1972), 245-269.
4. ——, Regular semigroups which are subdirect products of a band and a semilattice of groups, Glasgow Math. J., 14 (1973), 27-49.
5. - Introduction to Semigroups, Merrill, Columbus, 1973.
6. - Rings and Semigroups, Lecture Notes in Math. No. 380, Springer, New York, Heidelberg, Berlin, 1974.
7. K. A. Zareckiì, Maximal submonoids of the semigroup of binary relations, Semigroup Forum, 9 (1974), 196-208.

Received December 19, 1974.
Pennsylvania State University
University Park, PA 16802

