ON LOOP SPACES WITHOUT p TORSION II

Richard Kane

Let (X, μ) be a 1 -connected H-space such that $H^{*}\left(\Omega X ; Q_{p}\right)$ is torsion free. We study the torsion in $H^{*}\left(X ; Q_{p}\right)$ as well as its algebra structure. In particular we characterize lack of torsion in $H^{*}\left(\Omega X ; Q_{p}\right)$ in terms of the module of indecomposables $Q\left(H^{*}\left(X ; Q_{p}\right)\right)$. We also study the Steenrod module structure of $Q\left(H^{*}\left(X ; Z_{p}\right)\right)$.

1. Introduction. In this paper we will study 1-connected H spaces (X, μ) which have the homotopy type of a $C W$ complex of finite type. Let p be a prime and Q_{p} be the integers localized at the prime p. Let ΩX be the loop space of X. We will assume that $H^{*}\left(\Omega X ; Q_{p}\right)$ is torsion free and study the consequences for $H^{*}\left(X ; Q_{p}\right)$. Our main results generalize those established in [5] where we worked with the stronger hypothesis that X has the homotopy type of a finite $C W$ complex. We will assume familiarity with [5].

Let T be the torsion subgroup of $H^{*}\left(X ; Q_{p}\right)$. It is an ideal of $H^{*}\left(X ; Q_{p}\right)$. Let $F=H^{*}\left(X ; Q_{p}\right) / T$. We first prove

Theorem 1.1. Let (X, μ) be a 1-connecsed H-space such that $H^{*}\left(\Omega X ; Q_{p}\right)$ is torsion free. Then $H^{*}\left(X ; Q_{p}\right)$ has no higher p torsion and F is a free commutative algebra.

The arguments used in establishing 1.1 enable us to characterize lack of p torsion in X in terms of the cohomology of X. Let Z_{p} be the integers reduced $\bmod p$. Let $\rho: Q_{p} \rightarrow Z_{p}$ be the reduction $\bmod p$ map. We will also use ρ to denote the induced cohomology map $\rho: H^{*}\left(X ; Q_{p}\right) \rightarrow H^{*}\left(X ; Z_{p}\right)$. The action of the Steenrod algebra $A^{*}(p)$ on $H^{*}\left(X ; Z_{p}\right)$ induces a Steenrod module structure on $Q\left(H^{*}\left(X ; Z_{p}\right)\right)$. Let $K=\sum_{m \geqq 1} \beta_{p} \mathscr{S}^{m} Q\left(H^{2 m+1}\left(X ; Z_{p}\right)\right)$. Note that for $p=2, K$ is trivial. Let $\bar{Q}=Q\left(H^{\text {even }}\left(X ; Z_{p}\right)\right) / K$. The map ρ induces a map $\alpha: Q\left(H^{\text {even }}\left(X ; Q_{p}\right)\right) \rightarrow$ \bar{Q}. The quotient $\operatorname{map} H^{*}\left(X ; Q_{p}\right) \rightarrow F$ induces a map $\beta: Q\left(H^{*}\left(X ; Q_{p}\right)\right) \rightarrow$ $Q(F)$.

Theorem 1.2. Let (X, μ) be a 1-connected H-space. Then $H^{*}\left(Q X ; Q_{p}\right)$ is torsion free if, and only if, $Q\left(H^{*}\left(X ; Q_{p}\right)\right)$ contains a torsion free submodule M such that:
(a) α induces an isomorphism $M \otimes Z_{p} \cong \bar{Q}$
(b) β induces an isomorphism $M \cong Q^{\text {even }}(F)$.

As in [5] one of the principal tools used to prove results such
as 1.1 and 1.2 is the Eilenberg-Moore spectral sequence converging to $H^{*}\left(\Omega X ; Z_{p}\right)$. In particular we will show

Theorem 1.3. Let (X, μ) be a 1-connected H-space such that $H^{*}\left(\Omega X ; Q_{p}\right)$ is torsion free. Then, in the Eilenberg-Moore spectral sequence $\left\{E_{r}\right\}$ converging to $H^{*}\left(\Omega X ; Z_{p}\right)$ we have $E_{p}=E_{\infty}$.

If we assume that (X, μ) is a finite H-space, or indeed, just that the rational cohomology $H^{*}(X ; Q)$ is an exterior algebra, then we can recover the main results of [5] from Theorems 1.1, 1.2, and 1.3. In particular, we obtain from 1.2 the fact that $H^{*}\left(\Omega X ; Q_{p}\right)$ is torsion free if, and only if, $Q\left(H^{\text {even }}\left(X ; \boldsymbol{Z}_{p}\right)\right)=K$. On the other hand, if $H^{*}(X ; Q)$ is a polynomial algebra then 1.2 implies that $H^{*}\left(\Omega X ; Q_{p}\right)$ is torsion free if, and only if, $H^{*}\left(X ; Q_{p}\right)$ is a torsion free polynomial algebra. This paper arose from an effort to combine these two results. For, in general, $H^{*}(X ; Q)$ is a tensor product of an exterior algebra and a polynomial algebra.

We also deduce one further result about finite H-spaces.

Theorem 1.4. Let (X, μ) be a 1-connected H-space such that $H^{*}\left(\Omega X ; Q_{p}\right)$ is torsion free and $H^{*}\left(X ; Z_{p}\right)$ is finitely generated as an algebra. Then $H^{*}\left(X ; Z_{p}\right)$ is a finite dimensional vector space if, and only if, X is 2-connected.

If ΩX has no p torsion then K is the kernal of the loop map (see 1.3 and 3.3) and hence is a sub-Steenrod module of $Q\left(H^{*}\left(X ; Z_{p}\right)\right.$). We will study this Steenrod module structure for p odd. Our interest in K lies in the fact that T can be determined from K via a Bockstein spectral sequence argument (see [2]). Hence our next theorem can be viewed as structure theorems for T as well. Given an integer n with p-adic expansion $n=\Sigma n_{s} p^{s}$ we say n is binary (with respect to p) if $n_{s}=0$ or 1 for each s. Given a binary integer n define $q(n)$ and $r(n)$ as follows. Let N be the minimal integer s such that $n_{s}=0$ in the p-adic expansion $\Sigma n_{s} p^{s}$ of n. Then let

$$
\begin{aligned}
& q(n)=\left\{\begin{array}{lll}
0 & \text { if } & N=0 \\
\sum_{i=0}^{N-1} p^{i} & \text { if } & N>0
\end{array}\right. \\
& r(n)=\frac{n-q(n)}{p}
\end{aligned}
$$

Theorem 1.5. Let p be odd. Let (X, μ) be a 1-connected H-space such that $H^{*}\left(\Omega X ; Q_{p}\right)$ is torsion free. Then
(a) $K^{2 n}=0$ unless n is binary
(b) For n binary $K^{2 n}=\mathscr{P}^{r(n)} K^{2 q(n)+2 r(n)}$. In particular $K^{2 n}=0$ unless $n \equiv 1 \bmod p$.

Variations of 1.4 and 1.5 are also known to James Lin. In §2 we will discuss Hopf algebras. In $\S 3$ we will discuss loop maps and their relation to the Eilenberg-Moore spectral sequences. In §4 we will reduce the proof of Theorems 1.1 and 1.2 to that of 1.3. In $\S 5$ we will prove Theorem 1.3. In $\S 6$ we will prove Theorem 1.4. In $\S 7$ we will prove Theorem 1.5.

All spaces are assumed to have the homotopy type of $C W$ complexes of finite type. All spaces will have basepoints and all maps will preserve basepoints.

In closing it should be added that, between the writing of [5] and the writing of this paper, much has been learned about torsion in the loop space of finite H-spaces. In particular (see [8]) it is known that the loop space of a 1-connected finite H-space has no odd torsion.

I would also like to thank the referee for his comments. In particular they resulted in a rewriting of $\S 4$.
2. Hopf algebras. In this section we will discuss Hopf algebras over G where $G=Z_{p}, Q$ or Q_{p}. A general reference for Hopf algebras is [10]. All modules will be graded, connected, and of finite type. Given a module M we define its dual M^{*} by the rule $\left(M^{*}\right)^{m}=\operatorname{Hom}\left(M^{m} ; G\right)$. For $G=Z_{p}$, if M is a Steenrod module then M^{*} inherits a Steenrod module structure as well.

When A is a Hopf algebra we use $Q(A)$ and $P(A)$ to indicate indecomposables and primitives respectively. For $G=Z_{p}$ or $Q, P(A)$ and $Q\left(A^{*}\right)$ are dual modules. However, for $G=Q_{p}$, this is not necessarily so, even when A is torsion free, since $Q(A)$ may not be torsion free.

For Hopf algebras over Z_{p} and, in particular, for the concept of a Borel decomposition we refer to $\S 1$ of [5].

For Hopf algebras over Q we only remark that if A is commutative and associative then A is isomorphic, as an algebra, to a tensor produce $\boldsymbol{\bigotimes}_{2 \in I} A_{2}$ where each A_{i} is either an exterior algebra or a polynomial algebra generated by a single element a_{i}. The tensor product is called a Hopf decomposition of A and the elements $\left\{a_{i}\right\}$ are called generators of the decomposition.

For the rest of this section we will consider Hopf algebras over Q_{p}. Given such a Hopf algebra we can tensor with Z_{p} or Q and produce Hopf algebras over these fields. We can use these derived Hopf algebras to study the original Hopf algebra over Q_{p}. It is trivial that:

Lemma 2.1. If A is a Hopf algebra over Q_{p} then

$$
Q(A) \otimes Z_{p} \cong Q\left(A \otimes Z_{p}\right) \quad \text { and } \quad Q(A) \otimes Q \cong(A \otimes Q)
$$

Lemma 2.2. Let A be a Hopf algebra over Q_{p} which is commutative, associative, and torsion free. Then $Q\left(A^{m}\right)$ is torsion free unless $m \equiv 0 \bmod 2 p$.

Proof. By 2.1 it suffices to show that the rank of $Q\left(A^{m} \otimes Z_{p}\right)$ as a Z_{p} module equals the rank of $Q\left(A^{m} \otimes Q\right)$ as a Q module if $m \not \equiv 0 \bmod 2 p$. A subset B of $A \otimes Z_{p}$ (or of $A \otimes Q$) is a simple system of generators if the set $\left\{b_{1}^{r_{1}} b_{1}^{r_{2}} \cdots b_{n}^{r_{n}} \mid b_{i} \in B, 0 \leqq r_{i} \leqq 1\right.$ if $\left|b_{i}\right|$ odd, $0 \leqq r_{i} \leqq p-1$ if $\left|b_{i}\right|$ even $)$ is a Z_{p} basis of $A \otimes Z_{p}$ (or a Q basis of $A \otimes Q$). Pick a Borel decomposition of $A \otimes Z_{p}$ with generators $\left\{\alpha_{i}\right\}_{i \in I}$ and a Hopf decomposition of $A \otimes Q$ with generators $\left\{b_{j}\right\}_{j \in J .}$. The graded sets $S_{1}=\left\{a_{2}^{p^{s}} \neq 0 \mid i \in I, s \geqq 0\right\}$ and $S_{2}=\left\{b_{j}^{p^{s}} \neq\right.$ $0 \mid j \in J, s \geqq 0\}$ are simple systems of generators for $A \otimes Z_{p}$ and $A \otimes Q$ respectively. But A is torsion free. Hence S_{1} and S_{2} must be isomorphic as graded sets. And, if $m \not \equiv 0 \bmod 2 p$, then the elements of S_{1} and S_{2} of dimension m represents a basis for $Q\left(A^{m} \otimes Z_{p}\right)$ and $Q\left(A^{m} \otimes Q\right)$ respectively.

Remark. Lemma 2.2 is still valid if we replace the assertion that A is a Hopf algebra by the hypotheses that $A \otimes Z_{p}$ and $A \otimes Q$ are Hopf algebras. This version will be used in the proof of Lemma 4.4.

The next result is a corollary of 2.2.
Lemma 2.3. Let A be a Hopf algebra over Q_{p} which is bicommutative, biassociative and torsion free. Then $P\left(A^{m}\right)$ and $Q\left(A^{* m}\right)$ are dual Q_{p} modules unless $m \equiv 0 \bmod 2 p$.

It is straightforward that:
Lemma 2.4. Let A be a Hopf algebra over Q_{p} which is torsion free. Then $P(A) \otimes Q=P(A \otimes Q)$.

It then follows that:

Lemma 2.5. Let A be a Hopf algebra over Q_{p} which is bicommutative, biassociative, and torsion free. Then the natural map $\gamma: P\left(A^{m}\right) \rightarrow Q\left(A^{m}\right)$ is an isomorphism unless $m \equiv 0 \bmod 2 p$.

Proof. Suppose $m \not \equiv 0 \bmod 2 p$. By 2.2 both $P\left(A^{m}\right)$ and $Q\left(A^{m}\right)$
are torsion free. Hence, it suffices to show that $\gamma \otimes Q$ is an isomorphism and $\gamma \otimes Z_{p}$ is a monomorphism. The former follows from 2.1, 2.4, and 4.18 of [10]. The latter follows from 2.1, the fact that $P(A) \otimes Z_{p} \subset P\left(A \otimes Z_{p}\right)$ and 4.21 of [10].

Lemma 2.6. Let A be a Hopf algebra over Q_{p} which is bicommutative, biassociative, and torsion free. Then

$$
P\left(A^{m}\right) \otimes Z_{p} \cong P\left(A^{m} \otimes Z_{p}\right)
$$

unless $m \equiv 0 \bmod 2 p$.
Proof. By the proof of 2.5 we have a commutative diagram

where the bottom map is an isomorphism and the other maps are monomorphisms.
3. Loop maps. In this section we will discuss loopmaps for a 1-connected H-space (X, μ). Let $\delta: \Sigma \Omega X \rightarrow X$ be the adjoint map to the identity map 1: $\Omega X \rightarrow \Omega X$. For each of $G=Z_{p}, Q$, or Q_{p}, δ gives rise to the loop maps

$$
\begin{aligned}
& \Omega^{*}: Q\left(H^{m}(X ; G)\right) \longrightarrow P\left(H^{m-1}(X ; G)\right) \\
& \Omega^{*}: Q\left(H_{m-1}(\Omega X ; G) \longrightarrow P\left(H_{m}(X ; G)\right)\right.
\end{aligned}
$$

We will use the same symbols Ω^{*} and Ω_{*} for each case of G. It will be clear from the context what coefficients are involved. For each case of G, Ω^{*} and Ω_{*} are adjoint in the sense that $\left\langle\Omega_{*}(a), b\right\rangle=$ $\left\langle a, \Omega^{*}(b)\right\rangle$ for any $a \in Q\left(H_{*}(\Omega X ; G)\right)$ and $b \in Q\left(H^{*}(X ; G)\right)$.

Let ρ be as in §1. Let \subset denote the inclusion map $c: Q_{p} \rightarrow Q$ as well as the map induced in homology and cohomology. We have identities of the form $\rho \Omega^{*}=\Omega^{*} \rho, \Omega_{*} \rho=\rho \Omega_{*}, \iota \Omega^{*}=\Omega^{*} \iota$, and $\iota \Omega^{*}=$ $\Omega_{*} \ell$. These identities enable us to study the case $G=Q_{p}$ via the cases $G=Z_{p}$ or Q.

We can obtain strong restrictions when $G=Z_{p}$ on Q by using the machinery of spectral sequences. In each of these cases there exists an Eilenberg-Moore spectral sequence converging to $H^{*}(\Omega X ; G)$ and another converging to $H_{*}(X ; G)$. The above loop maps can then be redefined in terms of the appropriate Eilenberg-Moore spectral sequence. For Ω^{*} and the spectral sequence converging to $H^{*}(\Omega X ; G)$ see [3], §2 of [5] and [12]. For Ω_{*} and the spectral sequence con-
verging to $H_{*}(X ; G)$, at least for the case $G=Z_{p}$, see [3]. Using this machinery we can deduce

Lemma 3.1. For $G=Q, \Omega^{*}$ and Ω_{*} are isomorphisms.
Lemma 3.2. (i) $\Omega^{*}: Q\left(H^{\text {odd }}\left(X ; Z_{p}\right)\right) \rightarrow P\left(H^{\text {even }}\left(\Omega X ; Z_{p}\right)\right)$ is injective
$\begin{array}{ll} & \Omega_{*}: Q\left(H_{\text {odd }}\left(\Omega X ; Z_{p}\right)\right) \rightarrow P\left(H_{\text {eren }}\left(X ; Z_{p}\right)\right) \text { is injective. } \\ \text { (ii) } \quad \Omega^{*}: Q\left(H^{\text {even }}\left(X ; Z_{p}\right)\right) \rightarrow P\left(H^{\text {odd }}\left(\Omega X ; Z_{p}\right)\right) \text { is surjective }\end{array}$ $\Omega_{*}: Q\left(H_{\text {even }}\left(\Omega X ; Z_{p}\right)\right) \rightarrow P\left(H_{\text {odd }}\left(X ; Z_{p}\right)\right)$ is surjective.

In both 3.1 and 3.2 the results for Ω^{*} and for Ω_{*} are equivalent. For 3.1 in the case Ω^{*} see [12]. For 3.2 in the case Ω_{*} see [3].

In the case $G=Z_{p}$, the kernel of Ω^{*} is related to the Z_{p} module K defined in $\S 1$. Let $\left\{E_{r}\right\}$ be the Eilenberg-Moore spectral sequence converging to $H^{*}\left(\Omega X ; Z_{p}\right)$. Then

Lemma 3.3. K K $\operatorname{ker} \Omega^{*}$ with equality if, and only if, $E_{p}=E_{\infty}$.
Although it is not explicitly stated as a lemma in [5], 3.3 is used in the proof of 1.1 of [5]. See that proof for an implicit proof of 3.3.
4. Proof of Theorems 1.1 and 1.2. In this section we will show that Theorems 1.1 and 1.2 hold if Theorem 1.3 holds. Then, in the next section, we will prove Theorem 1.3. Our reason for proving the theorems in this order is that, in the proof of 1.3 for the case $p=2$, we want to assume that 1.1 holds up to a certain dimension in $H^{*}\left(X ; Z_{2}\right)$. Since it will be trivial that 1.3 holds in the desired range of dimensions the proofs in this section show that it is indeed valid to suppose that 1.1 holds as well. For, although, for convenience, we only prove the absolute case, it will be apparent that the proofs of this section can be modified to show that 1.1 and 1.2 hold up to certain dimension in $H^{*}\left(X ; Z_{p}\right)$ if 1.3 holds up to the same dimension.

Assume for the rest of this section that (X, μ) is a 1-connected H-space such that $E_{p}=E_{\infty}$ whenever $H^{*}\left(\Omega X ; Q_{p}\right)$ is torsion free.

Before proving 1.1 and 1.2 we make a few remarks about the cohomology Bockstein spectral sequence. As shown in [1] the cohomology spectral sequence $\left\{B_{r}\right\}$ is a spectral sequence of Hopf algebras with $B_{1}=H^{*}\left(X ; Z_{p}\right)$ and $B_{\infty}=H\left(X ; Q_{p}\right) / T \otimes Z_{p}$. The map ρ induces a map $\rho_{r}: H^{*}\left(X ; Q_{p}\right) \rightarrow B_{r}$ of algebras for all r. The differential d_{r} acts trivially on all elements in Image ρ_{r} and Image $d_{r}=\rho_{r}\left(T_{r}\right)$ where T_{r} is the torsion subgroup of $H^{*}\left(X ; Q_{p}\right)$ consisting
of elements of order p^{r}. It is this spectral sequence plus the refinements of it as developed in [2] which will be the major tool used in proving 1.1 and 1.2.
(A) Proof of Theorem 1.1. We assume that $H^{*}\left(\Omega X ; Q_{p}\right)$ is torsion free. Also, until further notice we assume that p is odd. Since $E_{p}=E_{\infty}$ it follows from 3.2 (ii) and 3.3 that the loop map induces an isomorphism

$$
\begin{equation*}
\Omega^{*}: \bar{Q} \cong P\left(H^{\text {odd }}\left(\Omega X ; Z_{p}\right)\right) \tag{4.1}
\end{equation*}
$$

It is this consequence of 1.3 which we will be using in the proof of 1.1.

We being our proof of 1.1 by studying a spectral sequence $\left\{E_{r}\right\}$ which passes from B_{1} to B_{2}. It is the spectral sequence induced from the augmentation filtration on B_{1}. As shown in [2] this is a spectral sequence of commutative, associative, primitively generated Hopf algebras. The augmentation filtration on B_{1} induces a filtration on $B_{2}=H\left(B_{1}\right)$ (not necessarily the augmentation filtration). With respect to these filtrations we have $E_{1}=E^{\circ}\left(B_{1}\right)$ and $E_{\infty}=E^{0}\left(B_{2}\right)$. Since the filtration on B_{1} is the augmentation filtration it follows that B_{1} and $E^{0}\left(B_{1}\right)$ are isomorphic as algebras. In addition $Q\left(B_{1}\right)$ is a differential submodule of $E^{0}\left(B_{1}\right)$, it generates $E\left(B_{1}\right)$ as an algebra, and all of its elements are primitive. (See in particular 1 and 2 of [2] for further details on these facts.) Considering the action of d_{1} on $Q\left(B_{1}\right) \subset E_{1}$ we have

Lemma 4.2. $K=$ Image d_{1}.
Proof. We can identify the action of d_{1} on $Q\left(B_{1}\right)$ with the action of the Bockstein β_{p} on $Q\left(H^{*}\left(X ; Z_{p}\right)\right)$. By 3.2(i) and the fact that $H^{*}\left(\Omega X ; Q_{p}\right)$ is torsion free it follows that $\beta_{p}: Q\left(H^{\text {even }}\left(X ; Z_{p}\right)\right) \rightarrow$ $Q\left(H^{\text {odd }}\left(X ; Z_{p}\right)\right)$ is trivial. Similary, this time using 4.1, $\beta_{p}: Q\left(H^{\text {odd }}(X\right.$; $\left.\left.Z_{p}\right)\right) \rightarrow Q\left(H^{\text {even }}\left(X ; Z_{p}\right)\right) \rightarrow \bar{Q}$ is trivial. Now, by definition, $K \subset$ Image β_{p}. Then, by the above, $K=$ Image β_{p}.

It follows from 4.2 that any element of \bar{Q} defines a nonzero element in E_{2} and thus in $Q\left(E_{2}\right)$ as well. Considering \bar{Q} as laying in $Q\left(E_{2}\right)$ we wish to show

Lemma 4.3. $\bar{Q} \cong Q^{\text {even }}\left(E_{2}\right)$.
Proof. Let $A \subset E_{1}$ be the primitively generated Hopf algebra generated by $Q^{\text {odd }}\left(B_{1}\right)$ and $d_{1} Q^{\text {odd }}\left(B_{1}\right)$. Hence A is a differential sub

Hopf algebra of E_{1}. Because p is odd A is isomorphic as a differential Hopf algebra to a tensor product $\otimes A_{i}$ of differential Hopf algebras where $A_{i}=E\left(e_{i}\right)$ or $A_{i}=E\left(e_{i}\right) \otimes P\left(d e_{i}\right) /\left\langle\left(d e_{i}\right)^{p}\right\rangle(1 \leqq s \leqq \infty)$. Thus
(i) $H(A)$ is an exterior algebra on odd dimensional generators. Further, by $4.2, d_{1}$ acts trivially on $Q^{\text {even }}\left(B_{1}\right) \subset E_{1}$. Since $Q\left(B_{1}\right)$ generates E_{1} as an algebra it follows that the induced map $H(A) \rightarrow$ $H\left(E_{1}\right)$ is injective. In other words
(ii) $H(A)$ is a sub Hopf algebra of $H\left(E_{1}\right)$.

We now study the quotient Hopf algebras $E_{1} / / A$ and $H\left(E_{1}\right) / / H(A)$. By 4.2 the elements of \bar{Q} represent elements in $E_{1} / / A$ and thus in $Q\left(E_{1} / / A\right)$. Further, by the definition of A plus 4.2,
(iii) $\bar{Q} \cong Q\left(E_{1} / / A\right)$.

The induced differential acts trivially on $E_{1} / / A$. Thus $H\left(E_{1} / / A\right)=$ $E_{1} / / A$. By (iii) the induced map $H\left(E_{1}\right) \rightarrow H\left(E_{1} / / A\right)=E_{1} / / A$ is surjective. This map factors through $H\left(E_{1}\right) / / H(A)$ to give a surjective $\operatorname{map} f: H\left(E_{1}\right) / / H(A) \rightarrow E_{1} / / A$. We now use f to show
(iv) $H\left(E_{1}\right) / / H(A)$ and $E_{1} / / A$ are isomorphic as Hopf algebras.

For f induces a surjective map $1 \otimes f: H(A) \otimes H\left(E_{1}\right) / / H(A) \rightarrow H(A) \otimes$ $E_{1} / / A$. But $H(A) \otimes H\left(E_{1}\right) / / H(A) \cong H\left(E_{1}\right)$ as a Z_{p} module by 4.4 of [10]. Also the Serre spectral sequence of the extension $Z_{p} \rightarrow A \rightarrow E_{1} \rightarrow$ $E_{1} / / A \rightarrow Z_{p}$ converges from $H(A) \otimes E_{1} / / A$ to $H\left(E_{1}\right)$. Thus it follows by a counting argument that $1 \otimes f$ must be an isomorphism. Thus f is an isomorphism.

Finally, by 3.11 of [10] plus (iv) we have an exact sequence of Z_{p} modules
(v) $Q(H(A)) \rightarrow Q\left(H\left(E_{1}\right)\right) \rightarrow Q\left(E_{1} / / A\right) \rightarrow 0$.

The lemma now follows from (i), (ii), (iii), (iv) and (v).
We will prove Theorem 1.1 by showing by induction on dimension that
(a) $E_{2}=E_{\infty}$
(b) $B_{2}=B_{\infty}$
(c) B_{∞} is a free algebra.

Since F is torsion free and $F \otimes Q=H^{*}(X ; Q)$ is a free commutative algebra, condition (c) on $B_{\infty}=F \otimes Z_{p}$ is equivalent to asserting that (c') F is a free algebra.
Thus 1.1 follows from (a), (b), (c).
Consider the following condition:
(d) \bar{Q} has a set of representatives in B_{1} which survive to B_{∞} and represent a basis of $Q^{\text {even }}\left(B_{r}\right)$ for $r \geqq 2$.

We will prove (a), (b), (c) by using the following
Lemma 4.4. If condition (d) holds up to dimension $2 n$ then conditions (a), (b), and (c) hold up to dimension $2 n$.

Proof. We will only prove the absolute case. It will be obvious that the dimension restrictions can be inserted into the proof. So assume that (d) holds in all dimensions.

Condition (c). Since F is torsion free and $F \otimes Q$ is a free algebra condition (c^{\prime}) follows from showing that $Q(F)$ is torsion free. For $Q^{\text {odd }}(F)$ this follows from 2.2 and the remark which follows it. For $Q^{\text {even }}(F)$ this follows from (d). For we have a commutative diagram

where α and ρ are as in $\S 1$. By (d) α is surjective. By (*), 2.6, and the fact that $P\left(H\left(\Omega X ; Q_{p}\right)\right)$ is torsion free it follows that $Q\left(H^{\text {even }}\left(X ; Q_{p}\right)\right)$ contains a torsion free submodule M such that α induces an isomorphism $M \otimes Z_{p} \cong \bar{Q}$ and Ω^{*} induces an isomorphism $M \cong P\left(H^{\text {odd }}\left(\Omega X ; Q_{p}\right)\right)$. But the loop map factors through $Q(F)$

Thus β restricted to M is injective. But by (d) B restricted to M is also surjective. Thus $Q^{\text {even }}(F) \cong M$ is torsion free.

Condition (b). We proceed by induction. It follows from (c) and (d) that B_{r} is a free algebra for $r \geqq 2$. Now suppose $B_{r}=B_{2}$ for $r \geqq 2$. If $B_{r} \neq B_{r+1}$ we can pick the minimal dimension for which there exists $x \in B_{r}$ such that $d_{r}(x)=y \neq 0$. Then by 4.21 of [10] y is either nondecomposable or a p th power. But y nondecomposable is not possible since (d) implies that d_{r} acts trivially on $Q\left(B_{r}\right)$. And $y=z^{p}$ is not possible since B_{r+1} is a free algebra and z would not generate a polynomial subalgebra of B_{r+1}. We conclude that $B_{r}=B_{r+1}$.

Condition (a). The argument from (b) will suffice provided we can show
(i) \bar{Q} survives to E_{∞} and $\bar{Q} \cong Q^{\text {even }}\left(E_{r}\right)$ for $r \geqq 2$
(ii) E_{∞} is a free algebra.

Regarding (i) \bar{Q} survives to E_{∞} by condition (d). We show that
$\bar{Q}=Q^{\text {even }}\left(E_{r}\right)$ by induction on r. For $r=2$ see 4.3. For general r we duplicate the arguments given in the proof of 4.3. Several minor modifications are necessary. We let A be the differential Hopf algebra generated by $P^{\text {odd }}\left(E_{r-1}\right) \subset E_{r}$. (Recall that, by 4.23 of [10], $P^{\text {odd }}\left(E_{r-1}\right) \cong Q^{\text {odd }}\left(E_{r-1}\right)$.) Also, instead of 4.2, we use the fact that $Q^{\text {even }}\left(E_{r-1}\right) \cong \bar{Q}$ has representative which survive to E_{r}.

Regarding (ii) it suffices to show that $Q\left(B_{2}\right)$ and $Q\left(E_{\infty}\right)$ are isomorphic as graded Z_{p} modules; for by (b) and (c), $B_{2}=B_{\infty}$ is a free algebra, while B_{2} and $E_{\infty}=E^{\circ}\left(B_{2}\right)$ are isomorphic as Z_{p} modules. In even dimensions this follows from (i) and (d). In odd dimensions this can be seen by taking a simple system of generators S_{1} and S_{2} for B_{1} and B_{2} respectively. (See the proof of 2.2 for the meaning of simple system.) Since B_{2} and E_{∞} are isomorphic as Z_{p} modules it follows that S_{1} and S_{2} are isomorphic as graded sets. But the elements of S_{1} and S_{2} of odd dimension represent a basis of $Q^{\text {odd }}\left(B_{2}\right)$ and $Q^{\text {odd }}\left(E_{\infty}\right)$ respectively. (Again see 2.2).

We now prove that (d) is true in all even dimensions. We use induction. Suppose (d) is true in dimension $\leqq 2 n-2$. We will use the term "rank" in the sense of the dimension of a Z_{p} vector space. We have the following sequence of inequalities

$$
\begin{equation*}
\operatorname{rank} Q^{2 n}\left(E_{2}\right) \geqq \operatorname{rank} Q^{2 n}\left(E_{\infty}\right) \geqq \operatorname{rank} Q^{2 n}\left(B_{2}\right) \geqq \operatorname{rank} Q^{2 n}\left(B_{\infty}\right) \tag{4.5}
\end{equation*}
$$

The first inequality relation follows from the fact that X is 1-connected and that (a) holds in dimension $\leqq 2 n-2$. The second from the fact that $E_{\infty}=E^{0}\left(B_{2}\right)$. The third from the fact that (b) holds in dimension $\leqq 2 n-2$ and that X is 1 -connected. Furthermore, we have strict equalities throughout (4.5) only if condition (d) holds in dimension $\leqq 2 n$. For the equalities

$$
\operatorname{rank} Q^{2 n}\left(E_{2}\right)=\operatorname{rank} Q^{2 n}\left(E_{\infty}\right)=\operatorname{rank} Q^{2 n}\left(B_{2}\right)
$$

plus 4.3 ensures that $\bar{Q}^{2 n}$ has a set of representatives in B_{1} which survive to B_{2} and represent a basis of $Q^{2 n}\left(B_{2}\right)$. The equality

$$
\operatorname{rank} Q^{2 n}\left(B_{2}\right)=\operatorname{rank} Q^{2 n}\left(B_{\infty}\right)
$$

then implies the rest of (d).
Thus to establish condition (d) in dimension $2 n$ it suffices to prove

Lemma 4.6. $\quad \operatorname{rank} Q^{2 n}\left(B_{\infty}\right) \geqq \operatorname{rank} Q^{2 n}\left(E_{2}\right)$.
Proof. We have the following sequence of equalities or inequalities

$$
\begin{array}{rlr}
\operatorname{rank} Q^{2 n}\left(E_{2}\right) & =\operatorname{rank} \bar{Q}^{2 n} \quad(\text { by } 4.3) \\
& =\operatorname{rank} P\left(H^{2 n-1}\left(\Omega X ; Z_{p}\right)\right) \quad \text { (by 4.1) } \\
& =\operatorname{rank} P\left(H^{2 n-1}(\Omega X ; Q)\right) \quad(\text { by } 2.4 \text { and 2.6) } \\
& =\operatorname{rank} Q\left(H^{2 n}(X ; Q)\right) \quad(\text { by } 3.1) \\
& =\operatorname{rank} Q^{2 n}(F \otimes Q) & \\
& \leqq \operatorname{rank} Q^{2 n}\left(F \otimes Z_{p}\right) \quad(\text { by 2.1) } \\
& =\operatorname{rank} Q^{2 n}\left(B_{\infty}\right) . &
\end{array}
$$

This completes the proof of 1.1 for p odd. For $p=2$ we use the same basic argument. However it must be modified when dealing with B_{1} and the spectral sequence $\left\{E_{r}\right\}$ converging from B_{1} to B_{2}. The difficulty arises from the fact that $B_{1}=H^{*}\left(X ; Z_{2}\right)$ may contain odd dimensional elements x such that $x^{2} \neq 0$. Thus the decomposition $\otimes A_{i}$ of the Hopf algebra A which appears in the proof of 4.3 may be more complicated than for p odd. On the other hand this type of difficulty disappears in B_{r} for $r>1$. For, if $x \in H^{2 m+1}\left(X ; Z_{2}\right)$ then $x^{2}=S q^{2 m+1}=S q^{1} S q^{2 m}(x)$. Since $S q^{1}$ is the first Bockstein differential it follows that the square of any odd dimensional element in $B_{2}=H\left(B_{1}\right)$ is trivial.

In dealing with B_{1} we proceed in the same basic way as we did for p odd. We first use the argment employed in 4.3 to show

Lemma 4.7. $\bar{Q} \cong Q^{\text {even }}\left(E_{3}\right)$.
By which we mean that $\bar{Q} \subset E_{1}$ survives to E_{3} and projects isomorphically onto $Q^{\text {even }}\left(E_{3}\right)$. The argument given will also show that

Lemma 4.8. $x^{2}=0$ if $x \in E_{3}$ is odd dimensional.
Thus the difficulty with odd dimensional squares disappears at the E_{3} level. Then, using 4.7 in place of 4.3 , we can proceed, as we did for p odd, to establish (a), (b), (c) and (d), only we replace condition (a) by the condition

$$
E_{3}=E_{\infty} .
$$

Hence once we have proved 4.7 and 4.8 we will be done.
We first observe that $E_{1}=E_{2}$. For it suffices to show that d_{1} acts trivially on $Q\left(B_{1}\right) \subset E_{1}$. But this follows from 4.2 which is valid for $p=2$ as well. Now, to prove 4.7 and 4.8 , we proceed as we did for 4.3. We will prove properties (i), (ii), (iii), (iv) and (v) as established there, only for E_{3} rather than for E_{2}. Two main differences arise. The first, as already mentioned, concerns the fact that the decomposition $\otimes A_{i}$ of A may be more complicated than
for p odd. The second difference concerns $Q\left(B_{1}\right)$. Since $E_{1}=E_{2}$ it follows that $Q\left(B_{1}\right)$ is a primitive submodule of E_{2} which generates E_{∞} as an algera. However $Q\left(B_{1}\right)$ is not necessarily invariant under the action of d_{2} as it was for d_{1}. For the action of d_{2} on $Q\left(B_{1}\right)$ reflects the action of $S q^{1}$ on the indecomposables of B_{1} modulo the triple decomposables. However, this fact, rather than complicating the situation further, will actually compensate for the difficulties with A.

We begin by proving an analogue of 4.2.

Lemma 4.9. $\bar{Q}=Q^{\text {even }}\left(B_{1}\right)$ surves to E_{3}.

Proof. We know at least that if $x \in Q\left(B_{1}\right)$ then $d_{2}(x)$ is decomposable. Hence we need only show that d_{2} acts trivially on $Q^{\text {even }}\left(B_{1}\right)$. But if $x \in Q^{\text {even }}\left(B_{1}\right)$ then $d_{2}(x)$ is an odd dimensional primitive and hence, by 4.21 of [10], is indecomposable if nonzero.

Of the properties (i), (ii), (iii), (iv) and (v) only (i) presents difficulties. Provided (i) is true, the other properties follow as they did in 4.3, except that the use of 4.2 is replaced by 4.9. So let A be the primitively generated differential Hopf algebra generated by $Q^{\text {odd }}\left(B_{1}\right) \subset E_{2}$. To show $H(A)$ is an exterior algebra let $\boldsymbol{\otimes}_{i_{\in I}} A_{i}$ be a Borel decomposition of A. Given $i \in I$, if $A_{i}=P\left(a_{i}\right) /\left\langle a_{i}^{28+1}\right\rangle$ where $s>0$, let $A_{i}^{\prime}=E\left(a_{i}\right) \otimes P\left(b_{i}\right) /\left\langle b_{i}^{2 s}\right\rangle$ where $\left|b_{i}\right|=\left|a_{i}^{2}\right|$. Otherwise let $A_{i}^{\prime}=A_{i}$. Let $A^{\prime}=\otimes A_{i}^{\prime}$. There is the obvious Z_{p} module map $\gamma:$ $A \rightarrow A^{\prime}$. We can give A^{\prime} a differential Hopf algebra stucture by requiring that γ is an isomorphism of differential coalgebras. Then to establish (i) it suffices to show that $H\left(A^{\prime}\right)$ is an exterior algebra. For the induced map $\gamma_{*}: H(A) \rightarrow H\left(A^{\prime}\right)$ is an isomorphism of coalgebras and thus $P(H(A)) \cong P\left(H\left(A^{\prime}\right)\right)$. But, by 4.23 of [10], the first even dimensional generator of $H(A)$ must be primitive. Hence $P^{\text {even }}(H(A))=0$ implies $Q^{\text {even }}(H(A))=0$. To show $H\left(A^{\prime}\right)$ is an exterior algebra it suffices to show A^{\prime} is isomorphic, as a differential Hopf algebra, to a tensor product as in 4.3. This amount to showing that, for each factor A_{i} of A where $A_{i}=P\left(a_{i}\right) /\left\langle a_{i}^{2 s+1}\right\rangle$ and $\left.s\right\rangle 0$, we have $a_{i}^{2}=d_{2}(b)$ where $b \in A$. Now we can certainly find $b \in E_{3}$ such that $d_{2}(b)=a_{i}^{2}$. For, since the square of any odd dimensional element in $H^{*}\left(H ; Z_{2}\right)$ lies in the image of $\mathrm{S} q^{1}, a_{i}^{2}$ cannot survive to E_{∞}. And, by our comments concerning the action of d_{2} on E_{2}, a_{i}^{2} cannot then survive to E_{3}. We now show that b can be chosen from A. Let $E_{2}^{\text {odd }}$ and $E_{2}^{\text {even }}$ be the primitively generated sub Hopf algebras generated by $Q^{\text {odd }}\left(B_{1}\right)$ and $Q^{\text {even }}\left(B_{1}\right)$ respectively. Then E_{2} is isomorphic as a Hopf algebra to $E_{2}^{\text {odd }} \otimes E_{2}^{\text {even }}$. Hence in dimensions $>0 E_{2}$ is isomorphic as a Z_{p} module to $E_{2}^{\text {odd }} \oplus I$ where I is the ideal
of $E_{2}^{\text {even }}$ in E_{2}. But by $4.9 I$ is invariant under the action of d_{2}. On the other hand, $a_{i}^{2} \in E_{2}^{\text {odd }}$. Thus given b such that $d_{2}(b)=a_{i}^{2}, d_{2}$ acts trivially on the component b^{\prime} of b in I. Replacing b by $b-b^{\prime}$ we have $b \in E_{2}^{\text {odd }} \subset A$.
(B) Proof of Theorem 1.2. Suppose ΩX has no p torsion. Then the module M constructed in the proof of 4.4 was shown to satisfy properties (a) and (b) of Theorem 1.2. The rest of this section will be devoted to proving the converse.

Suppose that there exists a torsion free module M satisfying (a) and (b) of 1.2 . We will show that the Bockstein spectral $\left\{B_{r}\right\}$ for ΩX collapses. Our proof will be by induction on dimension. Suppose $B_{1}=B_{\infty}$ in dimensions $<n$. Define k by the rule $n=2 k+1$ if n is odd and $n=2 k$ if n is even.

Lemma 4.10. $\operatorname{rank} Q^{2 k+1}\left(B_{1}\right) \geqq \operatorname{rank} Q^{2 k+1}\left(B_{\infty}\right)$ with equality only if $B_{1}^{n}=B_{\infty}^{n}$.

Proof. It suffices to prove that, for $r \geqq 1$, $\operatorname{rank} Q^{2 k+1}\left(B_{r}\right) \geqq$ rank $Q^{2 k+1}\left(B_{r+1}\right)$ with equality only if $B_{r}^{n}=B_{r+1}^{n}$. We use the biprimitive spectral sequence $\left\{E_{s}\right\}$ defined in $\S 4$ of [2] where $E_{1}=$ the biprimitive form of B_{r} and $E_{\infty}=$ the biprimitive form of B_{r+1}. By 2.7 of [2] $Q^{\text {odd }}\left(E_{1}\right) \cong Q^{\text {odd }}\left(B_{r}\right)$ and $Q^{\text {odd }}\left(E_{\infty}\right) \cong Q^{\text {odd }}\left(B_{r+1}\right)$ as graded Z_{p} modules. The result then follows from 3.9 of [2] plus the fact that $E_{1}=E_{\infty}$ in dimensions $<n$.

Theorem 1.2 will then follow if we can prove
Lemma 4.11. $\quad \operatorname{rank} Q^{2 k+1}\left(B_{1}\right) \leqq \operatorname{rank} Q^{2 k+1}\left(B_{\infty}\right)$.
Proof. We have the following sequence of isomorphisms:
(i) $M \otimes Q \cong Q\left(H^{\text {even }}(X ; A)\right) \cong P\left(H^{\text {odd }}(\Omega X ; Q)\right)$

$$
\cong Q\left(H^{\text {odd }}(\Omega X ; Q)\right)
$$

The isomorphisms come from property (b) of $1.2,3.1$ and 4.18 of [10] respectively. We also have the following sequence of isomorphisms or surjective maps
(ii) $M \otimes Z_{p} \cong \bar{Q} \rightarrow P\left(H^{\text {odd }}\left(\Omega X ; Z_{p}\right)\right) \cong Q\left(H^{\text {odd }}\left(\Omega X ; Z_{p}\right)\right)$.

That the maps are isomorphic or surjective follows from property (a) of 1.2, 3.2 (ii), and 4.23 of [10] respectively. We then have the following sequence of inequalities

$$
\begin{aligned}
\operatorname{rank} Q^{2 k+1}\left(B_{1}\right) & =\operatorname{rank} Q\left(H^{2 k+1}\left(\Omega X ; Z_{p}\right)\right) \\
& \leqq \operatorname{rank} Q\left(H^{2 k+1}(\Omega X ; Q)\right) \quad \text { (by (i) and (ii)) } \\
& \leqq \operatorname{rank} Q^{2 k+1}\left(B_{\infty}\right) \quad(\text { as in } 4.6) .
\end{aligned}
$$

5. Proof of Theorem 1.3. In this section we will prove Theorem 1.3. For p odd the result follows from Theorem 5.1 of [5]. Hence the rest of this section will be devoted to proving Theorem 1.3 for the case $p=2$. We will work with Z_{2} coefficients and (X, μ) will be a 1-connected H-space such that $H^{*}\left(\Omega X ; Q_{2}\right)$ is torsion free. Our proof is a straightforward modification of that given in $\S 5$ of [5] to show that $E_{2}=E_{\infty}$ when X is a finite H-space. We will assume familiarity with that proof.

We will also assume familiarity with the concept of transpotence elements in homological algebra. It will suffice for our purposes to define them as the nondecomposable elements in the -2 stem of $\operatorname{Tor}_{H^{*}\left(X ; Z_{2}\right)}^{* *}\left(Z_{2} ; Z_{2}\right)$. (=Tor**). In order for Tor** to have a transpotence element of bidegree $(-2, s)$ we must have $s=2^{r+2} t$ for $r \geqq 0$, $t>0$ and $H^{*}\left(X ; Z_{2}\right)$ must possess a nondecomposable of dimension t and of height 2^{r+2} (see [12] for more details).

Our proof consists of three lemmas. The proof in [5] consists of the same three lemmas though they are not stated so explicitly.

Lemma 5.1. $E_{2}=E_{3}$ and $E_{4}=E_{\infty}$.
Lemma 5.2. If $E_{3} \neq E_{4}$ then there exists $0 \neq x \in P\left(H_{2 n}\left(\Omega X ; Z_{2}\right)\right)$ where $x^{2}=0$, all elements in $A^{*}(2)$ of poitive degree act trivially on x, and $n=2^{q+1} Q+2^{q}-2$ for $q, Q>0$.

Lemma 5.3. The properties possessed by x in 5.2 are incompatible.

The first and third lemmas can be deduced as in [5]. Lemma 5.1 follows from 2.6 and 5.1 of [5] while the second half of $\S 5$ of [5] is devoted to proving precisely Lemma 5.3.

As for the proof of Lemma 5.2 it is based on [5] as well. We first observe that, by 5.2 of [5] we can find $0 \neq x \in P\left(H_{s-2}\left(\Omega X ; Z_{2}\right)\right)$ such that $x^{2}=0$ and $\theta(x)=0$ for all $\theta \in A^{*}(p)$ of positive degree. We are left with showing that $n=s-2$ is necessarily of the required form.

Now we obtain x by finding an element $y \in E_{3}^{* *}=$ Tor** $^{* *}$ of the smallest possible total degree such that $d_{3}(y) \neq 0$. Then x is the dual of a transpotence element $z \in E_{3}^{-2, s}=\operatorname{Tor}^{-2, s}$ while x^{2} is the dual of $y \in E_{3}^{-4,2 s}$ (the differential acting nontrivially on y is what "kills" $\left.x^{2}\right)$. Suppose z is the transpotence of the nondecomposable $w \in H^{t}\left(X ; Z_{2}\right)$ where w has height 2^{r+2}. Then $s=2^{r+2} t$. We will be done if we can show

We know that $t \geqq 2$ since X is 1-connected. Hence $s \geqq 8$ and $s \leqq 2 s-4$. But since d_{3} acts trivially on all elements in $E_{3}^{* *}$ of total degree less than $2 s-4$ it follows that $E_{2}=E_{\infty}$ when the total degree is less than $2 s-4$. Therefore, Theorems 1.1 and 1.2 hold for $H^{*}\left(X ; Z_{2}\right)$ in dimensions less than $2 s-4$. Thus, within this range of dimensions, any even dimension nondecomposable of $H^{*}\left(X ; Z_{2}\right)$ generates a polynomial subalgebra of $H^{*}\left(X ; Z_{2}\right)$. Hence t must be odd.

Remark. The only point on which our proof of Lemma 5.2 differs from [5] is in the justification given for 5.4. In [5] we simply eliminated the possibility of even dimensional nondecomposables existing in dimension s or less.
6. Proof of Theorem 1.4. In this section we prove Theorem 1.4. Throughout this section we assume that (X, μ) is a 1-connected H-space such that $H^{*}(X \Omega, \mu)$ is torsion free and $H\left(X ; Z_{p}\right)$ is finitely generated as an algebra.

By 1.1 any element in $H^{*}\left(X ; Z_{p}\right)$ of dimension 2 generates a polynomial subalgebra of $H^{*}\left(X ; Z_{p}\right)$. Hence, if $H^{*}\left(X ; Z_{p}\right)$ is a finite algebra, then X must be 2 -connected.

The rest of this section is devoted to proving the converse. So, assume X is 2-connected. Let N be the nilradical, that is, the elements of finite height in $H^{*}\left(X ; Z_{p}\right)$. Then N is a Hopf ideal in $H^{*}\left(X ; Z_{p}\right)$ (in particular, see formula (*) in 4.2 of [5]). Let $P=$ $H^{*}\left(X ; Z_{p}\right) / N$. It suffices to show P is trivial. We will do this by showing

Lemma 6.1. $Q\left(P^{m}\right)=0$ unless $m \equiv 0 \bmod 2 p$ and then, by a different argument, that

Lemma 6.2. If $Q\left(P^{m}\right) \neq 0$ and $Q\left(P^{i}\right)=0$ for $i<m$ then $m \equiv$ $2 \bmod 2 p$.

We will do the case $p=2$ in detail. Now N is invariant under the action of the Steenrod algebra $A^{*}(2)$ (see 3.4 of [5]). Hence, the Steenrod module stucture of $H^{*}\left(X ; Z_{2}\right)$ induces one on the polynomial Hopf algebra P.

Proof of 6.1. Our proof is based on the idea of a contraction as defined by Thomas in $\S 3$ of [13]. First, we show that $P^{2 s+1}=0$ for all s. By 4.21 of [10] and the fact that P is finitely generated as an algebra it follows that $P^{2 s+1}$ contains nonzero primitive elements for at most a finite number of values for s. It follows that P has
only trivial primitive elements of add dimension. For, let t be the maximum integer for which there exists $0 \neq a \in P^{2 t+1}$ which is primitive. In particular $t>0$ since X is 2-connected. But $a^{2}=S q^{1} S q^{2 t}(\alpha) \neq 0$. Therefore $b=S q^{2 t}(a)$ is nonzero and primitive which contradicts the maximality of t. Finally, it follows that P has only trivial elements in odd dimensions. For, if we pick the minimal s such that $P^{2 s+1} \neq 0$ then every element in $P^{2 s+1}$ is primitive.

Secondly, we show that $P^{4 s+2}=0$ for all s. Let $\left\langle S q^{1}\right\rangle$ be the ideal in $A^{*}(2)$ generated by $S q^{1}$. Then, by the first paragraph, all elements of $\left\langle\mathrm{S} q^{1}\right\rangle$ act trivially on P and the action of $A^{*}(2)$ on P induces an action of $A^{*}(2) /\left\langle S q^{1}\right\rangle$ on \bar{P}. Define a polynomial Hopf algebra \bar{P} by the rule $\bar{P}^{m}=P^{2 m}$ for any n. Then, the action of $A^{*}(2) /\left\langle S q^{1}\right\rangle$ on P "induces" an action of $A^{*}(2)$ on \bar{P} via the canonical isomorphism $A^{*}(2) \cong A^{*}(2) /\left\langle S q^{1}\right\rangle$. The argument in the first paragraph then shows that $\bar{P}^{2 s+1}=0$ for all s. Therefore $P^{4 s+2}=0$ for all s.

Proof of 6.2. By 1.1, $\beta_{p} Q\left(H^{\text {even }}\left(X ; Z_{p}\right)\right)=0$. We can then make a mod 2 version of the arguments in [14] to deduce Lemma 6.2. Such mod 2 arguments have been done in great detail by James Lin. (See [7].)

For p odd the proofs of 6.1 and 6.2 as given above go through with only minor modifications. In particular, N is only invariant under the action of the subalgebra $B \subset A^{*}(p)$ generated by the operations $\left\{\mathscr{P}^{p^{s}}\right\}_{s \geq 0}$. Thus, we use B in place of $A^{*}(p)$.
7. Proof of Theorem 1.5. In this section we prove Theorem 1.5. The proofs are motivated by [6] and we will refer freely to that paper. For the rest of this section assume that (X, μ) is a 1connected H-space such that $H^{*}\left(\Omega X ; Q_{p}\right)$ is torsion free. Define $\gamma(s)$ for any integer $s \geqq 0$ by the rule $\gamma(0)=0$ and $\gamma(s)=\sum_{i=1}^{s-1} p^{i}$ for $s>0$. Let $\left\{Q_{s}\right\}_{s \geq 0}$ be the Milnor elements in the Steenrod algebra $A^{*}(p)$. (See [9].) In particular $Q_{0}=\beta_{p}$ and, for integers $m \geqq 0$, they satisfy the relation

$$
\begin{equation*}
Q_{0} \mathscr{P}^{\beta m}=\sum(-1)^{s} \mathscr{P}^{m-\gamma(s)} Q_{s} \tag{7.1}
\end{equation*}
$$

(we use the convention that $\mathscr{P}^{q}=0$ if $q<0$).
We assume that p is odd. We will prove 1.5 by induction on dimension in K. Pick the minimal integer n such that $K^{2 n}=$ $Q_{0} \mathscr{P}^{m} Q\left(H^{2 m+1}\left(X ; Z_{p}\right)\right) \neq 0$. Since $K^{2 i}=0$ if $i<n$ it follows from 7.1 that $m=\gamma(s)$ for some $s \geqq 1$. Thus $n=p m+1=\gamma(s+1)$ and both (a) and (b) of 1.5 are trivially satisfied.

Suppose 1.5 is satisfied for $i<n$ and $K^{2 n}=Q_{0} \mathscr{P}^{m} Q\left(H^{2 m+1}\left(X ; Z_{p}\right)\right) \neq 0$. By 7.1 we can find $k \geqq 0$ such that $\mathscr{P}^{m-\gamma(k)} Q_{k} Q\left(H^{2 m+1}\left(X ; Z_{p}\right)\right) \neq 0$.

Let $l=m+p^{k}$. Then $K^{2 l} \neq 0$. We can assume $m \neq \gamma(k)$ since otherwise, as in the argument for the initial step, we are done. Thus $l<n$ and so, by the induction hypothesis, l is binary. To prove (a) it suffices to show

Lemma 7.2. $m \equiv \gamma(k) \bmod p^{k+1}$.
For then l binary implies that m is binary and hence that $n=$ $m p+1$ is binary as well. To prove (b) it suffices to show

LEMMA 7.3. $\quad K^{2 n}=\mathscr{P}^{m-\gamma(k)} K^{2 l}$.
For, by 7.2, $r(n)=m-\gamma(k)$ and $l=q(n)+r(n)$.
The proof of 7.2 and 7.3 depend on the following lemma (see $\S 4$ of [6]).

Lemma 7.4. For $s \geqq 0$, if $n \equiv \gamma(s) \bmod p^{s}$ and \mathscr{P}^{q} acts nontrivially on $\left(K^{*}\right)^{2 n}$ then $q \equiv 0 \bmod p^{s}$. Further, if n is binary then q is binary.

Proof of 7.2. By induction. We will show for any $s \leqq k$ that $m \equiv \gamma(k) \bmod p^{s}$ implies $m \equiv \gamma(k) \bmod p^{s+1}$. Pick $s \leqq k$. Then $m \equiv$ $\gamma(k) \bmod p^{s}$. Hence $n \equiv \gamma(k+1) \bmod p^{s+1}$. And, by 7.4, $\mathscr{P}^{m-\gamma(k)}$ acting nontrivially on $\left(K^{*}\right)^{2 n}$ implies $m-\gamma(k) \equiv 0 \bmod p^{s+1}$.

Proof of 7.3. By 7.1 and the relation $K^{2 n}=Q_{0} \mathscr{P}^{m} K^{2 m}$ it suffices to show $\mathscr{P}^{m-\gamma^{(s)}}$ acts trivially on $\left(K^{*}\right)^{2 n}$ unless $s=k$. This follows from 7.2. For, if $s<k$ then $m-\gamma(s) \not \equiv 0 \bmod p^{k}$. While if $s>k$ then $m-\gamma(s) \equiv(p-1) p^{k} \bmod p^{k+1}$ and hence $m-\gamma(k)$ is not binary.

References

1. W. Browder, Torsion in H-spaces, Annals of Math., 74 (1961), 24-51.
2. -_, On differential Hopf algebras, Trans. Amer. Math. Soc., 107 (1963), 153-176.
3. A. Clark, Homotopy commutativity and the Moore spectral sequence, Pacific J. Math., 15 (1965), 65-74.
4. - Hopf algebras over Dedekind domains and torsion in H-spaces, Pacific J. Math., 15 (1965), 419-426.
5. R. Kane, On loop spaces without p torsion, Pacific J. Math., 60 (1975), 189-201.
6. The module of indecomposables for finite H-spaces, Trans. Amer. Math. Soc., 222 (1976), 303-318.
7. J. Lin, H-Spaces with Finitely Generated Cohomology Algebras, Thesis, Princeton, 1974.
8. Torsion in H-spaces, $I, I I$, Annals of Math., (to appear).
9. J. Milnor, The Steenrod algebra and its dual, Annals of Math., 67 (1958), 150-171.
10. J. Milnor and J. C. Moore, On the structure of Hopf algebras, Annals of Math., 81
(1965), 211-264.
11. J. C. Moore, La Suspension, Seminarie H. Cartan-J. C. Moore, 12 (1959/60) Expose 6.
12. L. Smith, On the Eilenberg-Moore spectral sequence, Proc. Sympos. Pure Math., 22, Amer. Math. Soc. (1971), 231-241.
13. E. Thomas, Steenrod squares and H-spaces II, Annals of Math., 81 (1963), 473-495.
14. A. Zabrodsky, Secondary cohomology operations in the module of indecomposables, Algebraic Topology Conference, Aarhus 1970.

Received December 22, 1975. Research partly supported by NRC Grants A7357 and A3026.

University of Alberta
Edmonton, Canada T6G 2G1

