MINIMAL AND MAXIMAL SOLUTIONS OF NONLINEAR BOUNDARY VALUE PROBLEMS

Stephen R. Bernfeld and Jagdish Chandra

This paper is concerned with the construction of the minimal and the maximal solutions of the nonlinear boundary value problem

$$
\begin{gathered}
u^{\prime \prime}=f\left(x, u, u^{\prime}\right), \quad 0<x<1 \\
B^{i} u=\alpha_{i} u(i)+\beta_{i} u^{\prime}(i)=b_{i}, \quad i=0,1
\end{gathered}
$$

under rather mild assumptions on f. In particular, no assumption of monotonicity is made on $f\left(x, u, u^{\prime}\right)$ either in u or u^{\prime}.

1. Introduction. This paper is concerned with the construction of the minimal and the maximal solutions of the nonlinear boundary value problem (BVP);

$$
\begin{equation*}
u^{\prime \prime}=f\left(x, u, u^{\prime}\right), \quad 0<x<1 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
B^{i} u \equiv \alpha_{i} u(i)+\beta_{i} u^{\prime}(i)=b_{i}, \quad i=0,1 . \tag{2}
\end{equation*}
$$

Obviously, when such boundary value problems are not necessarily uniquely solvable, the existence of the minimal and the maximal solutions plays a useful role in both the quantitative and qualitative theory for these classes of problems. Although considerable literature exists (see, for instance, [9]) about the min-max solutions of initial value problems, very little is known for boundary value problems even in the case of scalar equations (1)-(2). The results in the latter direction usually impose some kind of monotonicity assumption on f in its second and third arguments. In this paper, we establish the minimal and the maximal solutions of BVP (1)-(2) under rather mild assumptions on f. In particular, no assumption of monotonicity is made on $f\left(x, u, u^{\prime}\right)$ either in u or u^{\prime}. The approach taken is essentially an extension of the ideas in [4] where a monotone method was developed for the quasilinear case when f depends on u^{\prime} linearly. In this paper, we extend the results of [4] in two ways. First, we relax the restriction of linearity of f in u^{\prime}. Secondly, while in [4] a linear iteration scheme was employed to generate a monotone sequence, here we require a nonlinear iteration scheme. This necessitates our proving existence and uniqueness of solutions of the nonlinear iteration scheme, whereas in the linear case one immediately has existence and uniqueness of the iterative procedure.

The main result can be stated as follows: Suppose there exists a lower and an upper solution for BVP (1)-(2) such that the upper solution dominates the lower solution on the interval of interest. Further, suppose f is continuous and continuously differentiable in its second and third argument, and satisfies a Nagumo condition with respect to these lower and upper solutions. Then there exists maximal and minimal solutions for BVP (1)-(2). Moreover, these are obtained as limits of monotone sequences. Since these sequences converge monotonically, they also provide upper and lower bounds which can be improved by iteration. Thus, if BVP (1)-(2) possesses a unique solution, then this method provides an approximation scheme in which the difference between the upper and lower iterates serves as a good error estimate.

One of the basic motivations in [4] was an extension of the methods in [1], [7] and [11] to a one dimensional quasilinear model of a fluid mechanical problem. The main result of this paper, however, may be considered as an important step in developing a comparison principle for boundary value problems since, for example, the minimal and maximal solutions of a scalar (BVP) may naturally serve as upper and lower bounds for the norm of solutions of higher order systems of differential equations satisfying appropriate boundary conditions. This will be explored elsewhere.
2. Notation and hypotheses. Let $R=(-\infty, \infty), I=[0,1]$, and $\|u\|=\sup _{I}|u(x)|$. For any pair of functions $u(x)$ and $v(x)$ with $u(x) \leqq v(x), x \in I$, we define the conical segment

$$
\langle u, v\rangle=\{w(x) \mid u(x) \leqq w(x) \leqq v(x), x \in I\}
$$

Let prime denote derivative with respect to x and let subscripts denote derivatives with respect to variables other than x, for example, $f_{u}=\partial f / \partial u\left(x, u, u^{\prime}\right)$. We make the following hypotheses:
$\left(\mathrm{H}_{1}\right)$ The real constants α_{i}, β_{i} in (2) satisfy, $\alpha_{0}, \alpha_{1}, \beta_{1} \geqq 0, \beta_{0} \leqq 0$ and $\alpha_{i}^{2}+\beta_{i}^{2}>0$ for $i=0,1$.
$\left(\mathrm{H}_{2}\right)$ There exist continuously differentiable functions u_{0}, v_{0} which satisfy

$$
\begin{equation*}
u_{0}(x) \leqq v_{0}(x), \quad x \in I \tag{3}
\end{equation*}
$$

furthermore, u_{0} satisfies the inequalities

$$
\begin{gather*}
u_{0}^{\prime \prime} \geqq f\left(x, u_{0}, u_{0}^{\prime}\right) \tag{4}\\
B^{i} u_{0} \leqq b_{i}, \quad i=0,1 .
\end{gather*}
$$

and v_{0} satisfies (4) with inequalities reversed. Recall that this con-
dition says that u_{0} and v_{0} are lower and upper solutions of (1)-(2) respectively.
$\left(\mathrm{H}_{3}\right) \quad f$ is continuous on $I \times R \times R \rightarrow R$ and satisfies a Nagumo condition with respect to u_{0}, v_{0}; that is, for $x \in I, u \in\left\langle u_{0}, v_{0}\right\rangle, u^{\prime} \in R$,

$$
\begin{equation*}
\left|f\left(x, u, u^{\prime}\right)\right| \leqq j\left(\left|u^{\prime}\right|\right) \tag{5}
\end{equation*}
$$

where $j(s)$ is a positive and continuous function on $[0, \infty)$ such that there exists a positive constant N, for which

$$
\begin{equation*}
\int_{\lambda}^{N} \frac{s d s}{j(s)} \max _{x \in I} v_{0}(x)-\min _{x \in I} u_{0}(x) \stackrel{\text { def }}{=} \Delta \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda=\max \left(\left|u_{0}(0)-v_{0}(1)\right|,\left|u_{0}(1)-v_{0}(0)\right|\right) \tag{7}
\end{equation*}
$$

$\left(\mathrm{H}_{4}\right) \quad f\left(x, u, u^{\prime}\right)$ is continuously differentiable in u and u^{\prime} on $I \times R \times R$.

Remark 1. As a consequence of the Nagumo condition in $\left(\mathrm{H}_{3}\right)$, there exists a positive number N such that $\left|u^{\prime}(x)\right| \leqq N$ for $x \in I$, where N is defined in (6) and $u^{\prime \prime}=f\left(x, u, u^{\prime}\right)$ [8]. Notice that N depends only on u_{0}, v_{0} and j.

Remark 2. In view of $\left(\mathrm{H}_{3}\right)$ and $\left(\mathrm{H}_{4}\right)$, there exist positive numbers $N, \gamma(N), \gamma^{\prime}(N)$ such that $\left|f_{u}\right| \leqq \gamma,\left|f_{u^{\prime}}\right| \leqq \gamma^{\prime}$ for $x \in I, u \in\left\langle u_{0}, v_{0}\right\rangle$ and $\left|u^{\prime}(x)\right| \leqq N$.

Remark 3. The assumption that $f\left(x, u, u^{\prime}\right)$ is continuously differentiable in u, u^{\prime} on $I \times R \times R$ may be relaxed by requiring only that $f_{u}, f_{u^{\prime}}$ exist and are bounded for $x \in I, u \in\left\langle u_{0}, v_{0}\right\rangle$ and $\left|u^{\prime}(x)\right| \leqq N$.
3. Basic lemmas. For $x \in I, z \in\left\langle u_{0}, v_{0}\right\rangle$, define $F\left(x, u, u^{\prime} ; z\right)=$ $f\left(x, z(x), u^{\prime}\right)+\gamma u-\gamma z$, where γ is defined in Remark 2 of $\S 2$. For simplicity, we will always write $F\left(x, u, u^{\prime} ; z\right)=F\left(x, u, u^{\prime}\right)$. Clearly, F is continuous on $I \times R \times R \rightarrow R, F_{u}=\gamma>0$, and $F_{u^{\prime}}=f_{u^{\prime}}$.

Lemma 1. Let $\left(\mathrm{H}_{1}\right)$, $\left(\mathrm{H}_{2}\right)$, and $\left(\mathrm{H}_{4}\right)$ hold. Then u_{0} and v_{0} are respectively lower and upper solutions for the BVP

$$
\begin{equation*}
u^{\prime \prime}=F\left(x, u, u^{\prime}\right), \quad 0<x<1 \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
B^{i} u=b_{i}, \quad i=0,1 \tag{9}
\end{equation*}
$$

Proof. Consider the case of a lower solution. We need only to show that $f\left(x, u_{0}, u_{0}^{\prime}\right) \geqq F\left(x, u_{0}, u_{0}^{\prime}\right)$ for $x \in I$. To see this, note that

$$
\begin{aligned}
& f\left(x, u_{0}, u_{0}^{\prime}\right)-F\left(x, u_{0}, u_{0}^{\prime}\right) \\
& \quad=f\left(x, u_{0}, u_{0}^{\prime}\right)-f\left(x, z(x), u_{0}^{\prime}\right)-\gamma\left(u_{0}-z\right) \\
& \quad=\left[f_{u}\left(x, \widetilde{u}_{0}, u_{0}^{\prime}\right)-\gamma\right]\left(u_{0}-z\right) \geqq 0
\end{aligned}
$$

where $\widetilde{u}_{0} \in\left\langle u_{0}, z\right\rangle$ and we pick N large enough so that $\left|u_{0}^{\prime}(x)\right|,\left|v_{0}^{\prime}(x)\right| \leqq N$ for $x \in I$. Thus the above inequality holds since $f_{u} \leqq \gamma$ and $u_{0} \leqq z$. Similarly, v_{0} can be seen to be an upper solution.

Lemma 2. Let the assumptions of Lemma 1 hold. Further, suppose $\left(\mathrm{H}_{3}\right)$ is satisfied. Then F satisfies a Nagumo condition with respect to u and v provided

$$
\begin{equation*}
\frac{j(s)}{s^{2}} \text { is finite for } s \longrightarrow \infty \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\gamma(N)}{N^{2}} \longrightarrow 0 \quad \text { as } \quad N \longrightarrow \infty \tag{11}
\end{equation*}
$$

Proof. Define $l(N)=\gamma(N)\left\|u_{0}-v_{0}\right\|$. Then, clearly,

$$
\left|F\left(x, u, u^{\prime}\right)\right| \leqq j\left(\left|u^{\prime}\right|\right)+l(N)
$$

for $x \in I$ and $u \in\left\langle u_{0}, v_{0}\right\rangle$. We want to pick N so large that

$$
\int_{\lambda}^{N} \frac{s d s}{j(s)+l(N)} \geqq \Delta
$$

where λ is given by (7). From (10) there exists a $\tau>0, \rho>0$ such that $j(s) \leqq \rho s^{2}$ for $s>\tau$ and from (11) there exists a function $K(m)$ such that $K(m) \rightarrow 0$ as $m \rightarrow \infty$ and $l(N) \leqq K(m) N^{2}$ whenever $N \geqq m$. For some arbitrary (for the moment) positive number t pick $N \geqq t m$. Then, since we can assume $m>\lambda$ and $m>\tau$

$$
\begin{aligned}
\int_{2}^{N} \frac{s d s}{j(s)+l(N)} & >\int_{m}^{N} \frac{s d s}{j(s)+l(N)} \geqq \int_{m}^{N} \frac{s d s}{\left(\rho s^{2}+K(m) N^{2}\right)} \\
& =\frac{1}{2} \ln \left[\frac{\rho N^{2}+K(m) N^{2}}{\rho m^{2}+K(m) N^{2}}\right] \\
& \geqq \frac{1}{2} \ln t^{2}+\frac{1}{2} \ln \left[\frac{\rho+K(m)}{\rho+t^{2} K(m)}\right] \\
& \geqq \Delta,
\end{aligned}
$$

provided we choose $t=e^{2 \Lambda}$ and m such that $K(m)=\rho e^{-2 \Delta}$. Now Lemma 2 is established by picking $N \geqq e^{24} m$.

Remark 4. As a consequence of Lemma 2 and Nagumo's lemma,
we have that if $u \in\left\langle u_{0}, v_{0}\right\rangle$ satisfies (8), then $\left|u^{\prime}(x)\right| \leqq N$, for $x \in I$, where

$$
\begin{equation*}
N \geqq e^{2 \Delta} K^{-1}\left(\rho e^{-2 \Delta}\right) . \tag{12}
\end{equation*}
$$

Here $K(\cdot)$ and ρ are defined as above. We can assume without loss of generality that $K(\cdot)$ is a decreasing function.

Remark 5. The conditions (10) and (11) cannot be weakened much for the following reasons: If we allow $\gamma(N)=O\left(N^{2}\right)$, then since

$$
\int_{\lambda}^{N} \frac{s d s}{j(s)+N^{2}} \leqq N \int_{\lambda}^{N} \frac{d s}{j(s)+N^{2}} \leqq \frac{1}{N} \int_{2}^{N} d s<1
$$

F may not satisfy a Nagumo condition unless Δ happens to be sufficiently small.

On the other hand if we assume $j(s)$ only satisfies (6) and do not require (10), then by defining $j(s)=s h(s)$, where $h(s)$ is given in Example 2.3 in [3] and assuming $\gamma(N)=O(N)$, we have

$$
\int_{\lambda}^{N} \frac{s d s}{j(s)+N}<\int_{\lambda}^{N} \frac{s d s}{j(s)+s}=\int_{\lambda}^{N} \frac{d s}{h(s)+1}<\int_{\lambda}^{\infty} \frac{d s}{h(s)+1}<\infty .
$$

Thus, in general a compatibility condition between $j(s)$ and $\gamma(N)$ is needed to insure that F satisfies a Nagumo condition. Clearly, (10) and (11) are satisfied in [4], because both j and γ are linear there.

We shall now use the maximum principle to assert that there is at most one solution of the BVP (8)-(9) contained in $\left\langle u_{0}, v_{0}\right\rangle$. Since we will be making much use of the maximum principle [10], we state it here for completeness as:

Lemma A. Let $q(x), r(x)$ be real-valued functions on I with $r(x) \geqq 0, x \in I$. Suppose $\left(\mathrm{H}_{1}\right)$ holds and $\phi \in C^{\prime}(I)$ satisfies

$$
\begin{gather*}
\phi^{\prime \prime}+q(x) \phi^{\prime}-r(x) \phi \leqq 0 \tag{13}\\
\alpha_{i} \phi(i)+\beta_{i} \phi^{\prime}(i) \geqq 0, \quad i=0,1 . \tag{14}
\end{gather*}
$$

Then $\phi(x) \geqq 0$ for $x \in I$. If the inequalities in (13) and (14) are reversed then $\phi(x) \leqq 0$.

Lemma 3. Let the assumptions of Lemma 2 hold. In addition, assume N satisfies (12) and

$$
\begin{equation*}
N \geqq \max \left(\left\|u_{0}^{\prime}\right\|,\left\|v_{0}^{\prime}\right\|\right) . \tag{15}
\end{equation*}
$$

Then the BVP (8)-(9) has at most one solution in $\left\langle u_{0}, v_{0}\right\rangle$.

Proof. Suppose u_{1} and u_{2} are two solutions of BVP (8)-(9) in $\left\langle u_{0}, v_{0}\right\rangle$. Then from Lemma 2 and Remark 4, we conclude that for $x \in I,\left|u_{i}^{\prime}(x)\right| \leqq N, i=1,2$. Set $\phi=u_{1}-u_{2}$. Then using the meanvalue theorem, we obtain

$$
\begin{gathered}
\phi^{\prime \prime}=f\left(x, z, u_{1}^{\prime}\right)-f\left(x, z, u_{2}^{\prime}\right)+\gamma\left(u_{1}-u_{2}\right) \\
=f_{u^{\prime}}(x, z, \psi(x)) \phi^{\prime}+\gamma_{\phi} \\
B^{i} \phi=0
\end{gathered}
$$

where $|\psi(x)| \leqq N$ for $x \in I$. An application of Lemma A then concludes the proof of Lemma 3.

We are now in a position to use a result in [5] to obtain the existence of a solution of the BVP (8)-(9) in $\left\langle u_{0}, v_{0}\right\rangle$.

Lemma 4. Assume $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$, (10) and (11) hold and let N satisfy (12) and (15). Then there exists a solution of $u(x)$ of the BVP (8)-(9) such that $u \in\left\langle u_{0}, v_{0}\right\rangle$ and $\left|u^{\prime}(x)\right| \leqq N$ for $x \in I$.

Proof. First observe that from Lemma 1, u_{0}, v_{0} are lower and upper solutions respectively of the BVP (8)-(9), and from Lemma 2, F satisfies a Nagumo condition with respect to u_{0} and v_{0}. Since $\beta_{0} \leqq 0$ and $\beta_{1} \geqq 0$, the result in [5] together with Remark 4, establishes Lemma 4. We should remark that although in [5], it is assumed that the strict inequalities $u_{0}(0)<v_{0}(0)$ and $u_{0}(1)<v_{0}(1)$ are satisfied, these can be relaxed. For instance, using well known approximation arguments [2,6] the result in [5] is valid for $u_{0}(0) \leqq$ $v_{0}(0)$ and $u_{0}(1) \leqq v_{0}(1)$.

Thus, from Lemmas 3 and 4, we conclude that the BVP (8)-(9) is uniquely solvable in $\left\langle u_{0}, v_{0}\right\rangle$.
4. Minimal and maximal solution. For each function $z(x) \in$ $C^{\prime}(I) \cap\left\langle u_{0}, v_{0}\right\rangle$, define the image $w(x)$ of the mapping A to be the solution of the nonlinear BVP (8)-(9), that is, $w=A z$ if and only if $w(x)$ satisfies (8) and (9). From the previous section, $w(x)$ is uniquely defined for each $z(x) \in C^{\prime}(I) \cap\left\langle u_{0}, v_{0}\right\rangle$, is contained in $C^{\prime \prime}(I) \cap$ $\left\langle u_{0}, v_{0}\right\rangle$ and satisfies $\left|w^{\prime}(x)\right| \leqq N$ for $x \in I$.

Lemma 5. Assume $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$, (10) and (11) hold and let N satisfy (12) and (15). Then,
(i) $A u_{0} \geqq u_{0}, A v_{0} \leqq v_{0}$
(ii) A is monotone on $\left\langle u_{0}, v_{0}\right\rangle$, that is, if $z_{1}, z_{2} \in C^{\prime}(I) \cap\left\langle u_{0}, v_{0}\right\rangle$, and $z_{1} \leqq z_{2}$ then $A z_{1} \leqq A z_{2}$.

Proof. (i) Suppose $A u_{0}=w$. Set $\phi=w-u_{0}$. Then exactly as in the proof of Lemma 3 with $z=u_{0}$

$$
\phi^{\prime \prime}-f_{u^{\prime}}\left(x, u_{0}, \widetilde{u}_{0}^{\prime}\right) \dot{\phi}^{\prime}-\gamma_{\phi} \leqq 0
$$

and

$$
B^{i} \dot{\phi} \geqq 0, \quad i=0,1
$$

where $\left|\widetilde{u}_{0}^{\prime}(x)\right| \leqq N$ for $x \in I$. Therefore, from Lemma A, we conclude that $w \geqq u_{0}$. Similarly we can show that $A v_{0} \leqq v_{0}$. This proves (i). (ii) Suppose $z_{1}, z_{2} \in C^{\prime}(I) \cap\left\langle u_{0}, v_{0}\right\rangle$ and $z_{1} \leqq z_{2}$. Let $A z_{i}=w_{i}, i=1,2$. Then setting $\phi=w_{2}-w_{1}$, and using the same techniques as in Lemma 3, $\dot{\phi}$ satisfies

$$
\phi^{\prime \prime}-f_{u^{\prime}}\left(x, z_{2}, w^{\prime}\right) \phi^{\prime}-\gamma_{\phi}=\left[f_{u}\left(x, \tilde{z}, w_{1}^{\prime}\right)-\gamma\right]\left(z_{2}-z_{1}\right) \leqq 0
$$

where $\widetilde{z} \in\left\langle u_{0}, v_{0}\right\rangle$ and $\left|w^{\prime}(x)\right| \leqq N$. The above inequality follows from the fact that $f_{u} \leqq \gamma$ for $x \in I, u \in\left\langle u_{0}, v_{0}\right\rangle$ and $\left|u^{\prime}(x)\right| \leqq N$. Also, $B^{i} \phi=0$. Again from the generalized maximum principle we conclude that $w_{1} \leqq w_{2}$. This completes the proof.

From Lemma 5, we see that A is monotone on $\left\langle u_{0}, v_{0}\right\rangle$ and maps this closed, bounded and convex set into itself. Thus, using the mapping $A z=w$ defined by BVP (8)-(9), we introduce the sequences $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ by means of

$$
\begin{aligned}
& u_{n}=A u_{n-1} \text { where } u_{0} \text { is given in }\left(\mathrm{H}_{2}\right), \\
& v_{n}=A v_{n-1} \text { where } v_{0} \text { is given in }\left(\mathrm{H}_{2}\right) .
\end{aligned}
$$

Theorem. Let $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$, (10) and (11) hold and assume N satisfies (12) and (15). Let $\left\{u_{n}\right\},\left\{v_{n}\right\}$ be defined as above. Then $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ converge uniformly and monotonically to minimal and maximal solutions $u_{\min }, v_{\max }$, respectively, of BVP (1)-(2) on $\left\langle u_{0}, v_{0}\right\rangle$: that is. if w is any solution of BVP (1)-(2) in $\left\langle u_{0}, v_{0}\right\rangle$, then

$$
\begin{equation*}
u_{0} \leqq u_{1} \leqq \cdots \leqq u_{n} \leqq \cdots \leqq u_{\min } \leqq w \leqq v_{\max } \cdots \leqq v_{n} \leqq \cdots \leqq v_{1} \leqq v_{0} \tag{16}
\end{equation*}
$$

Proof. In view of Lemma 5, the proof follows essentially the same arguments as given in the proof of Theorem 1 in [4]. We only outline it here. By Lemma $5, u_{n-1} \leqq u_{n}$ for $n=0,1,2, \cdots$. If w is any solution of (1)-(2) in $\left\langle u_{0}, v_{0}\right\rangle$, then $u_{0} \leqq w$ and $A u_{0} \leqq$ $A w=w$. This implies that $u_{n} \leqq w$. Since $u_{0} \leqq v_{0}$, then by Lemma $5, u_{n} \leqq v_{n}$, and $v_{n+1} \leqq v_{n}$ by the above arguments. Thus (16) follows where $u_{\text {min }}$ and $v_{\max }$ denote limits of the monotone bounded sequences $\left\{u_{n}\right\},\left\{v_{n}\right\}$ respectively.

It remains only to show that $u_{\text {min }}$ is a solution of the BVP (1)(2) (with a similar argument for $v_{\max }$). If $u_{\min }$ is a solution, then
it is the minimal solution in $\left\langle u_{0}, v_{0}\right\rangle$, since $u_{n} \leqq w$ for all n and any solution w of (1) and (2) in $\left\langle u_{0}, v_{0}\right\rangle$. It is easy to see that the sequence $\left\{u_{n}\right\}$ is uniformly bounded and equicontinuous and thus converges (the full sequence by monotonicity) on I. By considering the integral equation which is equivalent to the BVP (8)-(9) and using the fact that $\lim u_{n}=\lim u_{n-1}$, it follows that $\lim u_{n}=u_{\text {min }}$ is a solution of the BVP (1)-(2).

References

1. H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Review, 18 (1976), 620-709.
2. J. Bebernes and R. Wilhelmsen, A remark concerning a boundary value problem, J. Differential Equations, 10 (1971), 389-391.
3. S. R. Bernfeld, The extendability of solutions of perturbed scalar differential equations, Pacific J. Math., 42 (1972), 277-288.
4. J. Chandra and P. W. Davis, A monotone method for quasilinear boundary value problems, Arch. Rat. Mech. Anal., 54 (1974), 257-266.
5. L. Erbe, Nonlinear boundary value problems for second order differential equations, J. Differential Equations, 7 (1970), 459-472.
6. P. Hartman, Ordinary Differential Equations, John Wiley and Sons, New York, 1964.
7. H. B. Keller, Elliptic boundary value problems suggested by nonlinear diffusion processes, Arch. Rat. Mech. Anal., 35 (1969), 363-381.
8. L. K. Jackson, Subfunctions and second-order differential inequalities, Advances in Math., 2 (1968), 307-363.
9. V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, Vol. 1., Academic Press, New York, 1969.
10. M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Inc., 1967.
11. D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., 21 (1972), 979-1000.

Received September 14, 1975.
University of Texas at Arlington
AND
U.S. Army Research Office-North Carolina
P.O. Box 12211

Research Triangle Park, NC 27709

