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MINIMAL AND MAXIMAL SOLUTIONS OF NONLINEAR
BOUNDARY VALUE PROBLEMS

STEPHEN R. BERNFELD AND JAGDISH CHANDRA

This paper is concerned with the construction of the
minimal and the maximal solutions of the nonlinear boundary
value problem

u" = f(x, u,u'), 0 < x < 1

B'u = atu(i) + βiU'iϋ -ht i = 0,1

under rather mild assumptions on /. In particular, no as-
sumption of monotonicity is made on /(#, u, uf) either in u
or u\

1* Introduction* This paper is concerned with the construction
of the minimal and the maximal solutions of the nonlinear boundary
value problem (BVP);

(1) u" = f(x, uyu
f) , 0 < x < 1

(2) B*u ΞΞ atu(i) + βtu'(i) = bt , i = 0, 1 .

Obviously, when such boundary value problems are not necessarily
uniquely solvable, the existence of the minimal and the maximal
solutions plays a useful role in both the quantitative and qualitative
theory for these classes of problems. Although considerable litera-
ture exists (see, for instance, [9]) about the min-max solutions of
initial value problems, very little is known for boundary value prob-
lems even in the case of scalar equations (l)-(2). The results in the
latter direction usually impose some kind of monotonicity assump-
tion on / in its second and third arguments. In this paper, we
establish the minimal and the maximal solutions of BVP (l)-(2) under
rather mild assumptions on /. In particular, no assumption of
monotonicity is made on /(a?, u, u') either in u or %', The approach
taken is essentially an extension of the ideas in [4] where a mono-
tone method was developed for the quasilinear case when / depends
on uf linearly. In this paper, we extend the results of [4] in two
ways. First, we relax the restriction of linearity of / in u'. Sec-
ondly, while in [4] a linear iteration scheme was employed to gen-
erate a monotone sequence, here we require a nonlinear iteration
scheme. This necessitates our proving existence and uniqueness of
solutions of the nonlinear iteration scheme, whereas in the linear
case one immediately has existence and uniqueness of the iterative
procedure.
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The main result can be stated as follows: Suppose there exists
a lower and an upper solution for BVP (l)-(2) such that the upper
solution dominates the lower solution on the interval of interest.
Further, suppose / is continuous and continuously differentiable in
its second and third argument, and satisfies a Nagumo condition
with respect to these lower and upper solutions. Then there exists
maximal and minimal solutions for BVP (l)-(2). Moreover, these
are obtained as limits of monotone sequences. Since these sequences
converge monotonically, they also provide upper and lower bounds
which can be improved by iteration. Thus, if BVP (l)-(2) possesses
a unique solution, then this method provides an approximation scheme
in which the difference between the upper and lower iterates serves
as a good error estimate.

One of the basic motivations in [4] was an extension of the
methods in [1], [7] and [11] to a one dimensional quasilinear model
of a fluid mechanical problem. The main result of this paper, how-
ever, may be considered as an important step in developing a com-
parison principle for boundary value problems since, for example,
the minimal and maximal solutions of a scalar (BVP) may naturally
serve as upper and lower bounds for the norm of solutions of higher
order systems of differential equations satisfying appropriate bound-
ary conditions. This will be explored elsewhere.

2* Notation and hypotheses* Let R — (— ©o, oo), J = [0, 1],
and ||%|| — sup7 | %($)!• For any pair of functions u(x) and v{x) with
u(x) <̂  v(x), xel, we define the conical segment

(u, v) — {w(x)Iu(x) ^ w(x) <; v(x), xel} .

Let prime denote derivative with respect to x and let subscripts
denote derivatives with respect to variables other than x, for ex-
ample, fu = df/du(x, u, ur). We make the following hypotheses:

(Hi) The real constants au βt in (2) satisfy, a09 a19 β1 ^ 0, β0 ^ 0
and a\ + β\ > 0 f or i = 0,1.

(H2) There exist continuously differentiable functions u0, v0 which
satisfy

(3) uo(x) <; vo(x) , xel;

furthermore, u0 satisfies the inequalities

, 4 v < ^ / ( » , u0, uΌ)

B'Uo ^bi9 i = 0, 1 .

and v0 satisfies (4) with inequalities reversed. Recall that this con-
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dition says that u0 and v0 are lower and upper solutions of (l)-(2)
respectively.

(H3) / is continuous on I x R x R~> R and satisfies a Nagumo
condition with respect to u0, vo; that is, for xel, ue(u0, v0), u'eR,

(5) \f(x,u,u')\^j(\u'\)

where j(s) is a positive and continuous function on [0, « ) such that
there exists a positive constant N, for which

(6) Γ-5^_inax Vo(x) _ m i n U(s(x) ^ j f

where

(7) λ - max (I uo(Q) - vo(l) |, | wo(l) - t;0(0) |) .

(H4) f(x, uy u') is continuously diίferentiable in u and uf on
I x R x R.

REMARK 1. As a consequence of the Nagumo condition in (H3),
there exists a positive number N such that | u\x) | ^ N for x e 7,
where iV is defined in (6) and %" = /(a?, w, u') [8]. Notice that iV
depends only on w0, ^0 and j.

REMARK 2. In view of (H3) and (H4), there exist positive num-
bers N, Ύ(N), y'(N) such that \fu \ ̂  7, \fu, \ ̂  Y for a? 6 /, ue (u0, v0)
and \u'(x)\ ^ iSΓ.

REMARK 3. The assumption that f(xf u, u') is continuously dif-
ferentiable in u, ur on I x R x R may be relaxed by requiring only
that fu, fu, exist and are bounded for x e I, u e (uQ, v0) and \u'(x)\ ^ N.

3. Basic lemmas. For xel, ze (u0, v0}, define F(x, u, vf; z) —
f(x, z(x), uf) + Ίu — 7z, where 7 is defined in Remark 2 of § 2. For
simplicity, we will always write F(x, u, v!\ z) = F(x, u, uf). Clearly,
F is continuous on I x R x R-+R, Fu = 7 > 0, and F%, = fu>.

LEMMA 1. Let (Hi), (H2), and (H4) hold. Then u0 and v0 are re-
spectively lower and upper solutions for the BVP

(8) %" = F(x, u,ur) , 0 < x < 1

(9) Bιu = 6, , i = 0, 1 .

Proof. Consider the case of a lower solution. We need only to
show that f(x, uQ, u[) ̂  F(x, u0, u'o) for xel. To see this, note that
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f(x, Uo, uΌ) - F(xf Uo, u'o)

= f(x, u09 uΌ) - f(x, z(x), uΌ) - y(u0 - z)

uOf uΌ) - y](u0 - z) ^ o

where u0 e (u0, z) and we pick N large enough so that \u'Q(x)\, \v'Q(x)\ ^ N
for a?e7. Thus the above inequality holds since f u ^ Ί and uQ <; 2.
Similarly, t;0 can be seen to be an upper solution.

LEMMA 2. Let the assumptions of Lemma 1 hold. Further,
suppose (H3) is satisfied. Then F satisfies a Nagumo condition
with respect to u and v provided

(10) ^A£i_ is finite for s > co ,
s2

and

(11) 2J2Ω. >0 as N > o o .

Proof. Define l(N) = Ύ{N)\\u0 - vQ\\. Then, clearly,

for xe I and % e (u0, v0). We want to pick N so large that

where λ is given by (7). From (10) there exists a r > 0, p > 0
such that j(s) <; jθs2 for s > τ and from (11) there exists a function
ίΓ(m) such that K(m) —>• 0 as m —•• oo and £(JV) ^ K(m)N* whenever
JV ̂  m. For some arbitrary (for the moment) positive number ί
pick N Ξ£ ίm. Then, since we can assume m > λ and m > τ

ίN sds > [N sds > [N

h .i(s) + UN) 1- ίίβ) + UN) = 3-UN) J- i(s) + i(2S0 ~ J . (jθs2 + K(m)N*)

=κ- + iΓ(m)iV2

provided we choose ί = e2i and m such that K{m) = (θe~2J. Now
Lemma 2 is established by picking N ^ e2Jm.

REMARK 4. As a consequence of Lemma 2 and Nagumo's lemma,
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we have that if ue(u0, v0) satisfies (8), then \u'(x)\ <^ N, for xel,
where

(12) N ^ euK~\pe^ά) .

Here K(-) and p are defined as above. We can assume without loss
of generality that K{ ) is a decreasing function.

REMARK 5. The conditions (10) and (11) cannot be weakened
much for the following reasons: If we allow Ύ(N) = O(N2), then
since

F may not satisfy a Nagumo condition unless Δ happens to be suf-
ficiently small.

On the other hand if we assume j(s) only satisfies (6) and do
not require (10), then by defining j(s) = sh(s)f where h(s) is given
in Example 2.3 in [3] and assuming Ύ(N) = O(N), we have

sds . f*" sds [N ds . f°° dsfy sds = f̂
h j(s) + s 3; h(s) + 1 h h(s) + 1

Thus, in general a compatibility condition between j(s) and Ύ(N) is
needed to insure that F satisfies a Nagumo condition. Clearly, (10)
and (11) are satisfied in [4], because both j and 7 are linear there.

We shall now use the maximum principle to assert that there
is at most one solution of the BVP (8)-(9) contained in (u0, vQ).
Since we will be making much use of the maximum principle [10],
we state it here for completeness as:

LEMMA A. Let q{x), r(x) be real-valued functions on I with
r(x) ^ 0 , xel. Suppose (H^ holds and φ 6 C\I) satisfies

(13) φ" + q(x)φ' - τ{x)Φ ̂  0

(14) a.φii) + β<φX%) ^ 0 , i = 0,1.

Then φ(x) ̂  0 for xel. If the inequalities in (13) and (14) are
reversed then φ{x) <Ξ 0.

LEMMA 3. Let the assumptions of Lemma 2 hold. In addition,
assume N satisfies (12) and

(15) J S Γ ^ m a x (11^11,11^11) . •

Then the BVP (8)-(9) has at most one solution in (u0, v0).
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Proof. Suppose ux and u2 are two solutions of BVP (8)-(9) in
(u0, v0). Then from Lemma 2 and Remark 4, we conclude that for
xel, \u'i(x)\ ^ N, i = 1, 2. Set φ = ut — u2. Then using the mean-
value theorem, we obtain

φ" = f(x, z, u[) - f(x, z, u2) + Ύfa - u2)

J5V = 0

where | ψ(x) | ^ N for α; € I. An application of Lemma A then con-
cludes the proof of Lemma 3.

We are now in a position to use a result in [5] to obtain the
existence of a solution of the BVP (8)-(9) in (u0, v0).

LEMMA 4. Assume (H^-ίHJ, (10) and (11) hold and let N satisfy
(12) and (15). Then there exists a solution of u(x) of the BVP
(8)-(9) such that ue(u0, vQ) and \u\x)\ <Ξ N for xel.

Proof. First observe that from Lemma 1, u09 v0 are lower and
upper solutions respectively of the BVP (8)-(9), and from Lemma 2,
F satisfies a Nagumo condition with respect to u0 and vQ. Since
βQ <; 0 and βt ^ 0, the result in [5] together with Remark 4, estab-
lishes Lemma 4 We should remark that although in [5], it is as-
sumed that the strict inequalities wo(O) < vo(O) and wo(l) < ^(1) are
satisfied, these can be relaxed. For instance, using well known ap-
proximation arguments [2, 6] the result in [5] is valid for uo(O) S
vo(O) and uo(ϊ) ^ vQ(ΐ).

Thus, from Lemmas 3 and 4, we conclude that the BVP (8)-(9)
is uniquely solvable in (u0, v0}.

4* Minimal and maximal solution* For each function z(x) G
C\I) Π (u0, vQ), define the image w(x) of the mapping A to be the
solution of the nonlinear BVP (8)-(9), that is, w = Az if and only
if w(x) satisfies (8) and (9). From the previous section, w(x) is
uniquely defined for each z(x) e C'(I) Π (u0, v0}, is contained in C'(J)Π
(uOf v0} and satisfies |w'{x)\ ^ N for xel.

LEMMA 5. Assume (H!)-(H4), (10) and (11) hold and let N satisfy
(12) and (15). Then,

(i) Au0 ^ u0, Av0 ^ ̂ o
(ii) A is monotone on (u0, v0), that is, if zu z2eC'(I) ΓΊ (u0, vo)>

and zί ^ z2 then Az1 ^ Az2.
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Proof, (i) Suppose Au0 = w. Set φ = w — u0. Then exactly as
in the proof of Lemma 3 with z = uQ

Φ" - fw(x, uQ, u[)φ' -Ίφ^Q

and

B'φ ^ 0 , i = 0, 1

where \u'0(x)\ <^ N for xel. Therefore, from Lemma A, we conclude
that w ^ uQ. Similarly we can show that Av0 ^ v0. This proves (i).
(ii) Suppose zlf z2 e C'{I) Π (uQ, v0) and zx £ z2. Let Azt - wif i = 1, 2.
Then setting φ — w2 — w19 and using the same techniques as in
Lemma 3, φ satisfies

Φ" - Λ ' ( » , «2, ^ V - Ί φ = [fu(x, Z, W[) ~ Ύ](Z2 - Z , ) ^ 0

where z e (u0, v0) and | w\x) \ ̂  N. The above inequality follows
from the fact that fu^Ύ for xel, ue (u0, v0) and |u\x)\ £ N.
Also, J5V — 0. Again from the generalized maximum principle we
conclude that wγ <; w2. This completes the proof.

From Lemma 5, we see that A is monotone on (u0, vQ} and maps
this closed, bounded and convex set into itself. Thus, using the
mapping Az — w defined by BVP (8)-(9), we introduce the sequences
{un} and {vn} by means of

un — Aun_λ where u0 is given in (H2) ,

vn = Avn_x where vQ is given in (H2) .

THEOREM. Let (B^HHJ, (10) and (11) hold and assume N satis-
fies (12) and (15). Let {un}, {vn} be defined as above. Then {un} and
{vn} converge uniformly and monotonically to minimal and maximal
solutions ^ m i n , ^ m a x , respectively, of BVP (l)-(2) on (u0, vQ): that is.
if w is any solution of BVP (l)-(2) in (u0, v0}, then

(16) u0 ̂  u, ̂  ^ un ^ <; umin ^w<L vmΆX <; vn ^ ^ v1 ̂  v0.

Proof. In view of Lemma 5, the proof follows essentially the
same arguments as given in the proof of Theorem 1 in [4]. We
only outline it here. By Lemma 5, un^ ^ un for n = 0,1, 2,
If w is any solution of (l)-(2) in (u0, v0), then u0 <i w and Au0 ^
Aw = w. This implies that un ^ w. Since uQ ^ v0, then by Lemma
5, uw <; vΛ, and vΛ+1 ^ vn by the above arguments. Thus (16) follows
where ^ m ί n and vm&x denote limits of the monotone bounded sequences
{un}> {vn} respectively.

It remains only to show that umin is a solution of the BVP (1)-
(2) (with a similar argument for vmΆX). If umin is a solution, then
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it is the minimal solution in (u0, v0), since un ^ w for all n and any
solution w of (1) and (2) in (uQ, vQ). It is easy to see that the
sequence {un} is uniformly bounded and equicontinuous and thus
converges (the full sequence by monotonicity) on I. By considering
the integral equation which is equivalent to the BVP (8)-(9) and
using the fact that lim un — lim un_u it follows that lim un = umin is
a solution of the BVP (l)-(2).
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