FIXED POINT THEOREMS FOR MAPPINGS WITH A CONTRACTIVE ITERATE

BARADA K. RAY AND B. E. RHOADES

Several fixed point theorems are proved for metric-space mappings which satisfy a contractive condition involving an iterate of the mapping, where the iterate depends on the point in the space.

Let (X, d) denote a complete metric space. In [3] the second author has established fixed point theorems for mappings which satisfy a variety of contractive conditions. The common property of the mappings discussed in [3] is that the fixed point is unique, and can be found by using repeated iteration, beginning with some initial choice $x_0 \in X$.

The first result in this direction is that of V. M. Sehgal [5] who proved the following.

THEOREM S1. Let (X, d) be a complete metric space, T a continuous self-mapping of X which satisfies the condition that there exists a real number k, 0 < k < 1 such that, for each $x \in X$ there exists a positive integer n(x) such that, for each $y \in X$,

(1) $d(T^{n(x)}(x)), \quad T^{n(x)}(y) \leq kd(x, y).$

Then T has a unique fixed point in X.

L. F. Guseman, Jr. [1], extended Sehgal's result by removing the condition of continuity of T and weakening (1) to hold on some subset B of X such that $T(B) \subset B$, where, for some $x_0 \in B$, B contains the closure of the iterates of x_0 . Further extensions for a single mapping appear in [2] and in [4].

We shall be concerned with a pair of mappings which satisfy the following contractive condition.

Let T_1 , T_2 be self-mappings of X such that there exists a constant k, 0 < k < 1 such that there exist positive integers n(x), m(y) such that for each $x, y \in X$,

$$\begin{array}{ll} (2) & d(T_1^{n(x)}(x) \ , \ \ T_2^{m(y)}(y)) \leq k \max \left\{ d(x, \, y) \ , \ \ d(x, \, T_1^{n(x)}(x)) \ , \\ & d(y, \, T_2^{m(y)}(y)) \ , \ \ \left[d(x, \, T_2^{m(y)}(y)) + d(y, \, T_1^{n(x)}(x)) \right] / 2 \right\} \ . \end{array}$$

THEOREM 1. Let T_1 , T_2 be self-mappings of a complete metric space (X, d) which satisfy (2). Then T_1 and T_2 have a unique common fixed point.

Proof. Let $x_0 \in X$, and define the sequence $\{x_n\}$ by $x_1 = T_1^{n(x_0)}(x_0)$, $x_2 = T_2^{m(x_1)}(x_1), \dots, x_{2n+1} = T_1^{n(x_{2n})}(x_{2n}), x_{2n+2} = T_2^{m(x_{2n+1})}(x_{2n+1}), \dots$ Using (2) and assuming $x_m \neq x_n$ for each $m \neq n$,

$$\begin{array}{ll} (\ 3\) & \quad d(x_{2n+1},\,x_{2n+2}) \leq k \max\left\{ d(x_{2n},\,x_{2n+1}) \ , \\ & \quad d(x_{2n+1},\,x_{2n+2}) \ , \ \ d(x_{2n},\,x_{2n+2})/2 \right\} \,. \end{array}$$

If the maximum of the right-hand side of (3) is $d(x_{2n}, x_{2n+2})/2$ then we obtain the contradiction $d(x_{2n+1}, x_{2n+2}) \leq kd(x_{2n+1}, x_{2n+2})$. Therefore, $d(x_{2n+1}, x_{2n+2}) \leq kd(x_{2n}, x_{2n+1})$. Similarly $d(x_{2n}, x_{2n+1}) \leq kd(x_{2n-1}, x_{2n})$, so that $d(x_{2n+1}, x_{2n+2}) \leq k^{2n}d(x_1, x_2)$ and $d(x_{2n}, x_{2n+1}) \leq k^{2n}d(x_0, x_1)$. With $r(x_0) = \max \{ d(x_0, x_1), d(x_1, x_2) \}$, for any m > n,

$$d(x_{\scriptscriptstyle m},\,x_{\scriptscriptstyle n}) \leq \sum_{\scriptscriptstyle \imath=n}^{m-1} d(x_{\scriptscriptstyle \imath},\,x_{\scriptscriptstyle i+1}) \leq k^{\scriptscriptstyle 2n} r(x_{\scriptscriptstyle 0})/(1-k^{\scriptscriptstyle 2})\;.$$

Thus $\{x_n\}$ is Cauchy and hence convergent. Call the limit p. From (2),

Taking the limit of (4) as $n \to \infty$ we obtain $d(p, T_2^{m(p)}(p)) \leq k \max\{0, 0, d(p, T_2^{m(p)}(p)), d(p, T_2^{m(p)}(p))/2\}$, which implies $p = T_2^{m(p)}(p)$. Similarly $p = T_1^{m(p)}(p)$.

Suppose q is also a periodic point of T_1 and T_2 ; i.e., $q = T_1^{m(q)}(q) = T_2^{m(q)}(q)$. From (2),

$$d(p, q) = d(T_1^{n(p)}(p), T_2^{m(q)}(q) \leq k \max \{ d(p, q), 0, d(q, p) \}$$

which implies p = q. The condition $p = T_1^{n(p)}(p)$ implies $T_1(p) = T_1^{n(p)}(T_1(p))$, so that $T_1(p)$ is also a periodic point of T_1 . From the uniqueness of p, $p = T_1(p)$. Similarly $T_2(p) = p$.

COROLLARY 1. Let T be a self-mapping of X such that there exists a positive real number k, 0 < k < 1 such that, for each x, $y \in X$ there exists a positive integer n(x) such that

$$egin{aligned} &d(T^{\,n(x)}(x)\;,\quad T^{\,n(y)}(y)) \leq k\,\max\left\{d(x,\,y)\;,\quad d(x,\,T^{\,n(x)}(x))\;,\ &d(y,\,T^{\,n(y)}(y))\;,\quad \left[d(x,\,T^{\,n(y)}(y))\,+\,d(y,\,T^{\,n(x)}(x)
ight]/2
ight\}\,. \end{aligned}$$

Then T has a unique fixed point in X.

Proof. In Theorem 1 set $T_1 = T_2$, m(y) = n(y).

COROLLARY 2. Let $\{f_k\}$ be a sequence of self-mappings of X

satisfying

$$\begin{aligned} d(f_i^{n(x)}(x) , & f_j^{n(y)}(y)) \leq k \max \left\{ d(x, y) , & d(x, f_i^{n(x)}(x)) , \\ & d(y, f_j^{n(y)}(y)) , & \left[d(x, f_j^{n(y)}(y)) + d(y, f_j^{n(x)}(x)) \right] \right\} \end{aligned}$$

for each x, $y \in X$, each i, $j = 1, 2, \cdots$. Then there exists a unique common fixed point.

THEOREM 2. Let $\{f_k\}$ be a sequence of continuous functions satisfying: there exists a positive constant k, 0 < k < 1 such that for each x, $y \in X$ there exists a positive integer n(x) such that

$$\begin{array}{ll} (5) \qquad d(f_k^{n(x)}(x) \;,\;\; f_k^{n(x)}(y)) \leq k \max \left\{ d(x, y) \;,\;\; d(x, f_k^{n(x)}(x)) \;, \\ & \quad d(y, f_k^{n(x)}(y)) \;,\;\; \left[d(x, f_k^{n(x)}(y)) + d(y, f_k^{n(x)}(x)) \right] / 2 \right\} \;. \end{array}$$

Suppose $\{f_k\}$ tends pointwise to a continuous function f. Then f has a unique fixed point p and $p_k \rightarrow p$, where the p_k are the unique fixed points of f_k .

Proof. In (5) take the limit as $k \to \infty$ and use the continuity of f, f_k , and d to obtain the result that f satisfies (5). From Corollary 1 f has a unique fixed point p. $d(p_k, p) = d(f_k^{n(p_k)}(p_k), f^{n(p_k)}(p_k)) \le d(f_k^{n(p_k)}(p_k), f_k^{n(p_k)}(p)) + d(f_k^{n(p_k)}(p_k), f^{n(p_k)}(p))$. From (5),

$$d(f_k^{n(p_k)}(p_k), f_k^{n(p_k)}(p)) \leq h \max \{ d(p_k, p), d(p, f_k^{n(pk)}(p)) \}$$
.

Therefore, $d(p_k, p) \leq (1 - h)^{-1} d(f_k^{n(p_k)}(p), p)$, which tends to zero as $k \to \infty$.

REMARKS. 1. In each of the results of this paper one can obviously weaken the contractive condition by replacing X with a subset B which is invariant under the mappings involved and which contains the closure of all of the iterates of some $x_0 \in B$.

2. Corollary 1 is a generalization of [4], which in turn generalizes [1], [2] and [5].

References

1. L. F. Guseman, Jr., Fixed point theorems for mappings with a contractive iterate at a point, Proc. Amer. Math. Soc., 26 (1970), 615-618.

^{2.} L. Khanzanchi, Results on fixed points in complete metric space, Math. Japan, 19 (1974), 283-289.

^{3.} B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., **226** (1977), 257-290.

^{4.} _____, Fixed point theorems for a contractive type mappings, submitted for publication.

5. V. M. Sehgal, On fixed and periodic points for a class of mappings, J. London Math. Soc., 5 (1972), 571-576.

Received January 21, 1977.

REGIONAL ENGINEERING COLLEGE DURGAPUR, 713209, INDIA AND INDIANA UNIVERSITY BLOOMINGTON, IN 47401