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THE MAXIMAL RIGHT QUOTIENT SEMIGROUP
OF A STRONG SEMILATTICE OF SEMIGROUPS

ANTONIO M. LOPEZ, JR.

Let S be a strong semilattice Y of monoids. If S is right
nonsingular then Y is nonsingular. The converse is true
when S is a sturdy semilattice Y of right cancellative
monoids. Should S have trivial multiplication then each
monoid of more than one element has as its index an atom
of Y. Finally, if S is a right nonsingular strong semilattice
Y of principal right ideal Ore monoids with onto linking
homomorphisms then Q(S), the maximal right quotient semi-
group of S, is a semilattice Q(Y) of groups.

1* Introduction* Let Y be a semilattice and let {Sa}aeY be a
collection of pairwise disjoint semigroups. For each pair a, β e Y
with a^β, let ψa>β: Sa—>Sβ be a semigroup homomorphism such
that ψUtCt is the identity mapping and if a > β > 7 then ψat7 —
ψβ,rψa,β Let S= \JaeYSa with multiplication

α*δ — ψ

for a e Sa and b e Sβ. The semigroup S is called a strong semi-
lattice Y of semigroups Sa- If, in addition, each ψa>β is one-to-one
then S is called a sturdy semilattice of semigroups. The basic
terminology in use throughout this paper can be found in [1], [7],
and [9]. Note that a semilattice of groups [1, p. 128] is a strong
semilattice of semigroups. In [6], McMorris showed that if M is a
semilattice X of groups Gδ, then Q(M), the maximal right quotient
semigroup of M, is also a semilattice of groups. Hinkle [2] con-
structed Q(M) and showed that its indexing semilattice is Q(X).

Let S be a semigroup with 0. A right ideal D of S is dense
if for each sίf s2, s e S with st Φ s2, there exists an element d e D
such that sxd Φ s2d and sdeD. A right ideal L of S is Π -large if
for each nonzero right ideal R of S, R ΓΊ L Φ {0}. It is easy to see
that dense implies Π -large. If each Π -large right ideal of S is also
dense then S is said to be right nonsingular. If a semigroup is
commutative or each one-sided ideal is two-sided then we will use
the term nonsingular. Let T be a right S-system with 0[5] then
the singular congruence ψτ on T is a right congruence defined for
a, beT by aψτb if and only if as = bs for all s in an Π-large
right ideal of S. McMorris [8] showed that ψs = is, the identity
congruence on S, if and only if S is right nonsingular.

Recently it has been shown [4], [5] that if S is a commutative
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nonsingular semigroup then Q(S) is a semilattice of groups. How-
ever, since S is commutative it is uniquely expressible as a semi-
lattice Y of archimedian semigroups [1, p. 135]. Thus we investi-
gate right nonsingular strong semilattices of semigroups.

Henceforth we require that both S and Y be semigroups with
0. If for a e Y, Sa is a monoid then the identity will be denoted
by βα. Also a semigroup homomorphism which takes the identity
of one semigroup to the identity of the other is called a monoid
homomorphism.

LEMMA 1.1. If S is a strong semilattice Y of right cancella-
tive monoids Sa, then for each a, β e Y with a ^ β, ψa>β is a
monoid homomorphism and Y is isomorphic to the semilattice E
of idempotents of S.

LEMMA 1.2. Let S be a strong semilattice Y of monoids Sa

with ψa>β a monoid homomorphism for a ^ β e Y. If L is an Π-
large right ideal of S, then A = {σ e Y | L Π Sσ Φ 0} is an Π -large
ideal of Y.

Proof. To see that A is Π -large let R be a nonzero ideal of
Y and define B = \JτeRSτ. Let teBΠ Sβ and seSσ for some β eR
and σeY. Then t*s = ψβ,σβ(t)ψσ>σβ(s) e Sσβ. But Sσβ £ B since β e R
an ideal of Y. Dually we can show that s*teSσβ and so B is a two-
sided ideal of S. Since L is an Π -large right ideal of S then
L n B Φ {0} so there exists 0 Φ reLnB. But then r e Sδ for
0 Φ δ e R and so 0 Φ δeAf] R and A is Π -large. It is easy to
show that A is an ideal of Y.

LEMMA 1.3. Let S be a strong semilattice Y of monoids Sa

with ψa,β a monoid homomorphism for a ^ β e Y. If T is an n -
large ideal of Y, then L = \Jβeτ Sβ is an f] -large ideal of S.

Proof. We saw in the proof of Lemma 1.2 that L is an ideal
of S. To see that L is Π -large we let B be a nonzero right ideal
of Sf and define R = {σeY\BΓ\SσΦ 0}. Since R is a nonzero
ideal of Y and T is Π -large then R Π T Φ {0}. Thus there exists
0 φ δ e R Π T for which Sδ £ L, and so there exists 0 Φ t e B Π L.

2. Right nonsingular strong semilattices of semigroups* In
studying a semigroup M which is a semilattice X of groups Gδ,
Johnson and McMorris [3] showed that if M is nonsingular then the
set E of idempotents of M is a nonsingular semilattice. Note that
under these conditions the idempotents of M are central, every
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one-sided ideal is two-sided, and X is isomorphic to E. Here we
consider a weaker structure and obtain the results of Johnson and
McMorris.

THEOREM 2.1. Let S be a strong semilattice Y of monoids Sa

with ψa,β a monoid homomorphism for a ^ β e Y. If S is right
nonsingular, then Y is nonsingular.

Proof. Let T be an Π -large ideal of Y and define L = \Jβeτ Sβ.
Since S is right nonsingular then L is a dense right ideal of S for,
by Lemma 1.3, L is an n -large right ideal of S. Let a, βeY such
that a Φ β. Then ea Φ eβ and there exists an xeL such that ea*χφ
eβ*x where xeSδ. Thus δeT and aδ Φ βδ for if otherwise

δ(x) = eβ*x

which is a contradiction. Thus T is dense in Y.

THEOREM 2.2. Let S be a sturdy semilattice Y of right can-
cellative monoids Sa. If Y is nonsingular, then S is right non-
singular.

Proof. Let L be an Π -large right ideal of S and let x Φ y,
zeS. Since L is Π-large then z~xL = {seS\ z*s eL) is an Π-large
right ideal of S and so is L* = L Π z~xL. By Lemma 1.2, A = {σ e
Y\L* nSσΦ0} is an Π -large ideal of Y, and since Y is nonsingular
then A is dense in Y. We now consider the following two cases:

Case 1. Suppose that xe Sa and y e Sβ with a Φ β. Since A
is dense there exists δ e A such that aδ Φ βδ. Hence there exists
a t G L* Π Sδ such that z*t e L and teL. Since αδ =£ /3<5 then Saδ Π
S/3δ = 0 and so #*£ ̂  y*t.

Case 2. Suppose that x,yeSa and define [0, α] = {σ e Y | 0 ^
a ^ α}. Since [0, a] is a nonzero ideal of Y, then there exists
0 ^ 3 e 4 n [ 0 , 4 Thus there is a £eL* with έ e L and z*teL.
Now #*£ ̂  i/*ί for if otherwise then ^«,β(aj)ί = Ψ«,δ(v)t ^ u ^ ^ ίs

right cancellative so ψa>δ(^) = Ψ<χ,δ(y) Since α α̂,δ is one-to-one then
x = y which is a contradiction.

Thus in both cases L is a dense right ideal of S.

COROLLARY 2.3. Let S be a sturdy semilattice Y of right
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cancellative monoids Sa. Then S is right nonsingular if and only
if Y is nonsingular.

If each ψa,β(a > β) is the trivial homomorphism; that is, it takes
all elements to the identity, we say that S has trivial multiplica-
tion.

THEOREM 2.4. Let S be a strong semilattice Y of monoids Sa

and let S have trivial multiplication. If S is right nonsingular,
then I Sa | > 1 implies a is an atom (a minimal nonzero element)
ofY.

Proof. Let | Sa | > 1 and let x,yeSa with xφy. Also let L
be an Π -large right ideal of S. Since *S is right nonsingular, L is
dense and so there exists zeS such that x*z Φ y*z and ea*zeL.
We claim that if z e Sβ then a <; β. To see this we consider the
following two cases:

Case 1. If a is not related to β then a> aβ and β > aβ.
Thus x*z = ψa>aβ(x)fβ,aβ(z) = eaβeaβ = eaβ and y*z = ψa,aβ(y)ψβ,aβ(z) =

eaβeaβ = eaβ. This is a contradiction since x*z Φ y*z.

Case 2. If β <: a then #*2 = ff0Cyβ{x)ψβ>β{z) = eβz — z and y*z =

Ψa,β(y)ψβ,β(z) — ̂ 2; = £. Again this is a contradiction.
Let ΰ be an ΓΊ -large ideal, L* and z as before. Then a <; /3

implies aβ = aeβ.
Finally, we suppose that α: is not an atom of Y. Then there

exists δe Y such that 0 < δ < a. Define I = {σeY\σδ = 0 or σ^d}.
It is easy to see that / is an Π-large ideal of Y but ail which
is a contradiction.

THEOREM 2.5. Let S be a strong semilattice Y of right can-
cellative monoids Sa. If Y is nonsingular and \ Sa \ > 1 implies a
is an atom of Y, then S is right nonsingular.

Proof. Let x Φ y, zeS and let L be an Π-large right ideal of
S. If x 6 Sa and y eSβ with a Φ β by the same argument as in
Theorem 2.2, Case 1 there exists t e L such that x*t Φ y*t and
z*teL. Hence assume that x,yeSa, then since | S α | > l , a is an
atom of Y and [0, a] is a nonzero ideal of Y. Thus there exists
t 6 L Π Sa such that z*t e L and x*t Φ y*t, for if otherwise x — y
since Sa is right cancellative and this would be a contradiction.

Note that if \Sa\ > 1 implies a is an atom of Y, then S has
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trivial multiplication.

COROLLARY 2.6. Let S be a strong semilattice Y of right can-
cellative monoids Sa and assume S has trivial multiplication.
Then S is right nonsingular if and only if E is nonsingular and
I Sa I > 1 implies that ea is an atom of E.

3* The maximal right quotient semigroup* Since McMorris
[6] showed that the maximal right quotient semigroup of a semilat-
tice of groups is a semilattice of groups, a natural question arises;
which strong semilattices of semigroups have for their maximal
right quotient semigroup a semilattice of groups? In this section,
we let S be a strong semilattice Y of right cancellative principal
right ideal monoids Sa with the linking homomorphisms onto.

LEMMA 3.1. If aSa is a dense principal right ideal of Sa then
ψa>β(a)Sβ is a dense principal right ideal of Sβ for a ^ β.

Proof. The proof is straightforward and is omitted.

Let a, β e Y with a ^ β and let Q(Sa), Q(Sβ) be the maximal
right quotient semigroup of Sa and Sβ respectively. The members
of these equivalence classes will be denoted [f]a and [g]β with the
subscripts being dropped if there is no confusion.

We can extend ψa>β: Sa—>Sβ to a mapping φa%β\ Q(Sa)~+Q(Sβ)
defined by [f]a —• [f]β where if / : aSa —> Sa then / : ψa>β(a)Sβ —• Sβ is
defined by ψa>β(a)s —> ψa,β(f(a))8 ' o r s e Sβ. Note that / is an Sβ-
homomorphism since if teSβ then f(ψa,β(a)s)t = (Ψa,β(f(a))s)t —

We next show that <ρa>β is independent of the representative we
choose from [/]. Hence let [/] = [g], then / and g agree on a
dense right ideal of Saf call it D, found in the intersection of their
domains Df and Dg respectively. Since Sa is a principal right ideal
semigroup then Df = aSa, Dg — cSa and D = xSa for some a, c, x e
Sa. Now ΦaAlfY) = [/] where /: ψa,β(a)Sβ—>Sβ defined by φa,β(a)8-+
Ψ«Af(a))s, and Φ*,β([θ\) = [Q\ where g: jraΛc)Sβ -* Sβ defined by
ψa,β(c)s—*ψatβ(g(c))s. We claim / and g agree on the dense right
ideal ψa,β(x)SβQψa,β(ά)Sβ Π ψa,β(c)Sβ. Since xSaQaSa Π cS^ it is easy
to see that ψa,β(^)SceQψce>β(a)Sβ Π ψa,β(c)Sβ. Furthermore, since xSa

is dense in Sa then by Lemma 3.1, ψa,β(x)Sβ is dense in Sβ. Hence
let ΫaA*)* e Ψa,β(x)Sβ then f(ψa,β(Φ) = ?(ψa,β&)Ψ«Λt)) w h e r e * 6 s«
since ψa>β is onto. Since ψatβ is a semigroup homomorphism, it
follows that f(ψ«Ax)s) = hψaΛ*t)) = Ϋ«Λf&b)) = f«,β(δ(vt)) =
g(ψa,β(vt)) = ΰ(.ψa,β(x)'fa,β(t)) = g(ψatβ(x)s). Thus the claim is estab-
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lished.

THEOREM 3.2. Let S — \Jaeγ S be a strong semilattice Y of
right cancellative principal right ideal monoids Sa with ψa,β onto
for a ^ β e Y. If T = \JaeγQ(Sa) with multiplication defined by

ifUΰh = Φa,aβ([f]«)Φβ,«β(lg]β)

where [f]a e Q(Sa)f [g]β e Q(Sβ) and φa,aβ, Φβ,aβ are defined as above,
then T is a strong semilattice Y of monoids Q(Sa).

Proof. Note that since Sa n Sβ = 0 for a Φ β then Q(Sa) Π
Q(Sβ) = 0 , and that φa,a is the identity mapping. We now show
that φa>β: Q(Sa) —> Q(Sβ) is a semigroup homomorphism. Let [/], [g] e
Q(Sa) then we must show that Φ*,β([f][g]) = ΦaAf\)ΦaA[g\) T o

this end we let φa,β{[f]) = [/] and φa,β([g\) = lΰ] where if /: aSa —> Sa

and g: cSa —> Sa then / : ψaiβ(a)Sβ —»- S^ defined by ψa,β(a)s -+fa>β(f(a))s
and £: ira,β(c)Sβ —> S^ defined by fa,β(c)s -> ψa,β(g(c))s. Since [/][#] =
[/gr] where fg: g~\aSa) ~»Sa and g'XaSa) = {α; 6 cSα | βr(α ) eαSα}, then
for some feeSα, hSa = g~\aSa) and so fg: ira)β(h)Sβ-+Sβ defined by

ψaΛ*>)8-+1r«Λfg(h))8. Thus ^([/Hflr]) = ^([/ff]) = [/flr]. On the
other hand, ^ ( [ / D ^ d f l r ] ) = [/][^] = [/^] where /^: Γ 1 (f*Λ*)Sβ)-+
Sβ and g~Kψa>β(a)Sβ) - {ye ψa>β(c)Sβ \ g(y) e ψa,β(a)Sβ}. Hence we must

show that [fg] = [/^]; that is, / # and / ^ agree on a dense right
ideal found in the intersection of their domains. Now ψa}β(h)SβQ
g~-\ψcc,β(a)Sβ) for if ψa,β(h)s e ψa,β(h)Sβ then ψa,β(h)s = ira>β(h)ψa)β(t)
where teSa since ψ ^ is onto. Thus ψa,β(h)s = ψa,β(ht) = ira>β(cr)
since /&£ 6 cSα and so fr£ = cr for some r 6 Sα. Hence ψa>β being a
semigroup homomorphism implies ψa,β(h)s = ira>β(c)ψa)β(r)efa,β(c)Sβ.
Now g(ψaAh)s) = ψa,β(g(h))8 = ΨaΛg(h))ψa>β{t) - fa,β(g{h)t) = ψa,β(g(ht)) =
ψaj(ax) since <7(M) 6 &Sα and so ^(M) = α# for some α? e Sα. Again
since τ/rα̂  is a semigroup homomorphism we have that g(ψa,β(h)s) =

χ)e Ψ«,β(a)Sβ- We now claim that / # and /^ agree on
Let ψa,β(h)s e ψatβ(h)Sβ then fg(ira>β(h)s) = ψa,β(fg(h))s =

f
Finally, we show that if a > β > d then φβ,δφa,β = 0α>i. Let

[/] e Q(Sα) with /: αSα — Sα and let &,,,([/]) = [/] e Q(S3) where
f:faMSs-*Sδ defined by ^α,δ(α)s — fa,β(f(a))8. Let ̂ ( [ / ] ) = [/]e
Q(S )̂ where / : ψa,β(a)Sβ —* Sβ defined by ψa,β(a)t-+ψa,β(f(ά))t. Hence
&,a(Ar.*([/D) = ^.a([/]) = [/] where f:ψβtδ(ΨatβW)S8^Si is defined
by ψβ,s(Ψa,β(a))s -> ψβ,δ(f(Ψa,β(a)))s. To see that / = /, we note that
ψβΛa,β = ^α,δ so ψ«,δ(a)Sδ = ψβ,δ(Ψ«A<t>))Sδ. Hence if ψβ)δ(Ψa,β(a))s e

then f(ψβ,δ(Ψa,β(a))s) = φ
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THEOREM 3.3. Under the hypothesis of Theorem 3.2, S can be
embedded into T.

Proof. Define Φ:S->T by s—>[λβ] where if seSa then [\]ae
Q(Sa) and Xs:Sa—>Sa is defined by t—+st. The mapping Φ is one-to-
one for suppose Φ(s) = Φ(r) where s e Sa and reSβ.

Case 1. If a Φ β then Φ{s) Φ Φ(f) since Q(Sa) (Ί Q(Sβ) = 0 .

2. If a = /9 then [λs]a = [λr]a and so λs and λr agree on
a dense right ideal of Sa> say 2λ Hence for d e D, sd = λ,(cZ) =
λr(d) = rd and since Sa is right cancellative then s = r.

Next we show that Φ is a semigroup homomorphism. Let x e Sa,
yeSβ then Φ(x*y) = [XM]aβ where K*y: Saβ—>Saβ defined by s—<«*y)8 =
ψa,aβ(%)ψβ,aβ(V)S. NOW Φ(x)Φ(y) = [yx)a[\]β = Φataβ([\]a)Φβ,aβ{[\]β) =

[/][£] [/̂ ] where [/], [0]eQ(Sβ,) and f:Saβ~>Saβ defined by s -
g:Saβ—+Saβ defined by s*-+ψβ,βa(y)s. If seSaβ then

= f(fβ,aβ(V))S = ψa,aβ(x)ψβ,aβ(y)S = λ ^ ^ δ ) .

We identify S with its image in T and note that if S is right
nonsingular we have the diagram

T >T/ψτ

Ull Ull
S = S/ψ8 .

THEOREM 3.4. Let R = T/ψτ. Under the hypothesis of Theorem
3.2 and if S is right nonsingular then ψR = iR.

Proof. Suppose that t?fRt?. Let t^ett and t2et? then
(t^ψT^d) for all d e D a dense right ideal of S. Hence for each
deD there exists JQ dense in S such that ^cte = t2dx for all
α eXrf. Let W = \JdeDdXd, then ί^ = t2w for all weW. If TΓ is
dense in S then ί ^ ί j and so t* = t*. To see that W is dense in
S, we let Sj. ̂  s2, s 3 65. Since D is dense then there exists deD
such that Sid Φ s2d and s3cί 6 D. Since XS3d is dense then there exists
x e XSzd such that {Bxd)x Φ {s2d)x and (s3d)x e (s3d)X83d. But then
s^dx) Φ s2(dx) and s3(dx) e T7. Since dxeD and Xdx is dense there
exists y e Xdx such that s1((dx)y) Φ s2{{dx)y) and s3((dx)y) e Xda!. But
TΓ is a right ideal so s3((dx)y) e W with (daθ# 6 W. This shows that
TF is dense in S.
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A right Ore semigroup is a right cancellative semigroup all of
whose nonzero right ideals are Π -large. The maximal right quoti-
ent semigroup of a right Ore semigroup R is a group Q(R) =
{ab~ι\a, beR}[2].

THEOREM 3.5. Let S = \JaeγSa be a strong semilattice Y of
principal right ideal Ore monoids Sa with ψa,β onto for a^ β e Y.
If S is right nonsingular then Q(S) is a semilattice of groups.

Proof. By Theorem 3.2, T = \JaeγQ(Sa) is a strong semilattice
and since each Q(Sa) is a group then T is a semilattice Y of groups
Q(Sa) and so regular with idempotents in the center of Γ [1, pp.
128-129]. Hence T/ψτ is regular and its idempotents are in
the center of Tjψτ, which makes T/ψτ a semilattice of groups.
McMorris [6] showed that Q(T/φτ) is also a semilattice of groups.
By Theorem 3.4, Q(S) ̂  Q(T/ψτ) and so is a semilattice of groups.

THEOREM 3.6. Under the hypothesis of Theorem 3.5, T/ψτ can
be taken to be the union of the same semilattice Y of groups.

Proof. Since T = \JaeγQ(Sa) where each Q(Sa) is a group, we
let ea = [ea] e Q(Sa). If eaψτeβ when a Φ β then ea*x — eβ*x for all

x e L an Π -large right ideal of S. Since S is right nonsingular then
Y is right nonsingular by Theorem 2.1. Furthermore, A = {σe Y\Lf]
Sσ} Φ 0 is dense in Y. Hence since a Φ β there exists d e A such
that aδ Φ βδ. Let teL f] Sδ then ea*t = eβ*t which implies that
eaδfδ,aδ(t) = eβδψδyβδ(t) or t h a t φδ,aδ(t) = <f>δ,βδ(t). This is a contradiction

since for aδ Φ βδ> Q(Saδ) Π Q(Sβδ) Φ 0 . Hence eaψτ Φ eβfτ when

a Φ β. Thus in T/ψτ there are at least as many idempotents as
there are in T. Now suppose that gψτ is an idempotent of T/ψτ.
Since geQ(Sa) a group then gψτ^Q(Sa)/ψTf also a group. The only
idempotent of Q(Sa)/ψτ is eaψτ so gψτ = eαψΓ. Hence in Γ/^Γ there
are no new idempotents.

Hinkle [2] showed that Q(T/ψτ) is a semilattice Q(Γ) of groups.
Thus Q(S) is a semilattice Q{Y) of groups where F is the semilat-
tice of both S and T/ψτ. The next theorem is a restatement of
the above results.

THEOREM 3.7. Let S be a strong semilattice Y of principal
right ideal Ore monoids with onto linking homomorphisms. If S
is right nonsingular then Q(S) is a semilattice Q(Y) of groups.



T H E MAXIMAL RIGHT QUOTIENT SEMIGROUP 485

R E F E R E N C E S

1. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. 1, Math.
Surveys of the Amer. Math. Soc, (Providence, R. I., 1961).
2. C. V. Hinkle, Jr., Semigroups of right quotients of a semigroup which is a semi-
lattice of groups, Semigroup Forum., 5 (1972), 167-173.
3. C. S. Johnson, Jr. and F. R. McMorris, Nonsingular semilattices and semigroups,
Czechoslovak Math. J., 26 (101) 2 (1976), 280-282.
4. f Commutative nonsingular semigroups submitted.
5. A. M. Lopez, Jr. and J. K. Luedeman, The bicommutator of the injective hull of a
nonsingular semigroup, Semigroup Forum, 12 (1976), 71-77.
6. F. R. McMorris, The quotient semigroup of a semigroup that is a semilattice of
groups, Glasgow Math. J., 12 (1971), 18-23.
7. 1 On quotient semigroups, J. Math. Sci., 7(1972), 48-56.
8. f The singular congruence and the maximal quotient semigroup, Canad.
Math. Bull., 15 (1972), 301-303.
9. M. Petrich, Introduction to semigroups, Charles E. Merrill Publishing Co., (Colum-
bus, Ohio, 1973).

Received November 29, 1976 and in revised form March 9, 1977. This paper con-
tains part of a doctoral dissertation written under the direction of Professor John K.
Luedeman at Clemson University.

LOYOLA UNIVERSITY

NEW ORLEANS, LA 70118






